modulo-vki 2.1.1__py3-none-any.whl → 2.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {modulo_vki-2.1.1.dist-info → modulo_vki-2.1.2.dist-info}/METADATA +7 -20
- {modulo_vki-2.1.1.dist-info → modulo_vki-2.1.2.dist-info}/RECORD +5 -5
- {modulo_vki-2.1.1.dist-info → modulo_vki-2.1.2.dist-info}/WHEEL +0 -0
- {modulo_vki-2.1.1.dist-info → modulo_vki-2.1.2.dist-info}/licenses/LICENSE +0 -0
- {modulo_vki-2.1.1.dist-info → modulo_vki-2.1.2.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: modulo_vki
|
|
3
|
-
Version: 2.1.
|
|
3
|
+
Version: 2.1.2
|
|
4
4
|
Summary: MODULO (MODal mULtiscale pOd) is a software developed at the von Karman Institute to perform Multiscale Modal Analysis of numerical and experimental data.
|
|
5
5
|
Home-page: https://github.com/mendezVKI/MODULO/tree/master/modulo_python_package/
|
|
6
6
|
Author: ['R. Poletti', 'L. Schena', 'D. Ninni', 'M. A. Mendez']
|
|
@@ -10,7 +10,7 @@ Classifier: Development Status :: 4 - Beta
|
|
|
10
10
|
Classifier: Natural Language :: English
|
|
11
11
|
Classifier: Programming Language :: Python :: 3
|
|
12
12
|
Requires-Python: >=3.6
|
|
13
|
-
Description-Content-Type: text/
|
|
13
|
+
Description-Content-Type: text/x-rst
|
|
14
14
|
License-File: LICENSE
|
|
15
15
|
Requires-Dist: tqdm
|
|
16
16
|
Requires-Dist: numpy
|
|
@@ -33,33 +33,19 @@ Dynamic: requires-dist
|
|
|
33
33
|
Dynamic: requires-python
|
|
34
34
|
Dynamic: summary
|
|
35
35
|
|
|
36
|
-
|
|
37
|
-
|
|
38
36
|
MODULO: a python toolbox for data-driven modal decomposition
|
|
39
37
|
------------------------------------------------------------
|
|
40
38
|
|
|
41
|
-
.. image:: https://readthedocs.org/projects/modulo/badge/?version=latest
|
|
42
|
-
:target: https://modulo.readthedocs.io/en/latest/?badge=latest
|
|
43
|
-
:alt: Documentation Status
|
|
44
|
-
|
|
45
|
-
|DOI| |PyPI|
|
|
46
|
-
|
|
47
|
-
.. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.13939519.svg
|
|
48
|
-
:target: https://doi.org/10.5281/zenodo.13939519
|
|
49
|
-
|
|
50
|
-
.. |PyPI| image:: https://img.shields.io/pypi/v/modulo_vki
|
|
51
|
-
:target: https://pypi.org/project/modulo_vki/
|
|
52
|
-
|
|
53
39
|
.. image:: https://modulo.readthedocs.io/en/latest/_images/modulo_logo.png
|
|
54
40
|
:alt: MODULO logo
|
|
55
41
|
:width: 500px
|
|
56
42
|
:align: center
|
|
57
43
|
|
|
58
44
|
|
|
59
|
-
**MODULO** is a modal decomposition package developed at the von Karman Institute for Fluid Dynamics (VKI). It offers a wide range of decomposition techniques, allowing users to choose the most appropriate method for their specific problem. MODULO can efficiently handle large datasets natively, thanks to a memory-saving feature that partitions the data and processes the decomposition in chunks (
|
|
45
|
+
**MODULO** is a modal decomposition package developed at the von Karman Institute for Fluid Dynamics (VKI). It offers a wide range of decomposition techniques, allowing users to choose the most appropriate method for their specific problem. MODULO can efficiently handle large datasets natively, thanks to a memory-saving feature that partitions the data and processes the decomposition in chunks (`Nini et al. (2022) <https://www.sciencedirect.com/science/article/pii/S2352711020303356>`_). Moreover, it supports non-uniform meshes through a weighted inner product formulation. Currently, MODULO heavily relies on NumPy routines and does not offer additional parallel computing capabilities beyond those naturally provided by NumPy.
|
|
60
46
|
|
|
61
|
-
While the discontinued MATLAB version of MODULO
|
|
62
|
-
it is no longer maintained. The latest decomposition techniques are exclusively available in the current Python version.
|
|
47
|
+
While the discontinued MATLAB version of MODULO is accessible in the “Old_Matlab_Implementation” branch,
|
|
48
|
+
it is no longer maintained. The latest decomposition techniques are exclusively available in the current Python version (`Poletti et al. (2024) <https://joss.theoj.org/papers/10.21105/joss.06753>`_).
|
|
63
49
|
|
|
64
50
|
As a part of the MODULO project, we provide a series of lectures on data-driven modal decomposition, and its applications.
|
|
65
51
|
These are available at the `MODULO YouTube channel <https://www.youtube.com/@modulompod5682>`_.
|
|
@@ -71,7 +57,7 @@ Modal decompositions
|
|
|
71
57
|
Modal decompositions aim to describe the data as a linear combination of *modes*, obtained by projecting the data
|
|
72
58
|
onto a suitable set of basis. Different decompositions employ different bases, such as prescribed Fourier basis for
|
|
73
59
|
the Discrete Fourier Transform (DFT), or data-driven basis, i.e. tailored on the dataset at hand,
|
|
74
|
-
for the Proper Orthogonal Decomposition (POD). We refer to `Mendez (2022) <https://doi.org/10.48550/arXiv.2201.03847>`_, `Mendez (2023) <https://doi.org/10.1017/9781108896214.013>`_, and `Mendez et al. (2023) <https://arxiv.org/abs/2208.07746>`_
|
|
60
|
+
for the Proper Orthogonal Decomposition (POD). We refer to `Mendez (2022) <https://doi.org/10.48550/arXiv.2201.03847>`_, `Mendez (2023) <https://doi.org/10.1017/9781108896214.013>`_, and `Mendez et al. (2023) <https://arxiv.org/abs/2208.07746>`_ for an introduction to the topic.
|
|
75
61
|
MODULO currently features the following decompositions:
|
|
76
62
|
|
|
77
63
|
- Discrete Fourier Transform (DFT) (`Briggs et al. (1997) <https://epubs.siam.org/doi/book/10.1137/1.9781611971514>`_)
|
|
@@ -296,6 +282,7 @@ References
|
|
|
296
282
|
"Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning". Cambridge University Press, 2023:153-181.
|
|
297
283
|
https://doi.org/10.1017/9781108896214.013. The pre-print is available at https://arxiv.org/abs/2208.12630.
|
|
298
284
|
- Ninni, Davide, and Miguel A. Mendez. "MODULO: A software for Multiscale Proper Orthogonal Decomposition of data." SoftwareX 12 (2020): 100622.
|
|
285
|
+
- Poletti, Romain, Schena, Lorenzo, Ninni, David, and Mendez, Miguel A. "Modulo: A python toolbox for data-driven modal decomposition". Journal of Open Source Software (2024), 9(102), 6753.
|
|
299
286
|
- Mendez, Miguel A. "Linear and nonlinear dimensionality reduction from fluid mechanics to machine learning." Measurement Science and Technology 34.4 (2023): 042001.
|
|
300
287
|
- Briggs, William L., and Van Emden Henson. The DFT: an owner's manual for the discrete Fourier transform. Society for Industrial and Applied Mathematics, 1995.
|
|
301
288
|
- Berkooz, Gal, Philip Holmes, and John L. Lumley. "The proper orthogonal decomposition in the analysis of turbulent flows." Annual review of fluid mechanics 25.1 (1993): 539-575.
|
|
@@ -19,8 +19,8 @@ modulo_vki/utils/_plots.py,sha256=m43t08cVq-TY0BW0YPqT71hN-54hBphIYKZEn8Kw16E,14
|
|
|
19
19
|
modulo_vki/utils/_utils.py,sha256=WFD7nwjSzVHpevVwTEvMdjAmcbeqwoXT9M48tIIniJw,14355
|
|
20
20
|
modulo_vki/utils/others.py,sha256=26ES5EmsLhwkvcXTwNhDMkblGrxoWepX5c9TXeLTRWg,17336
|
|
21
21
|
modulo_vki/utils/read_db.py,sha256=lJFauxJxS0_mYoxrbn-43UqZjOkr-qb9f6RTUq4IxZU,15149
|
|
22
|
-
modulo_vki-2.1.
|
|
23
|
-
modulo_vki-2.1.
|
|
24
|
-
modulo_vki-2.1.
|
|
25
|
-
modulo_vki-2.1.
|
|
26
|
-
modulo_vki-2.1.
|
|
22
|
+
modulo_vki-2.1.2.dist-info/licenses/LICENSE,sha256=5TivriXFErrYrJgBq3M72kHNHqtSiCft3xESM1zHc0k,1091
|
|
23
|
+
modulo_vki-2.1.2.dist-info/METADATA,sha256=dCTKzUK0d91uWzg-CoySY5towOn3-ZhExDPXmLF7w-g,14816
|
|
24
|
+
modulo_vki-2.1.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
25
|
+
modulo_vki-2.1.2.dist-info/top_level.txt,sha256=4PA4AmafKU6M7us7gvt_Q976Khx3qjNUEThRRM5zxeA,11
|
|
26
|
+
modulo_vki-2.1.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|