modusa 0.4.29__py3-none-any.whl → 0.4.30__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- modusa/__init__.py +9 -8
- modusa/tools/__init__.py +7 -2
- modusa/tools/ann_saver.py +30 -0
- modusa/tools/audio_recorder.py +0 -1
- modusa/tools/youtube_downloader.py +1 -4
- {modusa-0.4.29.dist-info → modusa-0.4.30.dist-info}/METADATA +2 -2
- modusa-0.4.30.dist-info/RECORD +21 -0
- pyproject.toml +2 -2
- modusa/config.py +0 -18
- modusa/decorators.py +0 -176
- modusa/devtools/generate_docs_source.py +0 -92
- modusa/devtools/generate_template.py +0 -144
- modusa/devtools/list_authors.py +0 -2
- modusa/devtools/list_plugins.py +0 -60
- modusa/devtools/main.py +0 -45
- modusa/devtools/templates/generator.py +0 -24
- modusa/devtools/templates/io.py +0 -24
- modusa/devtools/templates/model.py +0 -47
- modusa/devtools/templates/plugin.py +0 -41
- modusa/devtools/templates/test.py +0 -10
- modusa/devtools/templates/tool.py +0 -24
- modusa/generators/__init__.py +0 -13
- modusa/generators/audio.py +0 -188
- modusa/generators/audio_waveforms.py +0 -236
- modusa/generators/base.py +0 -29
- modusa/generators/ftds.py +0 -298
- modusa/generators/s1d.py +0 -270
- modusa/generators/s2d.py +0 -300
- modusa/generators/s_ax.py +0 -102
- modusa/generators/t_ax.py +0 -64
- modusa/generators/tds.py +0 -267
- modusa/models/__init__.py +0 -14
- modusa/models/audio.py +0 -90
- modusa/models/base.py +0 -70
- modusa/models/data.py +0 -457
- modusa/models/ftds.py +0 -584
- modusa/models/s1d.py +0 -578
- modusa/models/s2d.py +0 -619
- modusa/models/s_ax.py +0 -448
- modusa/models/t_ax.py +0 -335
- modusa/models/tds.py +0 -465
- modusa/plugins/__init__.py +0 -3
- modusa/plugins/base.py +0 -100
- modusa/tools/_plotter_old.py +0 -629
- modusa/tools/audio_saver.py +0 -30
- modusa/tools/base.py +0 -43
- modusa/tools/math_ops.py +0 -335
- modusa/utils/__init__.py +0 -1
- modusa/utils/config.py +0 -25
- modusa/utils/excp.py +0 -49
- modusa/utils/logger.py +0 -18
- modusa/utils/np_func_cat.py +0 -44
- modusa/utils/plot.py +0 -142
- modusa-0.4.29.dist-info/RECORD +0 -65
- {modusa-0.4.29.dist-info → modusa-0.4.30.dist-info}/WHEEL +0 -0
- {modusa-0.4.29.dist-info → modusa-0.4.30.dist-info}/entry_points.txt +0 -0
- {modusa-0.4.29.dist-info → modusa-0.4.30.dist-info}/licenses/LICENSE.md +0 -0
modusa/generators/s2d.py
DELETED
@@ -1,300 +0,0 @@
|
|
1
|
-
#!/usr/bin/env python3
|
2
|
-
|
3
|
-
|
4
|
-
from modusa import excp
|
5
|
-
from modusa.decorators import validate_args_type
|
6
|
-
from .base import ModusaGenerator
|
7
|
-
from modusa.models.s2d import S2D
|
8
|
-
from modusa.models.s_ax import SAx
|
9
|
-
from modusa.models.data import Data
|
10
|
-
import numpy as np
|
11
|
-
|
12
|
-
class S2DGen(ModusaGenerator):
|
13
|
-
"""
|
14
|
-
Provides user friendly APIs to generate instances of different `S2D`
|
15
|
-
instances.
|
16
|
-
"""
|
17
|
-
|
18
|
-
#--------Meta Information----------
|
19
|
-
_name = "S2DGeneratator"
|
20
|
-
_description = "APIs to generate instances of different `S2D` instances"
|
21
|
-
_author_name = "Ankit Anand"
|
22
|
-
_author_email = "ankit0.anand0@gmail.com"
|
23
|
-
_created_at = "2025-07-27"
|
24
|
-
#----------------------------------
|
25
|
-
|
26
|
-
@staticmethod
|
27
|
-
def from_array(
|
28
|
-
M: np.ndarray | list | float | int | np.generic,
|
29
|
-
y: np.ndarray | list | float | int | np.generic | None = None,
|
30
|
-
x: np.ndarray | list | float | int | np.generic | None = None,
|
31
|
-
M_label: str = "M",
|
32
|
-
y_label: str = "Y",
|
33
|
-
x_label: str = "X",
|
34
|
-
title: str = "2D Signal"
|
35
|
-
) -> S2D:
|
36
|
-
"""
|
37
|
-
Create `S2D` instance from basic data structures.
|
38
|
-
|
39
|
-
.. code-block:: python
|
40
|
-
|
41
|
-
import modusa as ms
|
42
|
-
M = ms.s1d.from_array([1, 2, 3])
|
43
|
-
print(M)
|
44
|
-
M.print_info()
|
45
|
-
|
46
|
-
Parameters
|
47
|
-
----------
|
48
|
-
M: np.ndarray | list | float | int | np.generic
|
49
|
-
- Data values.
|
50
|
-
y: np.ndarray | list | float | int | np.generic
|
51
|
-
- y axis values.
|
52
|
-
- Default: None → Creates an integer indexing.
|
53
|
-
x: np.ndarray | list | float | int | np.generic | None
|
54
|
-
- x axis values.
|
55
|
-
- Default: None → Creates an integer indexing.
|
56
|
-
M_label: str
|
57
|
-
- Label for the data.
|
58
|
-
- Default: "M"
|
59
|
-
y_label: str
|
60
|
-
- Y label for the signal.
|
61
|
-
- Default: "Y"
|
62
|
-
x_label: str
|
63
|
-
- X label for the signal.
|
64
|
-
- Default: "X"
|
65
|
-
title: str
|
66
|
-
- Title for the signal.
|
67
|
-
- Default: "2D Signal"
|
68
|
-
Returns
|
69
|
-
-------
|
70
|
-
S2D
|
71
|
-
An instance of S2D.
|
72
|
-
"""
|
73
|
-
assert isinstance(M, (np.ndarray, list, float, int, np.generic))
|
74
|
-
assert isinstance(x, (np.ndarray, list, float, int, np.generic)) or x is None
|
75
|
-
assert isinstance(y, (np.ndarray, list, float, int, np.generic)) or y is None
|
76
|
-
assert isinstance(M_label, str) and isinstance(y_label, str) and isinstance(x_label, str) and isinstance(title, str)
|
77
|
-
|
78
|
-
if isinstance(M, (float, int, np.generic)): M = [[M]] # Convert to list of 1 element
|
79
|
-
if isinstance(y, (float, int, np.generic)): y = [y] # Convert to list of 1 element
|
80
|
-
if isinstance(x, (float, int, np.generic)): x = [x] # Convert to list of 1 element
|
81
|
-
|
82
|
-
M = np.asarray(M)
|
83
|
-
assert M.ndim == 2
|
84
|
-
|
85
|
-
if y is None: y = np.arange(M.shape[0])
|
86
|
-
else: y = np.asarray(y)
|
87
|
-
assert y.ndim == 1
|
88
|
-
|
89
|
-
if x is None: x = np.arange(M.shape[1])
|
90
|
-
else: x = np.asarray(x)
|
91
|
-
assert x.ndim == 1
|
92
|
-
|
93
|
-
assert y.shape[0] == M.shape[0], "Shape mismatch"
|
94
|
-
assert x.shape[0] == M.shape[1], "Shape mismatch"
|
95
|
-
|
96
|
-
y_sax = SAx(values=y, label=y_label) # Creating a signal axis instance
|
97
|
-
x_sax = SAx(values=x, label=x_label) # Creating a signal axis instance
|
98
|
-
|
99
|
-
M = Data(values=M, label=M_label)
|
100
|
-
|
101
|
-
return S2D(M=M, y=y_sax, x=x_sax, title=title)
|
102
|
-
|
103
|
-
@classmethod
|
104
|
-
def zeros(cls, shape: tuple[int, int]) -> S2D:
|
105
|
-
"""
|
106
|
-
Create `S2D` instance with all zeros.
|
107
|
-
|
108
|
-
.. code-block:: python
|
109
|
-
|
110
|
-
import modusa as ms
|
111
|
-
M = ms.s2d.zeros((10, 5))
|
112
|
-
print(M)
|
113
|
-
M.print_info()
|
114
|
-
|
115
|
-
Parameters
|
116
|
-
----------
|
117
|
-
shape: tuple[int, int]
|
118
|
-
- Shape of the signal with zeros.
|
119
|
-
- Must be 1 dimensional
|
120
|
-
- E.g. (10, 5)
|
121
|
-
Returns
|
122
|
-
-------
|
123
|
-
S2D
|
124
|
-
An instance of S2D.
|
125
|
-
"""
|
126
|
-
assert isinstance(shape, tuple)
|
127
|
-
M = np.zeros(shape)
|
128
|
-
|
129
|
-
return cls.from_array(M=M, title="Zeros")
|
130
|
-
|
131
|
-
@classmethod
|
132
|
-
def zeros_like(cls, signal: S2D) -> S2D:
|
133
|
-
"""
|
134
|
-
Create `S2D` instance similar to `signal`
|
135
|
-
but with all entries being zeros.
|
136
|
-
|
137
|
-
.. code-block:: python
|
138
|
-
|
139
|
-
import modusa as ms
|
140
|
-
signal = ms.s2d.from_array([[1, 2, 3], [4, 5, 6]])
|
141
|
-
M = ms.s2d.zeros_like(signal)
|
142
|
-
print(M)
|
143
|
-
M.print_info()
|
144
|
-
|
145
|
-
Parameters
|
146
|
-
----------
|
147
|
-
signal: S2D
|
148
|
-
- Reference signal to create zeros like that.
|
149
|
-
Returns
|
150
|
-
-------
|
151
|
-
S2D
|
152
|
-
An instance of S2D.
|
153
|
-
"""
|
154
|
-
|
155
|
-
assert signal.__class__ in [S2D]
|
156
|
-
|
157
|
-
M = np.zeros(signal.shape)
|
158
|
-
y = signal._y
|
159
|
-
x = signal._x
|
160
|
-
|
161
|
-
M_label = signal._M_label
|
162
|
-
y_label = signal._y_label
|
163
|
-
x_label = signal._x_label
|
164
|
-
title = signal._title
|
165
|
-
|
166
|
-
return cls.from_array(M=M, y=y, x=x, M_label=M_label, y_label=y_label, x_label=x_label, title=title)
|
167
|
-
|
168
|
-
|
169
|
-
@classmethod
|
170
|
-
def ones(cls, shape: tuple[int, int]) -> S2D:
|
171
|
-
"""
|
172
|
-
Create `S2D` instance with all ones.
|
173
|
-
|
174
|
-
.. code-block:: python
|
175
|
-
|
176
|
-
import modusa as ms
|
177
|
-
M = ms.s2d.ones((10, 5))
|
178
|
-
print(M)
|
179
|
-
M.print_info()
|
180
|
-
|
181
|
-
Parameters
|
182
|
-
----------
|
183
|
-
shape: tuple[int, int]
|
184
|
-
- Shape of the signal with ones.
|
185
|
-
- Must be 1 dimensional
|
186
|
-
- E.g. (10, 5)
|
187
|
-
Returns
|
188
|
-
-------
|
189
|
-
S2D
|
190
|
-
An instance of S2D.
|
191
|
-
"""
|
192
|
-
assert isinstance(shape, tuple)
|
193
|
-
M = np.ones(shape)
|
194
|
-
|
195
|
-
return cls.from_array(M=M, title="Ones")
|
196
|
-
|
197
|
-
@classmethod
|
198
|
-
def ones_like(cls, signal: S2D) -> S2D:
|
199
|
-
"""
|
200
|
-
Create `S2D` instance similar to `signal`
|
201
|
-
but with all entries being ones.
|
202
|
-
|
203
|
-
.. code-block:: python
|
204
|
-
|
205
|
-
import modusa as ms
|
206
|
-
signal = ms.s2d.from_array([[1, 2, 3], [4, 5, 6]])
|
207
|
-
M = ms.s2d.ones_like(signal)
|
208
|
-
print(M)
|
209
|
-
M.print_info()
|
210
|
-
|
211
|
-
Parameters
|
212
|
-
----------
|
213
|
-
signal: S2D
|
214
|
-
- Reference signal to create ones like that.
|
215
|
-
Returns
|
216
|
-
-------
|
217
|
-
S2D
|
218
|
-
An instance of S2D.
|
219
|
-
"""
|
220
|
-
|
221
|
-
assert signal.__class__ in [S2D]
|
222
|
-
|
223
|
-
M = np.ones(signal.shape)
|
224
|
-
y = signal._y
|
225
|
-
x = signal._x
|
226
|
-
|
227
|
-
M_label = signal._M_label
|
228
|
-
y_label = signal._y_label
|
229
|
-
x_label = signal._x_label
|
230
|
-
title = signal._title
|
231
|
-
|
232
|
-
return cls.from_array(M=M, y=y, x=x, M_label=M_label, y_label=y_label, x_label=x_label, title=title)
|
233
|
-
|
234
|
-
@classmethod
|
235
|
-
def random(cls, shape: tuple[int, int]) -> S2D:
|
236
|
-
"""
|
237
|
-
Create `S2D` instance with random entries.
|
238
|
-
|
239
|
-
.. code-block:: python
|
240
|
-
|
241
|
-
import modusa as ms
|
242
|
-
y = ms.s2d.random((10, 5))
|
243
|
-
print(y)
|
244
|
-
y.print_info()
|
245
|
-
|
246
|
-
Parameters
|
247
|
-
----------
|
248
|
-
shape: tuple[int, int]
|
249
|
-
- Shape of the signal.
|
250
|
-
- Must be 1 dimensional
|
251
|
-
- E.g. (10, 5)
|
252
|
-
Returns
|
253
|
-
-------
|
254
|
-
S2D
|
255
|
-
An instance of S2D with random values.
|
256
|
-
"""
|
257
|
-
assert isinstance(shape, tuple)
|
258
|
-
M = np.random.random(shape)
|
259
|
-
|
260
|
-
return cls.from_array(M=M, title="Random")
|
261
|
-
|
262
|
-
@classmethod
|
263
|
-
def random_like(cls, signal: S2D) -> S2D:
|
264
|
-
"""
|
265
|
-
Create `S2D` instance similar to `signal`
|
266
|
-
but with all entries being ones.
|
267
|
-
|
268
|
-
.. code-block:: python
|
269
|
-
|
270
|
-
import modusa as ms
|
271
|
-
signal = ms.s2d.from_array([[1, 2, 3], [4, 5, 6]])
|
272
|
-
M = ms.s2d.random_like(signal)
|
273
|
-
print(M)
|
274
|
-
M.print_info()
|
275
|
-
|
276
|
-
Parameters
|
277
|
-
----------
|
278
|
-
signal: S2D
|
279
|
-
- Reference signal.
|
280
|
-
Returns
|
281
|
-
-------
|
282
|
-
S2D
|
283
|
-
An instance of S2D with random values.
|
284
|
-
"""
|
285
|
-
|
286
|
-
assert signal.__class__ in [S2D]
|
287
|
-
|
288
|
-
M = np.random.random(signal.shape)
|
289
|
-
y = signal._y
|
290
|
-
x = signal._x
|
291
|
-
|
292
|
-
M_label = signal._M_label
|
293
|
-
y_label = signal._y_label
|
294
|
-
x_label = signal._x_label
|
295
|
-
title = signal._title
|
296
|
-
|
297
|
-
return cls.from_array(M=M, y=y, x=x, M_label=M_label, y_label=y_label, x_label=x_label, title=title)
|
298
|
-
|
299
|
-
|
300
|
-
|
modusa/generators/s_ax.py
DELETED
@@ -1,102 +0,0 @@
|
|
1
|
-
#!/usr/bin/env python3
|
2
|
-
|
3
|
-
|
4
|
-
from modusa import excp
|
5
|
-
from modusa.decorators import validate_args_type
|
6
|
-
from .base import ModusaGenerator
|
7
|
-
from modusa.models.s_ax import SAx
|
8
|
-
import numpy as np
|
9
|
-
|
10
|
-
class SAxGen(ModusaGenerator):
|
11
|
-
"""
|
12
|
-
Provides user friendly APIs to generate axis for
|
13
|
-
signals (instances of `SAx`).
|
14
|
-
"""
|
15
|
-
|
16
|
-
#--------Meta Information----------
|
17
|
-
_name = "SignalAxisGenerator"
|
18
|
-
_description = "APIs to generate axis for signals."
|
19
|
-
_author_name = "Ankit Anand"
|
20
|
-
_author_email = "ankit0.anand0@gmail.com"
|
21
|
-
_created_at = "2025-07-25"
|
22
|
-
#----------------------------------
|
23
|
-
|
24
|
-
|
25
|
-
@classmethod
|
26
|
-
@validate_args_type()
|
27
|
-
def from_array(
|
28
|
-
cls,
|
29
|
-
values: np.ndarray | list | float | int | np.generic,
|
30
|
-
label: str = "SAx"
|
31
|
-
) -> SAx:
|
32
|
-
"""
|
33
|
-
Create `SAx` instance from basic data structures.
|
34
|
-
|
35
|
-
.. code-block:: python
|
36
|
-
|
37
|
-
import modusa as ms
|
38
|
-
x = ms.sax.from_array([1, 2, 3])
|
39
|
-
print(x)
|
40
|
-
time_sax.print_info()
|
41
|
-
|
42
|
-
Parameters
|
43
|
-
----------
|
44
|
-
values: np.ndarray | list | float | int | np.generic
|
45
|
-
- The values for the axis.
|
46
|
-
label: str
|
47
|
-
- Label for the axis.
|
48
|
-
|
49
|
-
Returns
|
50
|
-
-------
|
51
|
-
SAx
|
52
|
-
An instance of SAx.
|
53
|
-
"""
|
54
|
-
|
55
|
-
if isinstance(values, (int, float, np.generic)): values = [values] # Scalar to 1D
|
56
|
-
values = np.asarray(values)
|
57
|
-
|
58
|
-
return SAx(values=values, label=label)
|
59
|
-
|
60
|
-
|
61
|
-
@classmethod
|
62
|
-
def linear(cls, n_points: int, sr: int | float = 1.0, start: int | float = 0.0, label: str = "Linear Axis") -> SAx:
|
63
|
-
"""
|
64
|
-
Create a linearly spaced axis.
|
65
|
-
|
66
|
-
.. code-block:: python
|
67
|
-
|
68
|
-
import modusa as ms
|
69
|
-
x = ms.sax.linear(n_points=100, sr=2, start=10, label="Time (sec)")
|
70
|
-
print(x)
|
71
|
-
x.print_info()
|
72
|
-
|
73
|
-
Parameters
|
74
|
-
----------
|
75
|
-
n_points: int
|
76
|
-
- Number of data points for the axis.
|
77
|
-
sr: int | float
|
78
|
-
- Sampling rate of the axis.
|
79
|
-
start: int | float
|
80
|
-
- Start value.
|
81
|
-
label: str
|
82
|
-
- Label for the axis.
|
83
|
-
|
84
|
-
Returns
|
85
|
-
-------
|
86
|
-
SAx
|
87
|
-
An instance of SAx.
|
88
|
-
"""
|
89
|
-
|
90
|
-
assert isinstance(n_points, int)
|
91
|
-
assert isinstance(sr, (int, float))
|
92
|
-
assert isinstance(start, (int, float))
|
93
|
-
assert isinstance(label, str)
|
94
|
-
|
95
|
-
sr = float(sr)
|
96
|
-
start = float(start)
|
97
|
-
|
98
|
-
values = start + np.arange(n_points) / sr # ensures exact number of points
|
99
|
-
time_ax = SAx(values=values, label=label)
|
100
|
-
time_ax.sr = sr
|
101
|
-
|
102
|
-
return time_ax
|
modusa/generators/t_ax.py
DELETED
@@ -1,64 +0,0 @@
|
|
1
|
-
#!/usr/bin/env python3
|
2
|
-
|
3
|
-
|
4
|
-
from modusa import excp
|
5
|
-
from modusa.decorators import validate_args_type
|
6
|
-
from modusa.generators.base import ModusaGenerator
|
7
|
-
from modusa.models.t_ax import TAx
|
8
|
-
import numpy as np
|
9
|
-
|
10
|
-
class TAxGen(ModusaGenerator):
|
11
|
-
"""
|
12
|
-
Provides user friendly APIs to generate time
|
13
|
-
axis for signals (instances of `TAx`).
|
14
|
-
"""
|
15
|
-
|
16
|
-
#--------Meta Information----------
|
17
|
-
_name = "TimeAxisGenerator"
|
18
|
-
_description = "APIs to generate time axis for signals."
|
19
|
-
_author_name = "Ankit Anand"
|
20
|
-
_author_email = "ankit0.anand0@gmail.com"
|
21
|
-
_created_at = "2025-07-26"
|
22
|
-
#----------------------------------
|
23
|
-
|
24
|
-
@classmethod
|
25
|
-
def linear(cls, n_points: int, sr: int | float = 1.0, t0: int | float = 0.0, label: str = "Time (sec)") -> TAx:
|
26
|
-
"""
|
27
|
-
Create a linearly spaced time axis.
|
28
|
-
|
29
|
-
.. code-block:: python
|
30
|
-
|
31
|
-
import modusa as ms
|
32
|
-
t = ms.tax.linear(n_points=100, sr=2, start=10, label="Time (sec)")
|
33
|
-
print(t)
|
34
|
-
t.print_info()
|
35
|
-
|
36
|
-
Parameters
|
37
|
-
----------
|
38
|
-
n_points: int
|
39
|
-
- Number of data points for the time axis.
|
40
|
-
sr: int | float
|
41
|
-
- Sampling rate for the time axis.
|
42
|
-
start: int | float
|
43
|
-
- Start value.
|
44
|
-
label: str
|
45
|
-
- Label for the time axis.
|
46
|
-
|
47
|
-
Returns
|
48
|
-
-------
|
49
|
-
TAx
|
50
|
-
An instance of TAx.
|
51
|
-
"""
|
52
|
-
|
53
|
-
assert isinstance(n_points, int)
|
54
|
-
assert isinstance(sr, (int, float))
|
55
|
-
assert isinstance(t0, (int, float))
|
56
|
-
assert isinstance(label, str)
|
57
|
-
|
58
|
-
sr = float(sr)
|
59
|
-
t0 = float(t0)
|
60
|
-
|
61
|
-
time_ax = TAx(n_points=n_points, sr=sr, t0=t0, label=label)
|
62
|
-
|
63
|
-
return time_ax
|
64
|
-
|
modusa/generators/tds.py
DELETED
@@ -1,267 +0,0 @@
|
|
1
|
-
#!/usr/bin/env python3
|
2
|
-
|
3
|
-
|
4
|
-
from modusa import excp
|
5
|
-
from modusa.decorators import validate_args_type
|
6
|
-
from .base import ModusaGenerator
|
7
|
-
from modusa.models.tds import TDS
|
8
|
-
from modusa.models.t_ax import TAx
|
9
|
-
from modusa.models.data import Data
|
10
|
-
import numpy as np
|
11
|
-
|
12
|
-
class TDSGen(ModusaGenerator):
|
13
|
-
"""
|
14
|
-
Provides user friendly APIs to generate instances of different
|
15
|
-
`TDS` instances.
|
16
|
-
"""
|
17
|
-
|
18
|
-
#--------Meta Information----------
|
19
|
-
_name = "TDSGenerator"
|
20
|
-
_description = ""
|
21
|
-
_author_name = "Ankit Anand"
|
22
|
-
_author_email = "ankit0.anand0@gmail.com"
|
23
|
-
_created_at = "2025-07-27"
|
24
|
-
#----------------------------------
|
25
|
-
|
26
|
-
@staticmethod
|
27
|
-
def from_array(
|
28
|
-
y: np.ndarray | list | float | int | np.generic,
|
29
|
-
sr: float | int = 1.0,
|
30
|
-
t0: float | int = 0.0,
|
31
|
-
y_label: str = "Y",
|
32
|
-
t_label: str = "Time (sec)",
|
33
|
-
title: str = "Time Domain Signal"
|
34
|
-
) -> TDS:
|
35
|
-
"""
|
36
|
-
Create `TDS` instance from basic data structures.
|
37
|
-
|
38
|
-
.. code-block:: python
|
39
|
-
|
40
|
-
import modusa as ms
|
41
|
-
t = ms.tds.from_array([1, 2, 3])
|
42
|
-
print(t)
|
43
|
-
t.print_info()
|
44
|
-
|
45
|
-
Parameters
|
46
|
-
----------
|
47
|
-
y: np.ndarray | list | float | int | np.generic
|
48
|
-
- Data values.
|
49
|
-
sr: float | int
|
50
|
-
- Sampling rate.
|
51
|
-
t0: float | int
|
52
|
-
- Start timestamp.
|
53
|
-
y_label: str
|
54
|
-
- Y label for the signal.
|
55
|
-
- Default: "Y"
|
56
|
-
t_label: str
|
57
|
-
- T label for the signal.
|
58
|
-
- Default: "Time (sec)"
|
59
|
-
title: str
|
60
|
-
- Title for the signal.
|
61
|
-
- Default: "1D Signal"
|
62
|
-
Returns
|
63
|
-
-------
|
64
|
-
TDS
|
65
|
-
An instance of TDS.
|
66
|
-
"""
|
67
|
-
assert isinstance(y, (np.ndarray, list, float, int, np.generic))
|
68
|
-
assert isinstance(sr, (int, float)) and isinstance(t0, (int, float))
|
69
|
-
assert isinstance(y_label, str) and isinstance(t_label, str) and isinstance(title, str)
|
70
|
-
|
71
|
-
if isinstance(y, (float, int, np.generic)): y = [y] # Convert to list of 1 element
|
72
|
-
y = np.asarray(y)
|
73
|
-
assert y.ndim == 1
|
74
|
-
|
75
|
-
sr = float(sr)
|
76
|
-
t0 = float(t0)
|
77
|
-
|
78
|
-
y = Data(values=y, label=y_label)
|
79
|
-
t = TAx(n_points=y.shape[0], sr=sr, t0=t0, label=t_label) # Creating a signal axis instance
|
80
|
-
|
81
|
-
return TDS(y=y, t=t, title=title)
|
82
|
-
|
83
|
-
@classmethod
|
84
|
-
def zeros(cls, shape, sr=1.0, t0=0.0) -> TDS:
|
85
|
-
"""
|
86
|
-
Create `TDS` instance with all zeros.
|
87
|
-
|
88
|
-
.. code-block:: python
|
89
|
-
|
90
|
-
import modusa as ms
|
91
|
-
y = ms.tds.zeros(10, sr=10)
|
92
|
-
print(y)
|
93
|
-
y.print_info()
|
94
|
-
|
95
|
-
Parameters
|
96
|
-
----------
|
97
|
-
shape: int | tuple[int]
|
98
|
-
- Shape of the signal with zeros.
|
99
|
-
- Must be 1 dimensional
|
100
|
-
- E.g. 10 or (10, )
|
101
|
-
sr: float | int
|
102
|
-
- Sampling rate.
|
103
|
-
t0: float | int
|
104
|
-
- Start timestamp.
|
105
|
-
Returns
|
106
|
-
-------
|
107
|
-
TDS
|
108
|
-
An instance of TDS.
|
109
|
-
"""
|
110
|
-
assert isinstance(shape, (int, tuple))
|
111
|
-
y = np.zeros(shape)
|
112
|
-
|
113
|
-
return cls.from_array(y=y, sr=sr, t0=t0, title="Zeros")
|
114
|
-
|
115
|
-
@classmethod
|
116
|
-
def zeros_like(cls, signal, shape=None) -> TDS:
|
117
|
-
"""
|
118
|
-
Create `TDS` instance similar to `signal`
|
119
|
-
but with all entries being zeros.
|
120
|
-
|
121
|
-
.. code-block:: python
|
122
|
-
|
123
|
-
import modusa as ms
|
124
|
-
signal = ms.tds.from_array([1, 2, 3])
|
125
|
-
y = ms.tds.zeros_like(signal)
|
126
|
-
print(y)
|
127
|
-
x.print_info()
|
128
|
-
|
129
|
-
Parameters
|
130
|
-
----------
|
131
|
-
signal: TDS
|
132
|
-
- Reference signal to create zeros like that.
|
133
|
-
Returns
|
134
|
-
-------
|
135
|
-
TDS
|
136
|
-
An instance of TDS.
|
137
|
-
"""
|
138
|
-
|
139
|
-
assert isinstance(signal, TDS)
|
140
|
-
|
141
|
-
shape = signal.shape if shape is None else shape
|
142
|
-
|
143
|
-
return cls.from_array(y=np.zeros(shape), sr=signal.t.sr, t0=signal.t.t0, y_label=signal.y.label, t_label=signal.t.label, title=signal.title)
|
144
|
-
|
145
|
-
|
146
|
-
@classmethod
|
147
|
-
def ones(cls, shape, sr=1.0, t0=0.0) -> TDS:
|
148
|
-
"""
|
149
|
-
Create `TDS` instance with all ones.
|
150
|
-
|
151
|
-
.. code-block:: python
|
152
|
-
|
153
|
-
import modusa as ms
|
154
|
-
y = ms.tds.ones(10)
|
155
|
-
print(y)
|
156
|
-
y.print_info()
|
157
|
-
|
158
|
-
Parameters
|
159
|
-
----------
|
160
|
-
shape: int | tuple[int]
|
161
|
-
- Shape of the signal with ones.
|
162
|
-
- Must be 1 dimensional
|
163
|
-
- E.g. 10 or (10, )
|
164
|
-
sr: float | int
|
165
|
-
- Sampling rate.
|
166
|
-
t0: float | int
|
167
|
-
- Start timestamp.
|
168
|
-
Returns
|
169
|
-
-------
|
170
|
-
TDS
|
171
|
-
An instance of TDS.
|
172
|
-
"""
|
173
|
-
assert isinstance(shape, (int, tuple))
|
174
|
-
y = np.ones(shape)
|
175
|
-
|
176
|
-
return cls.from_array(y=y, sr=sr, t0=t0, title="Ones")
|
177
|
-
|
178
|
-
@classmethod
|
179
|
-
def ones_like(cls, signal, shape=None) -> TDS:
|
180
|
-
"""
|
181
|
-
Create `TDS` instance similar to `signal`
|
182
|
-
but with all entries being ones.
|
183
|
-
|
184
|
-
.. code-block:: python
|
185
|
-
|
186
|
-
import modusa as ms
|
187
|
-
signal = ms.tds.from_array([1, 2, 3])
|
188
|
-
y = ms.tds.ones_like(signal)
|
189
|
-
print(y)
|
190
|
-
y.print_info()
|
191
|
-
|
192
|
-
Parameters
|
193
|
-
----------
|
194
|
-
signal: TDS
|
195
|
-
- Reference signal to create ones like that.
|
196
|
-
Returns
|
197
|
-
-------
|
198
|
-
TDS
|
199
|
-
An instance of TDS.
|
200
|
-
"""
|
201
|
-
assert isinstance(signal, TDS)
|
202
|
-
|
203
|
-
shape = signal.shape if shape is None else shape
|
204
|
-
|
205
|
-
return cls.from_array(y=np.ones(shape), sr=signal.t.sr, t0=signal.t.t0, y_label=signal.y.label, t_label=signal.t.label, title=signal.title)
|
206
|
-
|
207
|
-
@classmethod
|
208
|
-
def random(cls, shape, sr=1.0, t0=0.0) -> TDS:
|
209
|
-
"""
|
210
|
-
Create `TDS` instance with random entries.
|
211
|
-
|
212
|
-
.. code-block:: python
|
213
|
-
|
214
|
-
import modusa as ms
|
215
|
-
x = ms.tds.random(10)
|
216
|
-
print(x)
|
217
|
-
x.print_info()
|
218
|
-
|
219
|
-
Parameters
|
220
|
-
----------
|
221
|
-
shape: int | tuple[int]
|
222
|
-
- Shape of the signal.
|
223
|
-
- Must be 1 dimensional
|
224
|
-
- E.g. 10 or (10, )
|
225
|
-
sr: float | int
|
226
|
-
- Sampling rate.
|
227
|
-
t0: float | int
|
228
|
-
- Start timestamp.
|
229
|
-
Returns
|
230
|
-
-------
|
231
|
-
TDS
|
232
|
-
An instance of TDS with random values.
|
233
|
-
"""
|
234
|
-
assert isinstance(shape, (int, tuple))
|
235
|
-
y = np.random.random(shape)
|
236
|
-
|
237
|
-
return cls.from_array(y=y, sr=sr, t0=t0, title="Random")
|
238
|
-
|
239
|
-
@classmethod
|
240
|
-
def random_like(cls, signal, shape=None) -> TDS:
|
241
|
-
"""
|
242
|
-
Create `TDS` instance similar to `signal`
|
243
|
-
but with all entries being ones.
|
244
|
-
|
245
|
-
.. code-block:: python
|
246
|
-
|
247
|
-
import modusa as ms
|
248
|
-
signal = ms.tds.from_array([1, 2, 3])
|
249
|
-
y = ms.tds.random_like(signal)
|
250
|
-
print(y)
|
251
|
-
y.print_info()
|
252
|
-
|
253
|
-
Parameters
|
254
|
-
----------
|
255
|
-
signal: TDS
|
256
|
-
- Reference signal to create one with random entries.
|
257
|
-
Returns
|
258
|
-
-------
|
259
|
-
TDS
|
260
|
-
An instance of TDS with random values.
|
261
|
-
"""
|
262
|
-
assert isinstance(signal, TDS)
|
263
|
-
|
264
|
-
shape = signal.shape if shape is None else shape
|
265
|
-
|
266
|
-
return cls.from_array(y=np.random.random(shape), sr=signal.t.sr, t0=signal.t.t0, y_label=signal.y.label, t_label=signal.t.label, title=signal.title)
|
267
|
-
|