mojentic 0.7.1__py3-none-any.whl → 0.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -5,18 +5,19 @@ from typing import List, Optional, Type
5
5
  import structlog
6
6
  from pydantic import BaseModel
7
7
 
8
- from mojentic.tracer.tracer_system import TracerSystem
9
8
  from mojentic.llm.gateways.llm_gateway import LLMGateway
10
9
  from mojentic.llm.gateways.models import MessageRole, LLMMessage, LLMGatewayResponse
11
10
  from mojentic.llm.gateways.ollama import OllamaGateway
12
11
  from mojentic.llm.gateways.tokenizer_gateway import TokenizerGateway
12
+ from mojentic.tracer.tracer_system import TracerSystem
13
13
 
14
14
  logger = structlog.get_logger()
15
15
 
16
16
 
17
17
  class LLMBroker():
18
18
  """
19
- This class is responsible for managing interaction with a Large Language Model. It abstracts the user
19
+ This class is responsible for managing interaction with a Large Language Model. It abstracts
20
+ the user
20
21
  from the specific mechanics of the LLM and provides a common interface for generating responses.
21
22
  """
22
23
 
@@ -25,7 +26,8 @@ class LLMBroker():
25
26
  model: str
26
27
  tracer: Optional[TracerSystem]
27
28
 
28
- def __init__(self, model: str, gateway: Optional[LLMGateway] = None, tokenizer: Optional[TokenizerGateway] = None,
29
+ def __init__(self, model: str, gateway: Optional[LLMGateway] = None,
30
+ tokenizer: Optional[TokenizerGateway] = None,
29
31
  tracer: Optional[TracerSystem] = None):
30
32
  """
31
33
  Create an instance of the LLMBroker.
@@ -35,10 +37,12 @@ class LLMBroker():
35
37
  model
36
38
  The name of the model to use.
37
39
  gateway
38
- The gateway to use for communication with the LLM. If None, a gateway is created that will utilize a local
40
+ The gateway to use for communication with the LLM. If None, a gateway is created that
41
+ will utilize a local
39
42
  Ollama server.
40
43
  tokenizer
41
- The gateway to use for tokenization. This is used to log approximate token counts for the LLM calls. If
44
+ The gateway to use for tokenization. This is used to log approximate token counts for
45
+ the LLM calls. If
42
46
  None, `mxbai-embed-large` is used on a local Ollama server.
43
47
  tracer
44
48
  Optional tracer system to record LLM calls and responses.
@@ -58,8 +62,9 @@ class LLMBroker():
58
62
  else:
59
63
  self.adapter = gateway
60
64
 
61
- def generate(self, messages: List[LLMMessage], tools=None, temperature=1.0, num_ctx=32768, num_predict=-1,
62
- correlation_id: str = None) -> str:
65
+ def generate(self, messages: List[LLMMessage], tools=None, temperature=1.0, num_ctx=32768,
66
+ num_predict=-1, max_tokens=16384,
67
+ correlation_id: str = None) -> str:
63
68
  """
64
69
  Generate a text response from the LLM.
65
70
 
@@ -68,7 +73,8 @@ class LLMBroker():
68
73
  messages : LLMMessage
69
74
  A list of messages to send to the LLM.
70
75
  tools : List[Tool]
71
- A list of tools to use with the LLM. If a tool call is requested, the tool will be called and the output
76
+ A list of tools to use with the LLM. If a tool call is requested, the tool will be
77
+ called and the output
72
78
  will be included in the response.
73
79
  temperature : float
74
80
  The temperature to use for the response. Defaults to 1.0
@@ -91,10 +97,11 @@ class LLMBroker():
91
97
  messages_for_tracer = [m.model_dump() for m in messages]
92
98
 
93
99
  # Record LLM call in tracer
94
- tools_for_tracer = [{"name": t.name, "description": t.description} for t in tools] if tools else None
100
+ tools_for_tracer = [{"name": t.name, "description": t.description} for t in
101
+ tools] if tools else None
95
102
  self.tracer.record_llm_call(
96
- self.model,
97
- messages_for_tracer,
103
+ self.model,
104
+ messages_for_tracer,
98
105
  temperature,
99
106
  tools=tools_for_tracer,
100
107
  source=type(self),
@@ -110,12 +117,14 @@ class LLMBroker():
110
117
  tools=tools,
111
118
  temperature=temperature,
112
119
  num_ctx=num_ctx,
113
- num_predict=num_predict)
120
+ num_predict=num_predict,
121
+ max_tokens=max_tokens)
114
122
 
115
123
  call_duration_ms = (time.time() - start_time) * 1000
116
124
 
117
125
  # Record LLM response in tracer
118
- tool_calls_for_tracer = [tc.model_dump() for tc in result.tool_calls] if result.tool_calls else None
126
+ tool_calls_for_tracer = [tc.model_dump() for tc in
127
+ result.tool_calls] if result.tool_calls else None
119
128
  self.tracer.record_llm_response(
120
129
  self.model,
121
130
  result.content,
@@ -153,13 +162,17 @@ class LLMBroker():
153
162
  logger.info('Function output', output=output)
154
163
  messages.append(LLMMessage(role=MessageRole.Assistant, tool_calls=[tool_call]))
155
164
  messages.append(
156
- LLMMessage(role=MessageRole.Tool, content=json.dumps(output), tool_calls=[tool_call]))
157
- # {'role': 'tool', 'content': str(output), 'name': tool_call.name, 'tool_call_id': tool_call.id})
158
- return self.generate(messages, tools, temperature, num_ctx, num_predict, correlation_id=correlation_id)
165
+ LLMMessage(role=MessageRole.Tool, content=json.dumps(output),
166
+ tool_calls=[tool_call]))
167
+ # {'role': 'tool', 'content': str(output), 'name': tool_call.name,
168
+ # 'tool_call_id': tool_call.id})
169
+ return self.generate(messages, tools, temperature, num_ctx, num_predict,
170
+ correlation_id=correlation_id)
159
171
  else:
160
172
  logger.warn('Function not found', function=tool_call.name)
161
173
  logger.info('Expected usage of missing function', expected_usage=tool_call)
162
- # raise Exception('Unknown tool function requested:', requested_tool.function.name)
174
+ # raise Exception('Unknown tool function requested:',
175
+ # requested_tool.function.name)
163
176
 
164
177
  return result.content
165
178
 
@@ -170,8 +183,9 @@ class LLMBroker():
170
183
  content += message.content
171
184
  return content
172
185
 
173
- def generate_object(self, messages: List[LLMMessage], object_model: Type[BaseModel], temperature=1.0, num_ctx=32768,
174
- num_predict=-1, correlation_id: str = None) -> BaseModel:
186
+ def generate_object(self, messages: List[LLMMessage], object_model: Type[BaseModel],
187
+ temperature=1.0, num_ctx=32768, num_predict=-1, max_tokens=16384,
188
+ correlation_id: str = None) -> BaseModel:
175
189
  """
176
190
  Generate a structured response from the LLM and return it as an object.
177
191
 
@@ -203,8 +217,8 @@ class LLMBroker():
203
217
 
204
218
  # Record LLM call in tracer
205
219
  self.tracer.record_llm_call(
206
- self.model,
207
- messages_for_tracer,
220
+ self.model,
221
+ messages_for_tracer,
208
222
  temperature,
209
223
  tools=None,
210
224
  source=type(self),
@@ -214,14 +228,18 @@ class LLMBroker():
214
228
  # Measure call duration for audit
215
229
  start_time = time.time()
216
230
 
217
- result = self.adapter.complete(model=self.model, messages=messages, object_model=object_model,
218
- temperature=temperature, num_ctx=num_ctx, num_predict=num_predict)
231
+ result = self.adapter.complete(model=self.model, messages=messages,
232
+ object_model=object_model,
233
+ temperature=temperature, num_ctx=num_ctx,
234
+ num_predict=num_predict, max_tokens=max_tokens)
219
235
 
220
236
  call_duration_ms = (time.time() - start_time) * 1000
221
237
 
222
238
  # Record LLM response in tracer with object representation
223
239
  # Convert object to string for tracer
224
- object_str = str(result.object.model_dump()) if hasattr(result.object, "model_dump") else str(result.object)
240
+ object_str = str(result.object.model_dump()) if hasattr(result.object,
241
+ "model_dump") else str(
242
+ result.object)
225
243
  self.tracer.record_llm_response(
226
244
  self.model,
227
245
  f"Structured response: {object_str}",
@@ -216,7 +216,7 @@ class MessageBuilder():
216
216
 
217
217
  return self
218
218
 
219
- def add_files(self, *file_paths: Union[str, Path]) -> "MessageBuilder":
219
+ def add_files(self, *file_paths: List[Union[str, Path]]) -> "MessageBuilder":
220
220
  """
221
221
  Add multiple text files to the message, ignoring binary files.
222
222
 
@@ -0,0 +1,6 @@
1
+ """
2
+ Mojentic LLM registry module for managing model registrations.
3
+ """
4
+
5
+ from .llm_registry import LLMRegistry
6
+ from .models import ModelInfo, Modality, Quantization
@@ -46,15 +46,16 @@ def register_llms_from_ollama(url: str, registry: LLMRegistry):
46
46
  registry.register(entry)
47
47
 
48
48
 
49
- # Example usage
50
- ollama_url = "http://localhost:11434/api/tags"
51
- registry = LLMRegistry()
52
- register_llms_from_ollama(ollama_url, registry)
53
-
54
- # print(f"Tool using: {registry.find_first(tools=True, structured_output=True).name}")
55
- print(f"Fastest model: {registry.find_fastest().name}")
56
- print(f"Fastest model with tools: {registry.find_fastest(tools=True).name}")
57
- print(f"Fastest model with structured output: {registry.find_fastest(structured_output=True).name}")
58
- print(f"Smartest model: {registry.find_smartest().name}")
59
- print(f"Smartest model with tools: {registry.find_smartest(tools=True).name}")
60
- print(f"Smartest model with structured output: {registry.find_smartest(structured_output=True).name}")
49
+ if __name__ == "__main__":
50
+ # Example usage
51
+ ollama_url = "http://localhost:11434/api/tags"
52
+ registry = LLMRegistry()
53
+ register_llms_from_ollama(ollama_url, registry)
54
+
55
+ # print(f"Tool using: {registry.find_first(tools=True, structured_output=True).name}")
56
+ print(f"Fastest model: {registry.find_fastest().name}")
57
+ print(f"Fastest model with tools: {registry.find_fastest(tools=True).name}")
58
+ print(f"Fastest model with structured output: {registry.find_fastest(structured_output=True).name}")
59
+ print(f"Smartest model: {registry.find_smartest().name}")
60
+ print(f"Smartest model with tools: {registry.find_smartest(tools=True).name}")
61
+ print(f"Smartest model with structured output: {registry.find_smartest(structured_output=True).name}")
@@ -0,0 +1,18 @@
1
+ """
2
+ Mojentic LLM tools module for extending LLM capabilities.
3
+ """
4
+
5
+ # Base tool class
6
+ from .llm_tool import LLMTool
7
+ from .tool_wrapper import ToolWrapper
8
+
9
+ # Common tools
10
+ from .ask_user_tool import AskUserTool
11
+ from .current_datetime import CurrentDateTimeTool
12
+ from .date_resolver import ResolveDateTool
13
+ from .organic_web_search import OrganicWebSearchTool
14
+ from .tell_user_tool import TellUserTool
15
+
16
+ # Import tool modules
17
+ from . import file_manager
18
+ from . import ephemeral_task_manager
@@ -1,11 +1,14 @@
1
- from typing import Optional
1
+ from typing import Optional, TYPE_CHECKING
2
2
 
3
3
  from parsedatetime import Calendar, VERSION_CONTEXT_STYLE
4
4
  from pytz import timezone
5
5
 
6
- from mojentic.llm import LLMBroker
7
6
  from mojentic.llm.tools.llm_tool import LLMTool
8
7
 
8
+ # Avoid circular imports with TYPE_CHECKING
9
+ if TYPE_CHECKING:
10
+ from mojentic.llm.llm_broker import LLMBroker
11
+
9
12
 
10
13
  class ResolveDateTool(LLMTool):
11
14
  def run(self, relative_date_found: str, reference_date_in_iso8601: Optional[str] = None) -> dict[str, str]:
@@ -5,14 +5,14 @@ This module provides tools for appending, prepending, inserting, starting, compl
5
5
  Tasks follow a state machine that transitions from PENDING through IN_PROGRESS to COMPLETED.
6
6
  """
7
7
 
8
- from mojentic.llm.tools.ephemeral_task_manager.append_task_tool import AppendTaskTool
9
- from mojentic.llm.tools.ephemeral_task_manager.clear_tasks_tool import ClearTasksTool
10
- from mojentic.llm.tools.ephemeral_task_manager.complete_task_tool import CompleteTaskTool
11
- from mojentic.llm.tools.ephemeral_task_manager.insert_task_after_tool import InsertTaskAfterTool
12
- from mojentic.llm.tools.ephemeral_task_manager.list_tasks_tool import ListTasksTool
13
- from mojentic.llm.tools.ephemeral_task_manager.prepend_task_tool import PrependTaskTool
14
- from mojentic.llm.tools.ephemeral_task_manager.start_task_tool import StartTaskTool
15
- from mojentic.llm.tools.ephemeral_task_manager.ephemeral_task_list import EphemeralTaskList, Task
8
+ from .append_task_tool import AppendTaskTool
9
+ from .clear_tasks_tool import ClearTasksTool
10
+ from .complete_task_tool import CompleteTaskTool
11
+ from .insert_task_after_tool import InsertTaskAfterTool
12
+ from .list_tasks_tool import ListTasksTool
13
+ from .prepend_task_tool import PrependTaskTool
14
+ from .start_task_tool import StartTaskTool
15
+ from .ephemeral_task_list import EphemeralTaskList, Task
16
16
 
17
17
  __all__ = [
18
18
  "EphemeralTaskList",