modulo-vki 2.1.1__py3-none-any.whl → 2.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: modulo_vki
3
- Version: 2.1.1
3
+ Version: 2.1.2
4
4
  Summary: MODULO (MODal mULtiscale pOd) is a software developed at the von Karman Institute to perform Multiscale Modal Analysis of numerical and experimental data.
5
5
  Home-page: https://github.com/mendezVKI/MODULO/tree/master/modulo_python_package/
6
6
  Author: ['R. Poletti', 'L. Schena', 'D. Ninni', 'M. A. Mendez']
@@ -10,7 +10,7 @@ Classifier: Development Status :: 4 - Beta
10
10
  Classifier: Natural Language :: English
11
11
  Classifier: Programming Language :: Python :: 3
12
12
  Requires-Python: >=3.6
13
- Description-Content-Type: text/markdown
13
+ Description-Content-Type: text/x-rst
14
14
  License-File: LICENSE
15
15
  Requires-Dist: tqdm
16
16
  Requires-Dist: numpy
@@ -33,33 +33,19 @@ Dynamic: requires-dist
33
33
  Dynamic: requires-python
34
34
  Dynamic: summary
35
35
 
36
-
37
-
38
36
  MODULO: a python toolbox for data-driven modal decomposition
39
37
  ------------------------------------------------------------
40
38
 
41
- .. image:: https://readthedocs.org/projects/modulo/badge/?version=latest
42
- :target: https://modulo.readthedocs.io/en/latest/?badge=latest
43
- :alt: Documentation Status
44
-
45
- |DOI| |PyPI|
46
-
47
- .. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.13939519.svg
48
- :target: https://doi.org/10.5281/zenodo.13939519
49
-
50
- .. |PyPI| image:: https://img.shields.io/pypi/v/modulo_vki
51
- :target: https://pypi.org/project/modulo_vki/
52
-
53
39
  .. image:: https://modulo.readthedocs.io/en/latest/_images/modulo_logo.png
54
40
  :alt: MODULO logo
55
41
  :width: 500px
56
42
  :align: center
57
43
 
58
44
 
59
- **MODULO** is a modal decomposition package developed at the von Karman Institute for Fluid Dynamics (VKI). It offers a wide range of decomposition techniques, allowing users to choose the most appropriate method for their specific problem. MODULO can efficiently handle large datasets natively, thanks to a memory-saving feature that partitions the data and processes the decomposition in chunks (ninni2020modulo). Moreover, it supports non-uniform meshes through a weighted inner product formulation. Currently, MODULO heavily relies on NumPy routines and does not offer additional parallel computing capabilities beyond those naturally provided by NumPy.
45
+ **MODULO** is a modal decomposition package developed at the von Karman Institute for Fluid Dynamics (VKI). It offers a wide range of decomposition techniques, allowing users to choose the most appropriate method for their specific problem. MODULO can efficiently handle large datasets natively, thanks to a memory-saving feature that partitions the data and processes the decomposition in chunks (`Nini et al. (2022) <https://www.sciencedirect.com/science/article/pii/S2352711020303356>`_). Moreover, it supports non-uniform meshes through a weighted inner product formulation. Currently, MODULO heavily relies on NumPy routines and does not offer additional parallel computing capabilities beyond those naturally provided by NumPy.
60
46
 
61
- While the discontinued MATLAB version of MODULO (ninni2020modulo) is accessible in the “Old_Matlab_Implementation” branch,
62
- it is no longer maintained. The latest decomposition techniques are exclusively available in the current Python version.
47
+ While the discontinued MATLAB version of MODULO is accessible in the “Old_Matlab_Implementation” branch,
48
+ it is no longer maintained. The latest decomposition techniques are exclusively available in the current Python version (`Poletti et al. (2024) <https://joss.theoj.org/papers/10.21105/joss.06753>`_).
63
49
 
64
50
  As a part of the MODULO project, we provide a series of lectures on data-driven modal decomposition, and its applications.
65
51
  These are available at the `MODULO YouTube channel <https://www.youtube.com/@modulompod5682>`_.
@@ -71,7 +57,7 @@ Modal decompositions
71
57
  Modal decompositions aim to describe the data as a linear combination of *modes*, obtained by projecting the data
72
58
  onto a suitable set of basis. Different decompositions employ different bases, such as prescribed Fourier basis for
73
59
  the Discrete Fourier Transform (DFT), or data-driven basis, i.e. tailored on the dataset at hand,
74
- for the Proper Orthogonal Decomposition (POD). We refer to `Mendez (2022) <https://doi.org/10.48550/arXiv.2201.03847>`_, `Mendez (2023) <https://doi.org/10.1017/9781108896214.013>`_, and `Mendez et al. (2023) <https://arxiv.org/abs/2208.07746>`_, for an introduction to the topic.
60
+ for the Proper Orthogonal Decomposition (POD). We refer to `Mendez (2022) <https://doi.org/10.48550/arXiv.2201.03847>`_, `Mendez (2023) <https://doi.org/10.1017/9781108896214.013>`_, and `Mendez et al. (2023) <https://arxiv.org/abs/2208.07746>`_ for an introduction to the topic.
75
61
  MODULO currently features the following decompositions:
76
62
 
77
63
  - Discrete Fourier Transform (DFT) (`Briggs et al. (1997) <https://epubs.siam.org/doi/book/10.1137/1.9781611971514>`_)
@@ -296,6 +282,7 @@ References
296
282
  "Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning". Cambridge University Press, 2023:153-181.
297
283
  https://doi.org/10.1017/9781108896214.013. The pre-print is available at https://arxiv.org/abs/2208.12630.
298
284
  - Ninni, Davide, and Miguel A. Mendez. "MODULO: A software for Multiscale Proper Orthogonal Decomposition of data." SoftwareX 12 (2020): 100622.
285
+ - Poletti, Romain, Schena, Lorenzo, Ninni, David, and Mendez, Miguel A. "Modulo: A python toolbox for data-driven modal decomposition". Journal of Open Source Software (2024), 9(102), 6753.
299
286
  - Mendez, Miguel A. "Linear and nonlinear dimensionality reduction from fluid mechanics to machine learning." Measurement Science and Technology 34.4 (2023): 042001.
300
287
  - Briggs, William L., and Van Emden Henson. The DFT: an owner's manual for the discrete Fourier transform. Society for Industrial and Applied Mathematics, 1995.
301
288
  - Berkooz, Gal, Philip Holmes, and John L. Lumley. "The proper orthogonal decomposition in the analysis of turbulent flows." Annual review of fluid mechanics 25.1 (1993): 539-575.
@@ -19,8 +19,8 @@ modulo_vki/utils/_plots.py,sha256=m43t08cVq-TY0BW0YPqT71hN-54hBphIYKZEn8Kw16E,14
19
19
  modulo_vki/utils/_utils.py,sha256=WFD7nwjSzVHpevVwTEvMdjAmcbeqwoXT9M48tIIniJw,14355
20
20
  modulo_vki/utils/others.py,sha256=26ES5EmsLhwkvcXTwNhDMkblGrxoWepX5c9TXeLTRWg,17336
21
21
  modulo_vki/utils/read_db.py,sha256=lJFauxJxS0_mYoxrbn-43UqZjOkr-qb9f6RTUq4IxZU,15149
22
- modulo_vki-2.1.1.dist-info/licenses/LICENSE,sha256=5TivriXFErrYrJgBq3M72kHNHqtSiCft3xESM1zHc0k,1091
23
- modulo_vki-2.1.1.dist-info/METADATA,sha256=MGJRX_sOUGm4_18AnPXzz3lT8PKi7KxPhbHZ9yiQEVQ,14933
24
- modulo_vki-2.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
25
- modulo_vki-2.1.1.dist-info/top_level.txt,sha256=4PA4AmafKU6M7us7gvt_Q976Khx3qjNUEThRRM5zxeA,11
26
- modulo_vki-2.1.1.dist-info/RECORD,,
22
+ modulo_vki-2.1.2.dist-info/licenses/LICENSE,sha256=5TivriXFErrYrJgBq3M72kHNHqtSiCft3xESM1zHc0k,1091
23
+ modulo_vki-2.1.2.dist-info/METADATA,sha256=dCTKzUK0d91uWzg-CoySY5towOn3-ZhExDPXmLF7w-g,14816
24
+ modulo_vki-2.1.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
25
+ modulo_vki-2.1.2.dist-info/top_level.txt,sha256=4PA4AmafKU6M7us7gvt_Q976Khx3qjNUEThRRM5zxeA,11
26
+ modulo_vki-2.1.2.dist-info/RECORD,,