modulo-vki 2.0.6__py3-none-any.whl → 2.0.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
modulo_vki/__init__.py CHANGED
@@ -1,23 +1,23 @@
1
-
2
- #from ._version import get_versions
3
- #__version__ = get_versions()['version']
4
- #del get_versions
5
-
6
-
7
- # from .utils.read_db import *
8
- # from .utils._utils import *
9
- # from .utils._plots import *
10
- # from .utils.others import *
11
-
12
- # from .core._k_matrix import *
13
- # from .core._dft import *
14
- # from .core._dmd_s import *
15
- # from .core._k_matrix import *
16
- # from .core._mpod_time import *
17
- # from .core._mpod_space import *
18
- # from .core._pod_time import *
19
- # from .core._pod_space import *
20
- # from .core._spod_s import *
21
- # from .core._spod_t import *
22
-
1
+
2
+ #from ._version import get_versions
3
+ #__version__ = get_versions()['version']
4
+ #del get_versions
5
+
6
+
7
+ # from .utils.read_db import *
8
+ # from .utils._utils import *
9
+ # from .utils._plots import *
10
+ # from .utils.others import *
11
+
12
+ # from .core._k_matrix import *
13
+ # from .core._dft import *
14
+ # from .core._dmd_s import *
15
+ # from .core._k_matrix import *
16
+ # from .core._mpod_time import *
17
+ # from .core._mpod_space import *
18
+ # from .core._pod_time import *
19
+ # from .core._pod_space import *
20
+ # from .core._spod_s import *
21
+ # from .core._spod_t import *
22
+
23
23
  from modulo_vki.modulo import ModuloVKI
@@ -1,9 +1,9 @@
1
- from ._dft import *
2
- from ._dmd_s import *
3
- from ._k_matrix import *
4
- from ._mpod_space import *
5
- from ._mpod_time import *
6
- from ._pod_space import *
7
- from ._pod_time import *
8
- from ._spod_s import *
9
- from ._spod_t import *
1
+ from ._dft import *
2
+ from ._dmd_s import *
3
+ from ._k_matrix import *
4
+ from ._mpod_space import *
5
+ from ._mpod_time import *
6
+ from ._pod_space import *
7
+ from ._pod_time import *
8
+ from ._spod_s import *
9
+ from ._spod_t import *
modulo_vki/core/_dft.py CHANGED
@@ -1,61 +1,61 @@
1
- import os
2
-
3
- import numpy as np
4
- from tqdm import tqdm
5
-
6
-
7
- def dft_fit(N_T, F_S, D, FOLDER_OUT, SAVE_DFT=False):
8
- """
9
- This function computes the DFT form the dataset D.
10
- Currently, this does not handle the memory saving feature.
11
-
12
- :param N_T: int.
13
- number of snapshots
14
- :param F_S:
15
- Sampling frequency (in Hz)
16
- :param D:
17
- Snapshot matrix
18
- :param FOLDER_OUT:
19
- Folder in which the results are saved if SAVE_SPATIAL_POD = True
20
- :param SAVE_DFT:
21
- If True, results are saved on disk and released from memory
22
-
23
- :return: Sorted_Freqs, np.array
24
- Frequency bins, in Hz.
25
- :return: Phi_F, np.array
26
- (Complex) Spatial structures for each mode
27
- :return: SIGMA_F, np.array
28
- (real) amplitude of each modes
29
-
30
- """
31
- n_t = int(N_T)
32
- Freqs = np.fft.fftfreq(n_t) * F_S # Compute the frequency bins
33
- # PSI_F = np.conj(np.fft.fft(np.eye(n_t)) / np.sqrt(n_t)) # Prepare the Fourier Matrix.
34
-
35
- # Method 1 (didactic!)
36
- # PHI_SIGMA = np.dot(D, np.conj(PSI_F)) # This is PHI * SIGMA
37
-
38
- # Method 2
39
- PHI_SIGMA = (np.fft.fft(D, n_t, 1)) / (n_t ** 0.5)
40
-
41
- PHI_F = np.zeros((D.shape[0], n_t), dtype=complex) # Initialize the PHI_F MATRIX
42
- SIGMA_F = np.zeros(n_t) # Initialize the SIGMA_F MATRIX
43
-
44
- # Now we proceed with the normalization. This is also intense so we time it
45
- for r in tqdm(range(0, n_t)): # Loop over the PHI_SIGMA to normalize
46
- # MEX = 'Proj ' + str(r + 1) + ' /' + str(n_t)
47
- # print(MEX)
48
- SIGMA_F[r] = abs(np.vdot(PHI_SIGMA[:, r], PHI_SIGMA[:, r])) ** 0.5
49
- PHI_F[:, r] = PHI_SIGMA[:, r] / SIGMA_F[r]
50
-
51
- Indices = np.flipud(np.argsort(SIGMA_F)) # find indices for sorting in decreasing order
52
- Sorted_Sigmas = SIGMA_F[Indices] # Sort all the sigmas
53
- Sorted_Freqs = Freqs[Indices] # Sort all the frequencies accordingly.
54
- Phi_F = PHI_F[:, Indices] # Sorted Spatial Structures Matrix
55
- SIGMA_F = Sorted_Sigmas # Sorted Amplitude Matrix (vector)
56
-
57
- if SAVE_DFT:
58
- os.makedirs(FOLDER_OUT + 'DFT', exist_ok=True)
59
- np.savez(FOLDER_OUT + 'DFT/dft_fitted', Freqs=Sorted_Freqs, Phis=Phi_F, Sigmas=SIGMA_F)
60
-
61
- return Sorted_Freqs, Phi_F, SIGMA_F
1
+ import os
2
+
3
+ import numpy as np
4
+ from tqdm import tqdm
5
+
6
+
7
+ def dft_fit(N_T, F_S, D, FOLDER_OUT, SAVE_DFT=False):
8
+ """
9
+ This function computes the DFT form the dataset D.
10
+ Currently, this does not handle the memory saving feature.
11
+
12
+ :param N_T: int.
13
+ number of snapshots
14
+ :param F_S:
15
+ Sampling frequency (in Hz)
16
+ :param D:
17
+ Snapshot matrix
18
+ :param FOLDER_OUT:
19
+ Folder in which the results are saved if SAVE_SPATIAL_POD = True
20
+ :param SAVE_DFT:
21
+ If True, results are saved on disk and released from memory
22
+
23
+ :return: Sorted_Freqs, np.array
24
+ Frequency bins, in Hz.
25
+ :return: Phi_F, np.array
26
+ (Complex) Spatial structures for each mode
27
+ :return: SIGMA_F, np.array
28
+ (real) amplitude of each modes
29
+
30
+ """
31
+ n_t = int(N_T)
32
+ Freqs = np.fft.fftfreq(n_t) * F_S # Compute the frequency bins
33
+ # PSI_F = np.conj(np.fft.fft(np.eye(n_t)) / np.sqrt(n_t)) # Prepare the Fourier Matrix.
34
+
35
+ # Method 1 (didactic!)
36
+ # PHI_SIGMA = np.dot(D, np.conj(PSI_F)) # This is PHI * SIGMA
37
+
38
+ # Method 2
39
+ PHI_SIGMA = (np.fft.fft(D, n_t, 1)) / (n_t ** 0.5)
40
+
41
+ PHI_F = np.zeros((D.shape[0], n_t), dtype=complex) # Initialize the PHI_F MATRIX
42
+ SIGMA_F = np.zeros(n_t) # Initialize the SIGMA_F MATRIX
43
+
44
+ # Now we proceed with the normalization. This is also intense so we time it
45
+ for r in tqdm(range(0, n_t)): # Loop over the PHI_SIGMA to normalize
46
+ # MEX = 'Proj ' + str(r + 1) + ' /' + str(n_t)
47
+ # print(MEX)
48
+ SIGMA_F[r] = abs(np.vdot(PHI_SIGMA[:, r], PHI_SIGMA[:, r])) ** 0.5
49
+ PHI_F[:, r] = PHI_SIGMA[:, r] / SIGMA_F[r]
50
+
51
+ Indices = np.flipud(np.argsort(SIGMA_F)) # find indices for sorting in decreasing order
52
+ Sorted_Sigmas = SIGMA_F[Indices] # Sort all the sigmas
53
+ Sorted_Freqs = Freqs[Indices] # Sort all the frequencies accordingly.
54
+ Phi_F = PHI_F[:, Indices] # Sorted Spatial Structures Matrix
55
+ SIGMA_F = Sorted_Sigmas # Sorted Amplitude Matrix (vector)
56
+
57
+ if SAVE_DFT:
58
+ os.makedirs(FOLDER_OUT + 'DFT', exist_ok=True)
59
+ np.savez(FOLDER_OUT + 'DFT/dft_fitted', Freqs=Sorted_Freqs, Phis=Phi_F, Sigmas=SIGMA_F)
60
+
61
+ return Sorted_Freqs, Phi_F, SIGMA_F
modulo_vki/core/_dmd_s.py CHANGED
@@ -1,72 +1,72 @@
1
- import os
2
- import numpy as np
3
- from numpy import linalg as LA
4
- from ..utils._utils import switch_svds
5
-
6
-
7
- def dmd_s(D_1, D_2, n_Modes, F_S,
8
- SAVE_T_DMD=False,
9
- FOLDER_OUT='./',
10
- svd_solver: str = 'svd_sklearn_truncated'):
11
- """
12
- This method computes the Dynamic Mode Decomposition (DMD) using hte PIP algorithm from Penland.
13
-
14
- :param D_1: np.array
15
- First portion of the data, i.e. D[:,0:n_t-1]
16
- :param D_2: np.array
17
- Second portion of the data, i.e. D[:,1:n_t]
18
- :param Phi_P, Psi_P, Sigma_P: np.arrays
19
- POD decomposition of D1
20
- :param F_S: float
21
- Sampling frequency in Hz
22
- :param FOLDER_OUT: str
23
- Folder in which the results will be saved (if SAVE_T_DMD=True)
24
- :param K: np.array
25
- Temporal correlation matrix
26
- :param SAVE_T_POD: bool
27
- A flag deciding whether the results are saved on disk or not. If the MEMORY_SAVING feature is active, it is switched True by default.
28
- :param n_Modes: int
29
- number of modes that will be computed
30
- :param svd_solver: str,
31
- svd solver to be used
32
-
33
-
34
- :return1 Phi_D: np.array.
35
- DMD's complex spatial structures
36
- :return2 Lambda_D: np.array.
37
- DMD Eigenvalues (of the reduced propagator)
38
- :return3 freqs: np.array.
39
- Frequencies (in Hz, associated to the DMD modes)
40
- :return4 a0s: np.array.
41
- Initial Coefficients of the Modes
42
- """
43
-
44
- Phi_P, Psi_P, Sigma_P = switch_svds(D_1, n_Modes, svd_solver)
45
- print('SVD of D1 rdy')
46
- Sigma_inv = np.diag(1 / Sigma_P)
47
- dt = 1 / F_S
48
- # %% Step 3: Compute approximated propagator
49
- P_A = LA.multi_dot([np.transpose(Phi_P), D_2, Psi_P, Sigma_inv])
50
- print('reduced propagator rdy')
51
-
52
- # %% Step 4: Compute eigenvalues of the system
53
- Lambda, Q = LA.eig(P_A) # not necessarily symmetric def pos! Avoid eigsh, eigh
54
- freqs = np.imag(np.log(Lambda)) / (2 * np.pi * dt)
55
- print(' lambdas and freqs rdy')
56
-
57
- # %% Step 5: Spatial structures of the DMD in the PIP style
58
- Phi_D = LA.multi_dot([D_2, Psi_P, Sigma_inv, Q])
59
- print('Phi_D rdy')
60
-
61
- # %% Step 6: Compute the initial coefficients
62
- # a0s=LA.lstsq(Phi_D, D_1[:,0],rcond=None)
63
- a0s = LA.pinv(Phi_D).dot(D_1[:, 0])
64
- print('Sigma_D rdy')
65
-
66
- if SAVE_T_DMD:
67
- os.makedirs(FOLDER_OUT + "/DMD/", exist_ok=True)
68
- print("Saving DMD results")
69
- np.savez(FOLDER_OUT + '/DMD/dmd_decomposition',
70
- Phi_D=Phi_D, Lambda=Lambda, freqs=freqs, a0s=a0s)
71
-
72
- return Phi_D, Lambda, freqs, a0s
1
+ import os
2
+ import numpy as np
3
+ from numpy import linalg as LA
4
+ from ..utils._utils import switch_svds
5
+
6
+
7
+ def dmd_s(D_1, D_2, n_Modes, F_S,
8
+ SAVE_T_DMD=False,
9
+ FOLDER_OUT='./',
10
+ svd_solver: str = 'svd_sklearn_truncated'):
11
+ """
12
+ This method computes the Dynamic Mode Decomposition (DMD) using hte PIP algorithm from Penland.
13
+
14
+ :param D_1: np.array
15
+ First portion of the data, i.e. D[:,0:n_t-1]
16
+ :param D_2: np.array
17
+ Second portion of the data, i.e. D[:,1:n_t]
18
+ :param Phi_P, Psi_P, Sigma_P: np.arrays
19
+ POD decomposition of D1
20
+ :param F_S: float
21
+ Sampling frequency in Hz
22
+ :param FOLDER_OUT: str
23
+ Folder in which the results will be saved (if SAVE_T_DMD=True)
24
+ :param K: np.array
25
+ Temporal correlation matrix
26
+ :param SAVE_T_POD: bool
27
+ A flag deciding whether the results are saved on disk or not. If the MEMORY_SAVING feature is active, it is switched True by default.
28
+ :param n_Modes: int
29
+ number of modes that will be computed
30
+ :param svd_solver: str,
31
+ svd solver to be used
32
+
33
+
34
+ :return1 Phi_D: np.array.
35
+ DMD's complex spatial structures
36
+ :return2 Lambda_D: np.array.
37
+ DMD Eigenvalues (of the reduced propagator)
38
+ :return3 freqs: np.array.
39
+ Frequencies (in Hz, associated to the DMD modes)
40
+ :return4 a0s: np.array.
41
+ Initial Coefficients of the Modes
42
+ """
43
+
44
+ Phi_P, Psi_P, Sigma_P = switch_svds(D_1, n_Modes, svd_solver)
45
+ print('SVD of D1 rdy')
46
+ Sigma_inv = np.diag(1 / Sigma_P)
47
+ dt = 1 / F_S
48
+ # %% Step 3: Compute approximated propagator
49
+ P_A = LA.multi_dot([np.transpose(Phi_P), D_2, Psi_P, Sigma_inv])
50
+ print('reduced propagator rdy')
51
+
52
+ # %% Step 4: Compute eigenvalues of the system
53
+ Lambda, Q = LA.eig(P_A) # not necessarily symmetric def pos! Avoid eigsh, eigh
54
+ freqs = np.imag(np.log(Lambda)) / (2 * np.pi * dt)
55
+ print(' lambdas and freqs rdy')
56
+
57
+ # %% Step 5: Spatial structures of the DMD in the PIP style
58
+ Phi_D = LA.multi_dot([D_2, Psi_P, Sigma_inv, Q])
59
+ print('Phi_D rdy')
60
+
61
+ # %% Step 6: Compute the initial coefficients
62
+ # a0s=LA.lstsq(Phi_D, D_1[:,0],rcond=None)
63
+ a0s = LA.pinv(Phi_D).dot(D_1[:, 0])
64
+ print('Sigma_D rdy')
65
+
66
+ if SAVE_T_DMD:
67
+ os.makedirs(FOLDER_OUT + "/DMD/", exist_ok=True)
68
+ print("Saving DMD results")
69
+ np.savez(FOLDER_OUT + '/DMD/dmd_decomposition',
70
+ Phi_D=Phi_D, Lambda=Lambda, freqs=freqs, a0s=a0s)
71
+
72
+ return Phi_D, Lambda, freqs, a0s
@@ -1,81 +1,81 @@
1
- import os
2
- from tqdm import tqdm
3
- import numpy as np
4
- import math
5
-
6
-
7
- def CorrelationMatrix(N_T, N_PARTITIONS=1, MEMORY_SAVING=False, FOLDER_OUT='./', SAVE_K=False, D=None,weights = np.array([])):
8
- """
9
- This method computes the temporal correlation matrix, given a data matrix as input. It's possible to use memory saving
10
- then splitting the computing in different tranches if computationally heavy. If D has been computed using MODULO
11
- then the dimension dim_col and N_PARTITIONS is automatically loaded
12
-
13
- :param N_T: int. Number of temporal snapshots
14
- :param D: np.array. Data matrix
15
- :param SAVE_K: bool. If SAVE_K=True, the matrix K is saved on disk. If the MEMORY_SAVING feature is active, this is done by default.
16
- :param MEMORY_SAVING: bool. If MEMORY_SAVING = True, the computation of the correlation matrix is done by steps. It requires the data matrix to be partitioned, following algorithm in MODULO._data_processing.
17
- :param FOLDER_OUT: str. Folder in which the temporal correlation matrix will be stored
18
- :param N_PARTITIONS: int. Number of partitions to be read in computing the correlation matrix. If _data_processing is used to partition the data matrix, this is inherited from the main class
19
- :param weights: weight vector [w_i,....,w_{N_s}] where w_i = area_cell_i/area_grid. Only needed if grid is non-uniform & MEMORY_SAVING== True
20
- :return: K (: np.array) if the memory saving is not active. None type otherwise.
21
- """
22
-
23
- if not MEMORY_SAVING:
24
- print("\n Computing Temporal correlation matrix K ...")
25
- K = np.dot(D.T, D)
26
- print("\n Done.")
27
-
28
- else:
29
- SAVE_K = True
30
- print("\n Using Memory Saving feature...")
31
- K = np.zeros((N_T, N_T))
32
- dim_col = math.floor(N_T / N_PARTITIONS)
33
-
34
- if N_T % N_PARTITIONS != 0:
35
- tot_blocks_col = N_PARTITIONS + 1
36
- else:
37
- tot_blocks_col = N_PARTITIONS
38
-
39
- for k in tqdm(range(tot_blocks_col)):
40
-
41
- di = np.load(FOLDER_OUT + f"/data_partitions/di_{k + 1}.npz")['di']
42
- if weights.size != 0:
43
- di = np.transpose(np.transpose(di) * np.sqrt(weights))
44
-
45
- ind_start = k * dim_col
46
- ind_end = ind_start + dim_col
47
-
48
- if (k == tot_blocks_col - 1) and (N_T - dim_col * N_PARTITIONS > 0):
49
- dim_col = N_T - dim_col * N_PARTITIONS
50
- ind_end = ind_start + dim_col
51
-
52
- K[ind_start:ind_end, ind_start:ind_end] = np.dot(di.transpose(), di)
53
-
54
- block = k + 2
55
-
56
- while block <= tot_blocks_col:
57
- dj = np.load(FOLDER_OUT + f"/data_partitions/di_{block}.npz")['di']
58
- if weights.size != 0:
59
- dj = np.transpose(np.transpose(dj) * np.sqrt(weights))
60
-
61
- ind_start_out = (block - 1) * dim_col
62
- ind_end_out = ind_start_out + dim_col
63
-
64
- if (block == tot_blocks_col) and (N_T - dim_col * N_PARTITIONS > 0):
65
- dim_col = N_T - dim_col * N_PARTITIONS
66
- ind_end_out = ind_start_out + dim_col
67
- dj = dj[:, :dim_col]
68
-
69
- K[ind_start:ind_end, ind_start_out:ind_end_out] = np.dot(di.T, dj)
70
-
71
- K[ind_start_out:ind_end_out, ind_start:ind_end] = K[ind_start:ind_end, ind_start_out:ind_end_out].T
72
-
73
- block += 1
74
-
75
- dim_col = math.floor(N_T / N_PARTITIONS)
76
-
77
- if SAVE_K:
78
- os.makedirs(FOLDER_OUT + '/correlation_matrix', exist_ok=True)
79
- np.savez(FOLDER_OUT + "/correlation_matrix/k_matrix", K=K)
80
-
81
- return K if not MEMORY_SAVING else None
1
+ import os
2
+ from tqdm import tqdm
3
+ import numpy as np
4
+ import math
5
+
6
+
7
+ def CorrelationMatrix(N_T, N_PARTITIONS=1, MEMORY_SAVING=False, FOLDER_OUT='./', SAVE_K=False, D=None,weights = np.array([])):
8
+ """
9
+ This method computes the temporal correlation matrix, given a data matrix as input. It's possible to use memory saving
10
+ then splitting the computing in different tranches if computationally heavy. If D has been computed using MODULO
11
+ then the dimension dim_col and N_PARTITIONS is automatically loaded
12
+
13
+ :param N_T: int. Number of temporal snapshots
14
+ :param D: np.array. Data matrix
15
+ :param SAVE_K: bool. If SAVE_K=True, the matrix K is saved on disk. If the MEMORY_SAVING feature is active, this is done by default.
16
+ :param MEMORY_SAVING: bool. If MEMORY_SAVING = True, the computation of the correlation matrix is done by steps. It requires the data matrix to be partitioned, following algorithm in MODULO._data_processing.
17
+ :param FOLDER_OUT: str. Folder in which the temporal correlation matrix will be stored
18
+ :param N_PARTITIONS: int. Number of partitions to be read in computing the correlation matrix. If _data_processing is used to partition the data matrix, this is inherited from the main class
19
+ :param weights: weight vector [w_i,....,w_{N_s}] where w_i = area_cell_i/area_grid. Only needed if grid is non-uniform & MEMORY_SAVING== True
20
+ :return: K (: np.array) if the memory saving is not active. None type otherwise.
21
+ """
22
+
23
+ if not MEMORY_SAVING:
24
+ print("\n Computing Temporal correlation matrix K ...")
25
+ K = np.dot(D.T, D)
26
+ print("\n Done.")
27
+
28
+ else:
29
+ SAVE_K = True
30
+ print("\n Using Memory Saving feature...")
31
+ K = np.zeros((N_T, N_T))
32
+ dim_col = math.floor(N_T / N_PARTITIONS)
33
+
34
+ if N_T % N_PARTITIONS != 0:
35
+ tot_blocks_col = N_PARTITIONS + 1
36
+ else:
37
+ tot_blocks_col = N_PARTITIONS
38
+
39
+ for k in tqdm(range(tot_blocks_col)):
40
+
41
+ di = np.load(FOLDER_OUT + f"/data_partitions/di_{k + 1}.npz")['di']
42
+ if weights.size != 0:
43
+ di = np.transpose(np.transpose(di) * np.sqrt(weights))
44
+
45
+ ind_start = k * dim_col
46
+ ind_end = ind_start + dim_col
47
+
48
+ if (k == tot_blocks_col - 1) and (N_T - dim_col * N_PARTITIONS > 0):
49
+ dim_col = N_T - dim_col * N_PARTITIONS
50
+ ind_end = ind_start + dim_col
51
+
52
+ K[ind_start:ind_end, ind_start:ind_end] = np.dot(di.transpose(), di)
53
+
54
+ block = k + 2
55
+
56
+ while block <= tot_blocks_col:
57
+ dj = np.load(FOLDER_OUT + f"/data_partitions/di_{block}.npz")['di']
58
+ if weights.size != 0:
59
+ dj = np.transpose(np.transpose(dj) * np.sqrt(weights))
60
+
61
+ ind_start_out = (block - 1) * dim_col
62
+ ind_end_out = ind_start_out + dim_col
63
+
64
+ if (block == tot_blocks_col) and (N_T - dim_col * N_PARTITIONS > 0):
65
+ dim_col = N_T - dim_col * N_PARTITIONS
66
+ ind_end_out = ind_start_out + dim_col
67
+ dj = dj[:, :dim_col]
68
+
69
+ K[ind_start:ind_end, ind_start_out:ind_end_out] = np.dot(di.T, dj)
70
+
71
+ K[ind_start_out:ind_end_out, ind_start:ind_end] = K[ind_start:ind_end, ind_start_out:ind_end_out].T
72
+
73
+ block += 1
74
+
75
+ dim_col = math.floor(N_T / N_PARTITIONS)
76
+
77
+ if SAVE_K:
78
+ os.makedirs(FOLDER_OUT + '/correlation_matrix', exist_ok=True)
79
+ np.savez(FOLDER_OUT + "/correlation_matrix/k_matrix", K=K)
80
+
81
+ return K if not MEMORY_SAVING else None