moltlang 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mcp_server/__init__.py +13 -0
- mcp_server/endpoints.py +177 -0
- mcp_server/server.py +303 -0
- moltlang/__init__.py +64 -0
- moltlang/cli.py +247 -0
- moltlang/config.py +86 -0
- moltlang/openclaw/__init__.py +11 -0
- moltlang/openclaw/skill.py +77 -0
- moltlang/tokens.py +311 -0
- moltlang/training/__init__.py +12 -0
- moltlang/training/data_gen.py +118 -0
- moltlang/training/distill.py +86 -0
- moltlang/translator.py +965 -0
- moltlang/validator.py +378 -0
- moltlang-0.1.0.dist-info/METADATA +187 -0
- moltlang-0.1.0.dist-info/RECORD +20 -0
- moltlang-0.1.0.dist-info/WHEEL +5 -0
- moltlang-0.1.0.dist-info/entry_points.txt +2 -0
- moltlang-0.1.0.dist-info/licenses/LICENSE +23 -0
- moltlang-0.1.0.dist-info/top_level.txt +2 -0
moltlang/tokens.py
ADDED
|
@@ -0,0 +1,311 @@
|
|
|
1
|
+
"""
|
|
2
|
+
MoltLang token system.
|
|
3
|
+
|
|
4
|
+
This module defines the token types, token registry, and token operations
|
|
5
|
+
for the MoltLang language system.
|
|
6
|
+
|
|
7
|
+
LLM-Friendly Design: All token values use lowercase for natural generation.
|
|
8
|
+
The parser is case-insensitive and accepts both [RET:json] and [RET:JSON].
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
from dataclasses import dataclass, field
|
|
12
|
+
from enum import Enum
|
|
13
|
+
from typing import Any
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class TokenType(Enum):
|
|
17
|
+
"""
|
|
18
|
+
Types of tokens in the MoltLang language.
|
|
19
|
+
|
|
20
|
+
Low-hanging fruit categories for MVP:
|
|
21
|
+
- Operations: Common AI actions (fetch, parse, transform, etc.)
|
|
22
|
+
- Sources: Data sources (API, database, file, etc.)
|
|
23
|
+
- Parameters: Common parameter types
|
|
24
|
+
- Returns: Return value types
|
|
25
|
+
- Control: Control flow structures
|
|
26
|
+
|
|
27
|
+
Note: All values are lowercase for LLM-friendliness.
|
|
28
|
+
The parser accepts both cases (case-insensitive).
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
# Operation tokens - core AI actions
|
|
32
|
+
OP_FETCH = "OP:fetch" # Retrieve data
|
|
33
|
+
OP_PARSE = "OP:parse" # Parse structured data
|
|
34
|
+
OP_TRANSFORM = "OP:transform" # Transform data
|
|
35
|
+
OP_VALIDATE = "OP:validate" # Validate input
|
|
36
|
+
OP_COMPUTE = "OP:compute" # Perform computation
|
|
37
|
+
OP_SEARCH = "OP:search" # Search for data
|
|
38
|
+
OP_FILTER = "OP:filter" # Filter data
|
|
39
|
+
OP_MAP = "OP:map" # Map over data
|
|
40
|
+
OP_REDUCE = "OP:reduce" # Reduce data
|
|
41
|
+
OP_AGGREGATE = "OP:aggregate" # Aggregate results
|
|
42
|
+
OP_PROCESS = "OP:process" # Process data
|
|
43
|
+
|
|
44
|
+
# Source tokens - data sources
|
|
45
|
+
SRC_API = "SRC:api" # REST/GraphQL API
|
|
46
|
+
SRC_DB = "SRC:db" # Database
|
|
47
|
+
SRC_FILE = "SRC:file" # File system
|
|
48
|
+
SRC_MEM = "SRC:mem" # In-memory data
|
|
49
|
+
SRC_STREAM = "SRC:stream" # Data stream
|
|
50
|
+
SRC_QUEUE = "SRC:queue" # Message queue
|
|
51
|
+
SRC_CACHE = "SRC:cache" # Cache layer
|
|
52
|
+
|
|
53
|
+
# Parameter tokens - common parameter types
|
|
54
|
+
PARAM_TOKEN = "PARAM:token" # Authentication token
|
|
55
|
+
PARAM_KEY = "PARAM:key" # API key or identifier
|
|
56
|
+
PARAM_QUERY = "PARAM:query" # Query string
|
|
57
|
+
PARAM_BODY = "PARAM:body" # Request body
|
|
58
|
+
PARAM_HEADER = "PARAM:header" # HTTP header
|
|
59
|
+
PARAM_TIMEOUT = "PARAM:timeout" # Timeout value
|
|
60
|
+
PARAM_LIMIT = "PARAM:limit" # Result limit
|
|
61
|
+
PARAM_OFFSET = "PARAM:offset" # Pagination offset
|
|
62
|
+
PARAM_TIMES = "PARAM:times" # Retry count / repetition count
|
|
63
|
+
|
|
64
|
+
# Return type tokens
|
|
65
|
+
RET_JSON = "RET:json" # JSON format
|
|
66
|
+
RET_TEXT = "RET:text" # Plain text
|
|
67
|
+
RET_BIN = "RET:bin" # Binary data
|
|
68
|
+
RET_STREAM = "RET:stream" # Streaming response
|
|
69
|
+
RET_BOOL = "RET:bool" # Boolean result
|
|
70
|
+
RET_NUM = "RET:num" # Numeric result
|
|
71
|
+
RET_LIST = "RET:list" # List result
|
|
72
|
+
RET_DICT = "RET:dict" # Dictionary result
|
|
73
|
+
RET_NULL = "RET:null" # Null/void result
|
|
74
|
+
|
|
75
|
+
# Control flow tokens
|
|
76
|
+
CTL_IF = "CTL:if" # Conditional
|
|
77
|
+
CTL_ELSE = "CTL:else" # Alternative
|
|
78
|
+
CTL_LOOP = "CTL:loop" # Loop/iterate
|
|
79
|
+
CTL_BREAK = "CTL:break" # Exit loop
|
|
80
|
+
CTL_CONTINUE = "CTL:continue" # Next iteration
|
|
81
|
+
CTL_TRY = "CTL:try" # Error handling start
|
|
82
|
+
CTL_CATCH = "CTL:catch" # Error handler
|
|
83
|
+
CTL_FINALLY = "CTL:finally" # Cleanup block
|
|
84
|
+
|
|
85
|
+
# Data type tokens
|
|
86
|
+
TYPE_STR = "TYPE:str" # String type
|
|
87
|
+
TYPE_INT = "TYPE:int" # Integer type
|
|
88
|
+
TYPE_FLOAT = "TYPE:float" # Float type
|
|
89
|
+
TYPE_BOOL = "TYPE:bool" # Boolean type
|
|
90
|
+
TYPE_LIST = "TYPE:list" # List type
|
|
91
|
+
TYPE_DICT = "TYPE:dict" # Dictionary type
|
|
92
|
+
TYPE_ANY = "TYPE:any" # Any type
|
|
93
|
+
|
|
94
|
+
# Error handling tokens
|
|
95
|
+
ERR_RETRY = "ERR:retry" # Retry operation
|
|
96
|
+
ERR_FAIL = "ERR:fail" # Fail operation
|
|
97
|
+
ERR_LOG = "ERR:log" # Log error
|
|
98
|
+
ERR_IGNORE = "ERR:ignore" # Ignore error
|
|
99
|
+
|
|
100
|
+
# Modifiers
|
|
101
|
+
MOD_ASYNC = "MOD:async" # Async operation
|
|
102
|
+
MOD_BATCH = "MOD:batch" # Batch operation
|
|
103
|
+
MOD_PARALLEL = "MOD:parallel" # Parallel execution
|
|
104
|
+
MOD_CACHED = "MOD:cached" # Use cached value
|
|
105
|
+
|
|
106
|
+
|
|
107
|
+
@dataclass
|
|
108
|
+
class Token:
|
|
109
|
+
"""
|
|
110
|
+
A single MoltLang token.
|
|
111
|
+
|
|
112
|
+
Attributes:
|
|
113
|
+
type: The token type
|
|
114
|
+
value: Optional value associated with the token
|
|
115
|
+
position: Position in the token sequence
|
|
116
|
+
"""
|
|
117
|
+
|
|
118
|
+
type: TokenType
|
|
119
|
+
value: str | None = None
|
|
120
|
+
position: int = 0
|
|
121
|
+
|
|
122
|
+
def __str__(self) -> str:
|
|
123
|
+
"""Return the string representation of the token."""
|
|
124
|
+
if self.value:
|
|
125
|
+
return f"[{self.type.value}={self.value}]"
|
|
126
|
+
return f"[{self.type.value}]"
|
|
127
|
+
|
|
128
|
+
def __len__(self) -> int:
|
|
129
|
+
"""Return the token length (always 1 for MoltLang tokens)."""
|
|
130
|
+
return 1
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
@dataclass
|
|
134
|
+
class TokenSequence:
|
|
135
|
+
"""
|
|
136
|
+
A sequence of MoltLang tokens.
|
|
137
|
+
|
|
138
|
+
Attributes:
|
|
139
|
+
tokens: List of tokens in the sequence
|
|
140
|
+
metadata: Optional metadata about the sequence
|
|
141
|
+
"""
|
|
142
|
+
|
|
143
|
+
tokens: list[Token] = field(default_factory=list)
|
|
144
|
+
metadata: dict[str, Any] = field(default_factory=dict)
|
|
145
|
+
|
|
146
|
+
def __str__(self) -> str:
|
|
147
|
+
"""Return the string representation of the token sequence."""
|
|
148
|
+
return "".join(str(token) for token in self.tokens)
|
|
149
|
+
|
|
150
|
+
def __len__(self) -> int:
|
|
151
|
+
"""Return the number of tokens in the sequence."""
|
|
152
|
+
return len(self.tokens)
|
|
153
|
+
|
|
154
|
+
def add(self, token: Token) -> "TokenSequence":
|
|
155
|
+
"""Add a token to the sequence."""
|
|
156
|
+
token.position = len(self.tokens)
|
|
157
|
+
self.tokens.append(token)
|
|
158
|
+
return self
|
|
159
|
+
|
|
160
|
+
def token_count(self) -> int:
|
|
161
|
+
"""Return the total token count."""
|
|
162
|
+
return len(self.tokens)
|
|
163
|
+
|
|
164
|
+
def compare_token_efficiency(self, english_word_count: int) -> float:
|
|
165
|
+
"""
|
|
166
|
+
Compare token efficiency against English word count.
|
|
167
|
+
|
|
168
|
+
Args:
|
|
169
|
+
english_word_count: Number of words in English equivalent
|
|
170
|
+
|
|
171
|
+
Returns:
|
|
172
|
+
Token reduction percentage (0.0-1.0)
|
|
173
|
+
"""
|
|
174
|
+
if english_word_count == 0:
|
|
175
|
+
return 0.0
|
|
176
|
+
return 1.0 - (self.token_count() / english_word_count)
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
class TokenRegistry:
|
|
180
|
+
"""
|
|
181
|
+
Registry for managing MoltLang tokens.
|
|
182
|
+
|
|
183
|
+
Provides methods for looking up tokens, managing custom tokens,
|
|
184
|
+
and validating token sequences.
|
|
185
|
+
"""
|
|
186
|
+
|
|
187
|
+
_instance: "TokenRegistry | None" = None
|
|
188
|
+
_tokens: dict[str, Token] = None
|
|
189
|
+
|
|
190
|
+
def __new__(cls) -> "TokenRegistry":
|
|
191
|
+
"""Singleton pattern for token registry."""
|
|
192
|
+
if cls._instance is None:
|
|
193
|
+
cls._instance = super().__new__(cls)
|
|
194
|
+
cls._instance._initialize()
|
|
195
|
+
return cls._instance
|
|
196
|
+
|
|
197
|
+
def _initialize(self) -> None:
|
|
198
|
+
"""Initialize the token registry with default tokens."""
|
|
199
|
+
# Initialize _tokens as a mutable dict
|
|
200
|
+
self._tokens = {}
|
|
201
|
+
# Initialize _custom_tokens as a mutable dict
|
|
202
|
+
self._custom_tokens = {}
|
|
203
|
+
# Register all TokenType values as tokens
|
|
204
|
+
for token_type in TokenType:
|
|
205
|
+
self._tokens[token_type.value] = Token(type=token_type)
|
|
206
|
+
|
|
207
|
+
def get(self, token_str: str) -> Token | None:
|
|
208
|
+
"""
|
|
209
|
+
Get a token by its string representation (case-insensitive).
|
|
210
|
+
|
|
211
|
+
Args:
|
|
212
|
+
token_str: String representation of the token (e.g., "[OP:FETCH]" or "[OP:fetch]")
|
|
213
|
+
|
|
214
|
+
Returns:
|
|
215
|
+
Token if found, None otherwise
|
|
216
|
+
"""
|
|
217
|
+
# Strip brackets if present
|
|
218
|
+
clean = token_str.strip("[]")
|
|
219
|
+
if "=" in clean:
|
|
220
|
+
clean = clean.split("=")[0]
|
|
221
|
+
|
|
222
|
+
# Try exact match first
|
|
223
|
+
if clean in self._tokens:
|
|
224
|
+
return self._tokens[clean]
|
|
225
|
+
|
|
226
|
+
# Try case-insensitive match for LLM-friendliness
|
|
227
|
+
clean_lower = clean.lower()
|
|
228
|
+
for key, token in self._tokens.items():
|
|
229
|
+
if key.lower() == clean_lower:
|
|
230
|
+
return token
|
|
231
|
+
|
|
232
|
+
# Check custom tokens
|
|
233
|
+
if clean in self._custom_tokens:
|
|
234
|
+
return self._custom_tokens[clean]
|
|
235
|
+
|
|
236
|
+
return None
|
|
237
|
+
|
|
238
|
+
def register_custom(self, name: str, token_type: TokenType) -> Token:
|
|
239
|
+
"""
|
|
240
|
+
Register a custom token.
|
|
241
|
+
|
|
242
|
+
Args:
|
|
243
|
+
name: Name of the custom token
|
|
244
|
+
token_type: Type of the token
|
|
245
|
+
|
|
246
|
+
Returns:
|
|
247
|
+
The registered token
|
|
248
|
+
"""
|
|
249
|
+
token = Token(type=token_type, value=name)
|
|
250
|
+
self._custom_tokens[f"{token_type.value}:{name}"] = token
|
|
251
|
+
return token
|
|
252
|
+
|
|
253
|
+
def list_tokens(self, token_type: TokenType | None = None) -> list[Token]:
|
|
254
|
+
"""
|
|
255
|
+
List all tokens, optionally filtered by type.
|
|
256
|
+
|
|
257
|
+
Args:
|
|
258
|
+
token_type: Optional token type filter
|
|
259
|
+
|
|
260
|
+
Returns:
|
|
261
|
+
List of tokens
|
|
262
|
+
"""
|
|
263
|
+
all_tokens = {**self._tokens, **self._custom_tokens}
|
|
264
|
+
if token_type:
|
|
265
|
+
return [t for t in all_tokens.values() if t.type == token_type]
|
|
266
|
+
return list(all_tokens.values())
|
|
267
|
+
|
|
268
|
+
def validate_sequence(self, sequence: TokenSequence) -> bool:
|
|
269
|
+
"""
|
|
270
|
+
Validate a token sequence.
|
|
271
|
+
|
|
272
|
+
Args:
|
|
273
|
+
sequence: Token sequence to validate
|
|
274
|
+
|
|
275
|
+
Returns:
|
|
276
|
+
True if valid, False otherwise
|
|
277
|
+
"""
|
|
278
|
+
for token in sequence.tokens:
|
|
279
|
+
if token not in self._tokens.values() and token not in self._custom_tokens.values():
|
|
280
|
+
return False
|
|
281
|
+
return True
|
|
282
|
+
|
|
283
|
+
|
|
284
|
+
# Convenience functions for common operations
|
|
285
|
+
|
|
286
|
+
def op(operation: str) -> Token:
|
|
287
|
+
"""Create an operation token."""
|
|
288
|
+
return Token(type=TokenType[f"OP_{operation.upper()}"])
|
|
289
|
+
|
|
290
|
+
|
|
291
|
+
def src(source: str) -> Token:
|
|
292
|
+
"""Create a source token."""
|
|
293
|
+
return Token(type=TokenType[f"SRC_{source.upper()}"])
|
|
294
|
+
|
|
295
|
+
|
|
296
|
+
def param(param_type: str) -> Token:
|
|
297
|
+
"""Create a parameter token."""
|
|
298
|
+
return Token(type=TokenType[f"PARAM_{param_type.upper()}"])
|
|
299
|
+
|
|
300
|
+
|
|
301
|
+
def ret(return_type: str) -> Token:
|
|
302
|
+
"""Create a return type token."""
|
|
303
|
+
return Token(type=TokenType[f"RET_{return_type.upper()}"])
|
|
304
|
+
|
|
305
|
+
|
|
306
|
+
def sequence(*tokens: Token) -> TokenSequence:
|
|
307
|
+
"""Create a token sequence from tokens."""
|
|
308
|
+
seq = TokenSequence()
|
|
309
|
+
for token in tokens:
|
|
310
|
+
seq.add(token)
|
|
311
|
+
return seq
|
|
@@ -0,0 +1,12 @@
|
|
|
1
|
+
"""
|
|
2
|
+
MoltLang Training Module.
|
|
3
|
+
|
|
4
|
+
This module provides functionality for training models on MoltLang.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
__version__ = "0.1.0"
|
|
8
|
+
|
|
9
|
+
from moltlang.training.data_gen import SyntheticDataGenerator
|
|
10
|
+
from moltlang.training.distill import KnowledgeDistillation
|
|
11
|
+
|
|
12
|
+
__all__ = ["SyntheticDataGenerator", "KnowledgeDistillation"]
|
|
@@ -0,0 +1,118 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Synthetic data generation for MoltLang training.
|
|
3
|
+
|
|
4
|
+
This module generates synthetic training data for fine-tuning models
|
|
5
|
+
on MoltLang.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
import random
|
|
9
|
+
from typing import Any
|
|
10
|
+
|
|
11
|
+
from moltlang import translate_to_molt
|
|
12
|
+
from moltlang.tokens import TokenType
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class SyntheticDataGenerator:
|
|
16
|
+
"""
|
|
17
|
+
Generate synthetic training data for MoltLang.
|
|
18
|
+
|
|
19
|
+
Creates pairs of human language text and MoltLang translations
|
|
20
|
+
for training and fine-tuning language models.
|
|
21
|
+
"""
|
|
22
|
+
|
|
23
|
+
def __init__(self):
|
|
24
|
+
"""Initialize the data generator."""
|
|
25
|
+
self.templates = self._load_templates()
|
|
26
|
+
|
|
27
|
+
def _load_templates(self) -> list[dict[str, Any]]:
|
|
28
|
+
"""Load templates for data generation."""
|
|
29
|
+
return [
|
|
30
|
+
{
|
|
31
|
+
"pattern": "Fetch {data} from {source}",
|
|
32
|
+
"tokens": ["OP:FETCH", "SRC:{source}"],
|
|
33
|
+
"values": {
|
|
34
|
+
"data": ["data", "user", "records", "information"],
|
|
35
|
+
"source": ["API", "database", "file", "cache"],
|
|
36
|
+
},
|
|
37
|
+
},
|
|
38
|
+
{
|
|
39
|
+
"pattern": "Parse {data_type} from {source}",
|
|
40
|
+
"tokens": ["OP:PARSE", "SRC:{source}"],
|
|
41
|
+
"values": {
|
|
42
|
+
"data_type": ["JSON", "XML", "CSV", "text"],
|
|
43
|
+
"source": ["file", "API", "stream", "buffer"],
|
|
44
|
+
},
|
|
45
|
+
},
|
|
46
|
+
{
|
|
47
|
+
"pattern": "Search for {query} in {source}",
|
|
48
|
+
"tokens": ["OP:SEARCH", "SRC:{source}"],
|
|
49
|
+
"values": {
|
|
50
|
+
"query": ["user", "record", "data", "item"],
|
|
51
|
+
"source": ["database", "file", "memory", "cache"],
|
|
52
|
+
},
|
|
53
|
+
},
|
|
54
|
+
{
|
|
55
|
+
"pattern": "Transform {data} and return {format}",
|
|
56
|
+
"tokens": ["OP:TRANSFORM", "RET:{format}"],
|
|
57
|
+
"values": {
|
|
58
|
+
"data": ["data", "input", "content"],
|
|
59
|
+
"format": ["JSON", "text", "list", "dict"],
|
|
60
|
+
},
|
|
61
|
+
},
|
|
62
|
+
{
|
|
63
|
+
"pattern": "Validate {input} from {source}",
|
|
64
|
+
"tokens": ["OP:VALIDATE", "SRC:{source}"],
|
|
65
|
+
"values": {
|
|
66
|
+
"input": ["input", "data", "parameters", "request"],
|
|
67
|
+
"source": ["API", "form", "file", "stream"],
|
|
68
|
+
},
|
|
69
|
+
},
|
|
70
|
+
]
|
|
71
|
+
|
|
72
|
+
def generate(self, count: int = 100) -> list[dict[str, str]]:
|
|
73
|
+
"""
|
|
74
|
+
Generate synthetic training examples.
|
|
75
|
+
|
|
76
|
+
Args:
|
|
77
|
+
count: Number of examples to generate
|
|
78
|
+
|
|
79
|
+
Returns:
|
|
80
|
+
List of training examples with 'input' and 'output' keys
|
|
81
|
+
"""
|
|
82
|
+
examples = []
|
|
83
|
+
|
|
84
|
+
for _ in range(count):
|
|
85
|
+
template = random.choice(self.templates)
|
|
86
|
+
example = self._generate_from_template(template)
|
|
87
|
+
examples.append(example)
|
|
88
|
+
|
|
89
|
+
return examples
|
|
90
|
+
|
|
91
|
+
def _generate_from_template(self, template: dict[str, Any]) -> dict[str, str]:
|
|
92
|
+
"""Generate a single example from a template."""
|
|
93
|
+
pattern = template["pattern"]
|
|
94
|
+
values = template["values"]
|
|
95
|
+
|
|
96
|
+
# Fill in random values
|
|
97
|
+
text = pattern
|
|
98
|
+
for key, options in values.items():
|
|
99
|
+
text = text.replace(f"{{{key}}}", random.choice(options))
|
|
100
|
+
|
|
101
|
+
# Generate MoltLang translation
|
|
102
|
+
molt = translate_to_molt(text)
|
|
103
|
+
|
|
104
|
+
return {"input": text, "output": molt.text}
|
|
105
|
+
|
|
106
|
+
def save_to_file(self, examples: list[dict[str, str]], filepath: str) -> None:
|
|
107
|
+
"""
|
|
108
|
+
Save examples to a JSONL file.
|
|
109
|
+
|
|
110
|
+
Args:
|
|
111
|
+
examples: List of training examples
|
|
112
|
+
filepath: Path to save the file
|
|
113
|
+
"""
|
|
114
|
+
import json
|
|
115
|
+
|
|
116
|
+
with open(filepath, "w") as f:
|
|
117
|
+
for example in examples:
|
|
118
|
+
f.write(json.dumps(example) + "\n")
|
|
@@ -0,0 +1,86 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Knowledge distillation for MoltLang models.
|
|
3
|
+
|
|
4
|
+
This module provides functionality for distilling knowledge from larger
|
|
5
|
+
teacher models into smaller student models trained on MoltLang.
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from dataclasses import dataclass
|
|
9
|
+
from typing import Any
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@dataclass
|
|
13
|
+
class DistillationConfig:
|
|
14
|
+
"""Configuration for knowledge distillation."""
|
|
15
|
+
|
|
16
|
+
teacher_model: str = "gpt-4"
|
|
17
|
+
student_model: str = "gpt-3.5-turbo"
|
|
18
|
+
temperature: float = 0.7
|
|
19
|
+
alpha: float = 0.5 # Balance between distillation and task loss
|
|
20
|
+
epochs: int = 3
|
|
21
|
+
batch_size: int = 8
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class KnowledgeDistillation:
|
|
25
|
+
"""
|
|
26
|
+
Knowledge distillation for training efficient MoltLang models.
|
|
27
|
+
|
|
28
|
+
Trains smaller student models to mimic larger teacher models
|
|
29
|
+
while using MoltLang for efficient representation.
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
def __init__(self, config: DistillationConfig | None = None):
|
|
33
|
+
"""
|
|
34
|
+
Initialize the distillation trainer.
|
|
35
|
+
|
|
36
|
+
Args:
|
|
37
|
+
config: Optional distillation configuration
|
|
38
|
+
"""
|
|
39
|
+
self.config = config or DistillationConfig()
|
|
40
|
+
|
|
41
|
+
def prepare_data(self, data: list[dict[str, Any]]) -> list[dict[str, Any]]:
|
|
42
|
+
"""
|
|
43
|
+
Prepare data for distillation.
|
|
44
|
+
|
|
45
|
+
Args:
|
|
46
|
+
data: Raw training data
|
|
47
|
+
|
|
48
|
+
Returns:
|
|
49
|
+
Prepared data with teacher outputs
|
|
50
|
+
"""
|
|
51
|
+
# Placeholder for data preparation
|
|
52
|
+
# In production, this would:
|
|
53
|
+
# 1. Translate inputs to MoltLang
|
|
54
|
+
# 2. Get teacher model outputs
|
|
55
|
+
# 3. Format for distillation training
|
|
56
|
+
return data
|
|
57
|
+
|
|
58
|
+
def train(self, train_data: list[dict[str, Any]]) -> dict[str, Any]:
|
|
59
|
+
"""
|
|
60
|
+
Train student model using distillation.
|
|
61
|
+
|
|
62
|
+
Args:
|
|
63
|
+
train_data: Training data with teacher outputs
|
|
64
|
+
|
|
65
|
+
Returns:
|
|
66
|
+
Training metrics
|
|
67
|
+
"""
|
|
68
|
+
# Placeholder for training logic
|
|
69
|
+
# In production, this would:
|
|
70
|
+
# 1. Load teacher and student models
|
|
71
|
+
# 2. Train student to mimic teacher
|
|
72
|
+
# 3. Use MoltLang for efficient intermediate representation
|
|
73
|
+
return {"loss": 0.0, "accuracy": 0.0}
|
|
74
|
+
|
|
75
|
+
def evaluate(self, test_data: list[dict[str, Any]]) -> dict[str, Any]:
|
|
76
|
+
"""
|
|
77
|
+
Evaluate student model performance.
|
|
78
|
+
|
|
79
|
+
Args:
|
|
80
|
+
test_data: Test data
|
|
81
|
+
|
|
82
|
+
Returns:
|
|
83
|
+
Evaluation metrics
|
|
84
|
+
"""
|
|
85
|
+
# Placeholder for evaluation logic
|
|
86
|
+
return {"accuracy": 0.0, "f1": 0.0}
|