modulo-vki 2.0.5__py3-none-any.whl → 2.0.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
modulo_vki/modulo.py CHANGED
@@ -1,828 +1,828 @@
1
- # Functional ones:
2
- import os
3
- import numpy as np
4
- from scipy import linalg
5
- from sklearn.metrics.pairwise import pairwise_kernels
6
- # To have fancy loading bar
7
- from tqdm import tqdm
8
-
9
- # All the functions from the modulo package
10
- from modulo_vki.core._dft import dft_fit
11
- from modulo_vki.core._dmd_s import dmd_s
12
- from modulo_vki.core._k_matrix import CorrelationMatrix
13
- from modulo_vki.core._mpod_space import spatial_basis_mPOD
14
- from modulo_vki.core._mpod_time import temporal_basis_mPOD
15
- from modulo_vki.core._pod_space import Spatial_basis_POD
16
- from modulo_vki.core._pod_time import Temporal_basis_POD
17
- from modulo_vki.core._spod_s import compute_SPOD_s
18
- from modulo_vki.core._spod_t import compute_SPOD_t
19
- from modulo_vki.utils._utils import switch_svds
20
-
21
- from modulo_vki.utils.read_db import ReadData
22
-
23
- class ModuloVKI:
24
- """
25
- MODULO (MODal mULtiscale pOd) is a software developed at the von Karman Institute to perform Multiscale
26
- Modal Analysis of numerical and experimental data using the Multiscale Proper Orthogonal Decomposition (mPOD).
27
-
28
- Theoretical foundation can be found at:
29
- https://arxiv.org/abs/1804.09646
30
-
31
- Presentation of the MODULO framework available here:
32
- https://arxiv.org/pdf/2004.12123.pdf
33
-
34
- YouTube channel with hands-on tutorials can be found at:
35
- https://youtube.com/playlist?list=PLEJZLD0-4PeKW6Ze984q08bNz28GTntkR
36
-
37
- All the codes so far assume that the dataset is equally spaced both in space (i.e. along a Cartesian grid)
38
- and in time. The extension to non-uniformly sampled data will be included in future releases.
39
-
40
-
41
- """
42
-
43
- def __init__(self, data: np.array,
44
- N_PARTITIONS: int = 1,
45
- FOLDER_OUT='./',
46
- SAVE_K: bool = False,
47
- N_T: int = 100,
48
- N_S: int = 200,
49
- n_Modes: int = 10,
50
- dtype: str = 'float32',
51
- eig_solver: str = 'eigh',
52
- svd_solver: str = 'svd_sklearn_truncated',
53
- weights: np.array = np.array([])):
54
- """
55
- This function initializes the main parameters needed by MODULO.
56
-
57
- Attributes:
58
-
59
- :param data: This is the data matrix to factorize. It is a np.array with
60
- shape ((N_S, N_T)). If the data has not yet been prepared in the form of a np.array,
61
- the method ReadData in MODULO can be used (see ReadData). If the memory saving is active (N_PARTITIONS >1), the folder with partitions should be prepared.
62
- If the memory saving is active, this entry = None. The data matrix is assumed to big to be saved and the
63
-
64
- :param N_PARTITIONS: If memory saving feature is active, this parameter sets the number of partitions
65
- that will be used to store the data matrices during the computations.
66
-
67
- :param FOLDER_OUT: Folder in which the output will be stored.The output includes the matrices Phi, Sigma and Psi (optional) and temporary files
68
- used for some of the calculations (e.g.: for memory saving).
69
-
70
- :param SAVE_K: A flag deciding if the matrix will be stored in the disk (in FOLDER_OUT/correlation_matrix) or not.
71
- Default option is 'False'.
72
-
73
- :param N_T: Number of time steps, must be given when N_PARTITIONS >1
74
-
75
- :param N_S: Number of grid points, must be given when N_PARTITIONS >1
76
-
77
- :param n_Modes: Number of Modes to be computed
78
-
79
- :param dtype: Cast "data" with type dtype
80
-
81
- :param eig_solver: Numerical solver to compute the eigen values
82
-
83
- :param svd_solver: Numerical solver to compute the Single Value Decomposition
84
-
85
- :param weights: weight vector [w_i,....,w_{N_s}] where w_i = area_cell_i/area_grid
86
- Only needed if grid is non-uniform.
87
-
88
-
89
- """
90
-
91
- print("MODULO (MODal mULtiscale pOd) is a software developed at the von Karman Institute to perform "
92
- "data driven modal decomposition of numerical and experimental data. \n")
93
-
94
- if not isinstance(data, np.ndarray) and N_PARTITIONS == 1:
95
- raise TypeError(
96
- "Please check that your database is in an numpy array format. If D=None, then you must have memory saving (N_PARTITIONS>1)")
97
-
98
- # Load the data matrix
99
- if isinstance(data, np.ndarray):
100
- # Number of points in time and space
101
- self.N_T = data.shape[1]
102
- self.N_S = data.shape[0]
103
- # Check the data type
104
- self.D = data.astype(dtype)
105
- else:
106
- self.D = None # D is never saved when N_partitions >1
107
- self.N_S = N_S # so N_S and N_t must be given as parameters of modulo
108
- self.N_T = N_T
109
-
110
- # Load and applied the weights to the D matrix
111
- if weights.size != 0:
112
- if len(weights) == self.N_S:
113
- print("The weights you have input have the size of the columns of D \n"
114
- "MODULO has considered that you have already duplicated the dimensions of the weights "
115
- "to match the dimensions of the D columns \n")
116
- self.weights = weights
117
- elif 2 * len(weights) == self.N_S: # 2D computation only
118
- self.weights = np.concatenate((weights, weights))
119
- print("Modulo assumes you have a 2D domain and has duplicated the weight "
120
- "array to match the size of the D columns \n")
121
- print(weights)
122
- else:
123
- raise AttributeError("Make sure the size of the weight array is twice smaller than the size of D")
124
- # Dstar is used to compute the K matrix
125
- if isinstance(data, np.ndarray):
126
- # Apply the weights only if D exist.
127
- # If not (i.e. N_partitions >1), weights are applied in _k_matrix.py when loading partitions of D
128
- self.Dstar = np.transpose(np.transpose(self.D) * np.sqrt(self.weights))
129
- else:
130
- self.Dstar = None
131
- else:
132
- print("Modulo assumes you have a uniform grid. "
133
- "If not, please give the weights as parameters of MODULO!")
134
- self.weights = weights
135
- self.Dstar = self.D
136
-
137
- if N_PARTITIONS > 1:
138
- self.MEMORY_SAVING = True
139
- else:
140
- self.MEMORY_SAVING = False
141
-
142
- # Assign the number of modes
143
- self.n_Modes = n_Modes
144
- # If particular needs, override choice for svd and eigen solve
145
- self.svd_solver = svd_solver.lower()
146
- self.eig_solver = eig_solver.lower()
147
- possible_svds = ['svd_numpy', 'svd_scipy_sparse', 'svd_sklearn_randomized', 'svd_sklearn_truncated']
148
- possible_eigs = ['svd_sklearn_randomized', 'eigsh', 'eigh']
149
-
150
- if self.svd_solver not in possible_svds:
151
- raise NotImplementedError("The requested SVD solver is not implemented. Please pick one of the following:"
152
- "which belongs to: \n {}".format(possible_svds))
153
-
154
- if self.eig_solver not in possible_eigs:
155
- raise NotImplementedError("The requested EIG solver is not implemented. Please pick one of the following: "
156
- " \n {}".format(possible_eigs))
157
-
158
- # if N_PARTITIONS >= self.N_T:
159
- # raise AttributeError("The number of requested partitions is greater of the total columns (N_T). Please,"
160
- # "try again.")
161
-
162
- self.N_PARTITIONS = N_PARTITIONS
163
-
164
- self.FOLDER_OUT = FOLDER_OUT
165
-
166
- self.SAVE_K = SAVE_K
167
-
168
- if self.MEMORY_SAVING:
169
- os.makedirs(self.FOLDER_OUT, exist_ok=True)
170
-
171
- def _temporal_basis_POD(self,
172
- SAVE_T_POD: bool = False):
173
- """
174
- This method computes the temporal structure for the Proper Orthogonal Decomposition (POD) computation.
175
- The theoretical background of the POD is briefly recalled here:
176
-
177
- https://youtu.be/8fhupzhAR_M
178
-
179
- The diagonalization of K is computed via Singular Value Decomposition (SVD).
180
- A speedup is available if the user is on Linux machine, in which case MODULO
181
- exploits the power of JAX and its Numpy implementation.
182
-
183
- For more on JAX:
184
-
185
- https://github.com/google/jax
186
- https://jax.readthedocs.io/en/latest/jax.numpy.html
187
-
188
- If the user is on a Win machine, Linux OS can be used using
189
- the Windows Subsystem for Linux.
190
-
191
- For more on WSL:
192
- https://docs.microsoft.com/en-us/windows/wsl/install-win10
193
-
194
- :param SAVE_T_POD: bool
195
- Flag deciding if the results will be stored on the disk.
196
- Default value is True, to limit the RAM's usage.
197
- Note that this might cause a minor slowdown for the loading,
198
- but the tradeoff seems worthy.
199
- This attribute is passed to the MODULO class.
200
-
201
-
202
- POD temporal basis are returned if MEMORY_SAVING is not active. Otherwise all the results are saved on disk.
203
-
204
- :return Psi_P: np.array
205
- POD Psis
206
-
207
- :return Sigma_P: np.array
208
- POD Sigmas. If needed, Lambdas can be easily computed recalling that: Sigma_P = np.sqrt(Lambda_P)
209
- """
210
-
211
- if self.MEMORY_SAVING:
212
- K = np.load(self.FOLDER_OUT + "/correlation_matrix/k_matrix.npz")['K']
213
- SAVE_T_POD = True
214
- else:
215
- K = self.K
216
-
217
- Psi_P, Sigma_P = Temporal_basis_POD(K, SAVE_T_POD,
218
- self.FOLDER_OUT, self.n_Modes, self.eig_solver)
219
-
220
- del K
221
- return Psi_P, Sigma_P if not self.MEMORY_SAVING else None
222
-
223
- def _spatial_basis_POD(self, Psi_P, Sigma_P,
224
- SAVE_SPATIAL_POD: bool = True):
225
- """
226
- This method computes the spatial structure for the Proper Orthogonal Decomposition (POD) computation.
227
- The theoretical background of the POD is briefly recalled here:
228
-
229
- https://youtu.be/8fhupzhAR_M
230
-
231
- :param Psi_P: np.array
232
- POD temporal basis
233
- :param Sigma_P: np.array
234
- POD Sigmas
235
- :param SAVE_SPATIAL_POD: bool
236
- Flag deciding if the results will be stored on the disk.
237
- Default value is True, to limit the RAM's usage.
238
- Note that this might cause a minor slowdown for the loading,
239
- but the tradeoff seems worthy.
240
- This attribute is passed to the MODULO class.
241
-
242
- :return Phi_P: np.array
243
- POD Phis
244
-
245
- """
246
-
247
- self.SAVE_SPATIAL_POD = SAVE_SPATIAL_POD
248
-
249
- if self.MEMORY_SAVING:
250
- '''Loading temporal basis from disk. They're already in memory otherwise.'''
251
- Psi_P = np.load(self.FOLDER_OUT + 'POD/temporal_basis.npz')['Psis']
252
- Sigma_P = np.load(self.FOLDER_OUT + 'POD/temporal_basis.npz')['Sigmas']
253
-
254
- Phi_P = Spatial_basis_POD(self.D, N_T=self.N_T, PSI_P=Psi_P, Sigma_P=Sigma_P,
255
- MEMORY_SAVING=self.MEMORY_SAVING, FOLDER_OUT=self.FOLDER_OUT,
256
- N_PARTITIONS=self.N_PARTITIONS, SAVE_SPATIAL_POD=SAVE_SPATIAL_POD)
257
-
258
- return Phi_P if not self.MEMORY_SAVING else None
259
-
260
- def _temporal_basis_mPOD(self, K, Nf, Ex, F_V, Keep, boundaries, MODE, dt, K_S=False):
261
- """
262
- This function computes the temporal structures of each scale in the mPOD, as in step 4 of the algorithm
263
- ref: Multi-Scale Proper Orthogonal Decomposition of Complex Fluid Flows - M. A. Mendez et al.
264
-
265
- :param K: np.array
266
- Temporal correlation matrix
267
- :param Nf: np.array
268
- Order of the FIR filters that are used to isolate each of the scales
269
- :param Ex: int
270
- Extension at the boundaries of K to impose the boundary conditions (see boundaries)
271
- It must be at least as Nf.
272
- :param F_V: np.array
273
- Frequency splitting vector, containing the frequencies of each scale (see article).
274
- If the time axis is in seconds, these frequencies are in Hz.
275
- :param Keep: np.array
276
- Scale keep
277
- :param boundaries: str -> {'nearest', 'reflect', 'wrap' or 'extrap'}
278
- Define the boundary conditions for the filtering process, in order to avoid edge effects.
279
- The available boundary conditions are the classic ones implemented for image processing:
280
- nearest', 'reflect', 'wrap' or 'extrap'. See also https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html
281
- :param MODE: str -> {‘reduced’, ‘complete’, ‘r’, ‘raw’}
282
- A QR factorization is used to enforce the orthonormality of the mPOD basis, to compensate
283
- for the non-ideal frequency response of the filters.
284
- The option MODE from np.linalg.qr carries out this operation.
285
-
286
- :return PSI_M: np.array
287
- Multiscale POD temporal basis
288
-
289
- """
290
-
291
- if self.MEMORY_SAVING:
292
- K = np.load(self.FOLDER_OUT + "/correlation_matrix/k_matrix.npz")['K']
293
-
294
- PSI_M = temporal_basis_mPOD(K=K, Nf=Nf, Ex=Ex, F_V=F_V, Keep=Keep, boundaries=boundaries,
295
- MODE=MODE, dt=dt, FOLDER_OUT=self.FOLDER_OUT,
296
- n_Modes=self.n_Modes, K_S=False,
297
- MEMORY_SAVING=self.MEMORY_SAVING, SAT=self.SAT, eig_solver=self.eig_solver)
298
-
299
- return PSI_M if not self.MEMORY_SAVING else None
300
-
301
- def _spatial_basis_mPOD(self, D, PSI_M, SAVE):
302
- """
303
- This function implements the last step of the mPOD algorithm:
304
- completing the decomposition. Here we project from psis, to get phis and sigmas
305
-
306
- :param D: np.array
307
- data matrix
308
- :param PSI_M: np.array
309
- temporal basis for the mPOD. Remember that it is not possible to impose both basis matrices
310
- phis and psis: given one of the two, the other is univocally determined.
311
- :param SAVE: bool
312
- if True, MODULO saves the results on disk.
313
-
314
- :return Phi_M: np.array
315
- mPOD Phis (Matrix of spatial structures)
316
- :return Psi_M: np.array
317
- mPOD Psis (Matrix of temporal structures)
318
- :return Sigma_M: np.array
319
- mPOD Sigmas (vector of amplitudes, i.e. the diagonal of Sigma_M)
320
-
321
- """
322
-
323
- Phi_M, Psi_M, Sigma_M = spatial_basis_mPOD(D, PSI_M, N_T=self.N_T, N_PARTITIONS=self.N_PARTITIONS,
324
- N_S=self.N_S, MEMORY_SAVING=self.MEMORY_SAVING,
325
- FOLDER_OUT=self.FOLDER_OUT,
326
- SAVE=SAVE)
327
-
328
- return Phi_M, Psi_M, Sigma_M
329
-
330
- def compute_mPOD(self, Nf, Ex, F_V, Keep, SAT, boundaries, MODE, dt, SAVE=False):
331
- """
332
- This function computes the temporal structures of each scale in the mPOD, as in step 4 of the algorithm
333
- ref: Multi-Scale Proper Orthogonal Decomposition of Complex Fluid Flows - M. A. Mendez et al.
334
-
335
- :param K: np.array
336
- Temporal correlation matrix
337
-
338
- :param Nf: np.array
339
- Order of the FIR filters that are used to isolate each of the scales
340
-
341
- :param Ex: int
342
- Extension at the boundaries of K to impose the boundary conditions (see boundaries)
343
- It must be at least as Nf.
344
-
345
- :param F_V: np.array
346
- Frequency splitting vector, containing the frequencies of each scale (see article).
347
- If the time axis is in seconds, these frequencies are in Hz.
348
-
349
- :param Keep: np.array
350
- Scale keep
351
-
352
- :param boundaries: str -> {'nearest', 'reflect', 'wrap' or 'extrap'}
353
- Define the boundary conditions for the filtering process, in order to avoid edge effects.
354
- The available boundary conditions are the classic ones implemented for image processing:
355
- nearest', 'reflect', 'wrap' or 'extrap'. See also https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html
356
-
357
- :param MODE: str -> {‘reduced’, ‘complete’, ‘r’, ‘raw’}
358
- A QR factorization is used to enforce the orthonormality of the mPOD basis, to compensate
359
- for the non-ideal frequency response of the filters.
360
- The option MODE from np.linalg.qr carries out this operation.
361
-
362
- :param SAT: Maximum number of modes per scale.
363
- Only used for mPOD (max number of modes per scale)
364
-
365
- :param dt: float
366
- temporal step
367
-
368
- :return Phi_M: np.array
369
- mPOD Phis (Matrix of spatial structures)
370
- :return Psi_M: np.array
371
- mPOD Psis (Matrix of temporal structures)
372
- :return Sigma_M: np.array
373
- mPOD Sigmas (vector of amplitudes, i.e. the diagonal of Sigma_M
374
-
375
- """
376
-
377
- print('Computing correlation matrix D matrix...')
378
- self.K = CorrelationMatrix(self.N_T, self.N_PARTITIONS,
379
- self.MEMORY_SAVING,
380
- self.FOLDER_OUT, self.SAVE_K, D=self.Dstar)
381
-
382
- if self.MEMORY_SAVING:
383
- self.K = np.load(self.FOLDER_OUT + '/correlation_matrix/k_matrix.npz')['K']
384
-
385
- print("Computing Temporal Basis...")
386
-
387
- PSI_M = temporal_basis_mPOD(K=self.K, Nf=Nf, Ex=Ex, F_V=F_V, Keep=Keep, boundaries=boundaries,
388
- MODE=MODE, dt=dt, FOLDER_OUT=self.FOLDER_OUT,
389
- n_Modes=self.n_Modes, MEMORY_SAVING=self.MEMORY_SAVING, SAT=SAT,
390
- eig_solver=self.eig_solver)
391
-
392
- print("Done.")
393
-
394
- if hasattr(self, 'D'): # if self.D is available:
395
- print('Computing Phi from D...')
396
- Phi_M, Psi_M, Sigma_M = spatial_basis_mPOD(self.D, PSI_M, N_T=self.N_T, N_PARTITIONS=self.N_PARTITIONS,
397
- N_S=self.N_S, MEMORY_SAVING=self.MEMORY_SAVING,
398
- FOLDER_OUT=self.FOLDER_OUT,
399
- SAVE=SAVE)
400
-
401
- else: # if not, the memory saving is on and D will not be used. We pass a dummy D
402
- print('Computing Phi from partitions...')
403
- Phi_M, Psi_M, Sigma_M = spatial_basis_mPOD(np.array([1]), PSI_M, N_T=self.N_T,
404
- N_PARTITIONS=self.N_PARTITIONS,
405
- N_S=self.N_S, MEMORY_SAVING=self.MEMORY_SAVING,
406
- FOLDER_OUT=self.FOLDER_OUT,
407
- SAVE=SAVE)
408
-
409
- print("Done.")
410
-
411
- return Phi_M, Psi_M, Sigma_M
412
-
413
- def compute_POD_K(self, SAVE_T_POD: bool = False):
414
- """
415
- This method computes the Proper Orthogonal Decomposition (POD) of a dataset
416
- using the snapshot approach, i.e. working on the temporal correlation matrix.
417
- The eig solver for K is defined in 'eig_solver'
418
- The theoretical background of the POD is briefly recalled here:
419
-
420
- https://youtu.be/8fhupzhAR_M
421
-
422
- :return Psi_P: np.array
423
- POD Psis
424
-
425
- :return Sigma_P: np.array
426
- POD Sigmas. If needed, Lambdas can be easily computed recalling that: Sigma_P = np.sqrt(Lambda_P)
427
-
428
- :return Phi_P: np.array
429
- POD Phis
430
- """
431
-
432
- print('Computing correlation matrix...')
433
- self.K = CorrelationMatrix(self.N_T, self.N_PARTITIONS,
434
- self.MEMORY_SAVING,
435
- self.FOLDER_OUT, self.SAVE_K, D=self.Dstar, weights=self.weights)
436
-
437
- if self.MEMORY_SAVING:
438
- self.K = np.load(self.FOLDER_OUT + '/correlation_matrix/k_matrix.npz')['K']
439
-
440
- print("Computing Temporal Basis...")
441
- Psi_P, Sigma_P = Temporal_basis_POD(self.K, SAVE_T_POD,
442
- self.FOLDER_OUT, self.n_Modes, eig_solver=self.eig_solver)
443
- print("Done.")
444
- print("Computing Spatial Basis...")
445
-
446
- if self.MEMORY_SAVING: # if self.D is available:
447
- print('Computing Phi from partitions...')
448
- Phi_P = Spatial_basis_POD(np.array([1]), N_T=self.N_T,
449
- PSI_P=Psi_P,
450
- Sigma_P=Sigma_P,
451
- MEMORY_SAVING=self.MEMORY_SAVING,
452
- FOLDER_OUT=self.FOLDER_OUT,
453
- N_PARTITIONS=self.N_PARTITIONS)
454
-
455
- else: # if not, the memory saving is on and D will not be used. We pass a dummy D
456
- print('Computing Phi from D...')
457
- Phi_P = Spatial_basis_POD(self.D, N_T=self.N_T,
458
- PSI_P=Psi_P,
459
- Sigma_P=Sigma_P,
460
- MEMORY_SAVING=self.MEMORY_SAVING,
461
- FOLDER_OUT=self.FOLDER_OUT,
462
- N_PARTITIONS=self.N_PARTITIONS)
463
- print("Done.")
464
-
465
- return Phi_P, Psi_P, Sigma_P
466
-
467
- def compute_POD_svd(self, SAVE_T_POD: bool = False):
468
- """
469
- This method computes the Proper Orthogonal Decomposition (POD) of a dataset
470
- using the SVD decomposition. The svd solver is defined by 'svd_solver'.
471
- Note that in this case, the memory saving option is of no help, since
472
- the SVD must be performed over the entire dataset.
473
-
474
- https://youtu.be/8fhupzhAR_M
475
-
476
- :return Psi_P: np.array
477
- POD Psis
478
-
479
- :return Sigma_P: np.array
480
- POD Sigmas. If needed, Lambdas can be easily computed recalling that: Sigma_P = np.sqrt(Lambda_P)
481
-
482
- :return Phi_P: np.array
483
- POD Phis
484
- """
485
- # If Memory saving is active, we must load back the data.
486
- # This process is memory demanding. Different SVD solver will handle this differently.
487
-
488
- if self.MEMORY_SAVING:
489
- if self.N_T % self.N_PARTITIONS != 0:
490
- tot_blocks_col = self.N_PARTITIONS + 1
491
- else:
492
- tot_blocks_col = self.N_PARTITIONS
493
-
494
- # Prepare the D matrix again
495
- D = np.zeros((self.N_S, self.N_T))
496
- R1 = 0
497
-
498
- # print(' \n Reloading D from tmp...')
499
- for k in tqdm(range(tot_blocks_col)):
500
- di = np.load(self.FOLDER_OUT + f"/data_partitions/di_{k + 1}.npz")['di']
501
- R2 = R1 + np.shape(di)[1]
502
- D[:, R1:R2] = di
503
- R1 = R2
504
-
505
- # Now that we have D back, we can proceed with the SVD approach
506
- Phi_P, Psi_P, Sigma_P = switch_svds(D, self.n_Modes, self.svd_solver)
507
-
508
-
509
- else: # self.MEMORY_SAVING:
510
- Phi_P, Psi_P, Sigma_P = switch_svds(self.D, self.n_Modes, self.svd_solver)
511
-
512
- return Phi_P, Psi_P, Sigma_P
513
-
514
- def compute_DMD_PIP(self, SAVE_T_DMD: bool = True, F_S=1):
515
- """
516
- This method computes the Dynamic Mode Decomposition of the data
517
- using the algorithm in https://arxiv.org/abs/1312.0041, which is basically the same as
518
- the PIP algorithm proposed in https://www.sciencedirect.com/science/article/abs/pii/0167278996001248
519
- See v1 of this paper https://arxiv.org/abs/2001.01971 for more details (yes, reviewers did ask to omit this detail in v2).
520
-
521
- :return Phi_D: np.array
522
- DMD Phis. As for the DFT, these are complex.
523
-
524
- :return Lambda_D: np.array
525
- DMD Eigenvalues (of the reduced propagator). These are complex.
526
-
527
- :return freqs: np.array
528
- Frequencies (in Hz, associated to the DMD modes)
529
-
530
- :return a0s: np.array
531
- Initial Coefficients of the Modes
532
-
533
- """
534
-
535
- # If Memory saving is active, we must load back the data
536
- if self.MEMORY_SAVING:
537
- if self.N_T % self.N_PARTITIONS != 0:
538
- tot_blocks_col = self.N_PARTITIONS + 1
539
- else:
540
- tot_blocks_col = self.N_PARTITIONS
541
-
542
- # Prepare the D matrix again
543
- D = np.zeros((self.N_S, self.N_T))
544
- R1 = 0
545
-
546
- # print(' \n Reloading D from tmp...')
547
- for k in tqdm(range(tot_blocks_col)):
548
- di = np.load(self.FOLDER_OUT + f"/data_partitions/di_{k + 1}.npz")['di']
549
- R2 = R1 + np.shape(di)[1]
550
- D[:, R1:R2] = di
551
- R1 = R2
552
-
553
- # Compute the DMD
554
- Phi_D, Lambda, freqs, a0s = dmd_s(D[:, 0:self.N_T - 1],
555
- D[:, 1:self.N_T], self.n_Modes, F_S, svd_solver=self.svd_solver)
556
-
557
- else:
558
- Phi_D, Lambda, freqs, a0s = dmd_s(self.D[:, 0:self.N_T - 1],
559
- self.D[:, 1:self.N_T], self.n_Modes, F_S, SAVE_T_DMD=SAVE_T_DMD,
560
- svd_solver=self.svd_solver, FOLDER_OUT=self.FOLDER_OUT)
561
-
562
- return Phi_D, Lambda, freqs, a0s
563
-
564
- def compute_DFT(self, F_S, SAVE_DFT=False):
565
- """
566
- This method computes the Discrete Fourier Transform of your data.
567
-
568
- Check out this tutorial: https://www.youtube.com/watch?v=8fhupzhAR_M&list=PLEJZLD0-4PeKW6Ze984q08bNz28GTntkR&index=2
569
-
570
- :param F_S: float,
571
- Sampling Frequency [Hz]
572
- :param SAVE_DFT: bool,
573
- If True, MODULO will save the output in self.FOLDER OUT/MODULO_tmp
574
-
575
- :return: Sorted_Freqs: np.array,
576
- Sorted Frequencies
577
- :return Phi_F: np.array,
578
- DFT Phis
579
- :return Sigma_F: np.array,
580
- DFT Sigmas
581
- """
582
- if self.D is None:
583
- D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
584
- SAVE_DFT = True
585
- Sorted_Freqs, Phi_F, SIGMA_F = dft_fit(self.N_T, F_S, D, self.FOLDER_OUT, SAVE_DFT=SAVE_DFT)
586
-
587
- else:
588
- Sorted_Freqs, Phi_F, SIGMA_F = dft_fit(self.N_T, F_S, self.D, self.FOLDER_OUT, SAVE_DFT=SAVE_DFT)
589
-
590
- return Sorted_Freqs, Phi_F, SIGMA_F
591
-
592
- def compute_SPOD_t(self, F_S, L_B=500, O_B=250, n_Modes=10, SAVE_SPOD=True):
593
- """
594
- This method computes the Spectral POD of your data. This is the one by Towne et al
595
- (https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/spectral-proper-orthogonal-decomposition-and-its-relationship-to-dynamic-mode-decomposition-and-resolvent-analysis/EC2A6DF76490A0B9EB208CC2CA037717)
596
-
597
- :param F_S: float,
598
- Sampling Frequency [Hz]
599
- :param L_B: float,
600
- lenght of the chunks
601
- :param O_B: float,
602
- Overlapping between blocks in the chunk
603
- :param n_Modes: float,
604
- number of modes to be computed for each frequency
605
- :param SAVE_SPOD: bool,
606
- If True, MODULO will save the output in self.FOLDER OUT/MODULO_tmp
607
- :return Psi_P_hat: np.array
608
- Spectra of the SPOD Modes
609
- :return Sigma_P: np.array
610
- Amplitudes of the SPOD Modes.
611
- :return Phi_P: np.array
612
- SPOD Phis
613
- :return freq: float
614
- frequency bins for the Spectral POD
615
-
616
-
617
- """
618
- if self.D is None:
619
- D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
620
- Phi_SP, Sigma_SP, Freqs_Pos = compute_SPOD_t(D, F_S, L_B=L_B, O_B=O_B,
621
- n_Modes=n_Modes, SAVE_SPOD=SAVE_SPOD,
622
- FOLDER_OUT=self.FOLDER_OUT, possible_svds=self.svd_solver)
623
- else:
624
- Phi_SP, Sigma_SP, Freqs_Pos = compute_SPOD_t(self.D, F_S, L_B=L_B, O_B=O_B,
625
- n_Modes=n_Modes, SAVE_SPOD=SAVE_SPOD,
626
- FOLDER_OUT=self.FOLDER_OUT, possible_svds=self.svd_solver)
627
-
628
- return Phi_SP, Sigma_SP, Freqs_Pos
629
-
630
- # New Decomposition: SPOD f
631
-
632
- def compute_SPOD_s(self, F_S, N_O=100, f_c=0.3, n_Modes=10, SAVE_SPOD=True):
633
- """
634
- This method computes the Spectral POD of your data.
635
- This is the one by Sieber
636
- et al (https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/spectral-proper-orthogonal-decomposition/DCD8A6EDEFD56F5A9715DBAD38BD461A)
637
-
638
- :param F_S: float,
639
- Sampling Frequency [Hz]
640
- :param N_o: float,
641
- Semi-Order of the diagonal filter.
642
- Note that the filter order will be 2 N_o +1 (to make sure it is odd)
643
- :param f_c: float,
644
- cut-off frequency of the diagonal filter
645
- :param n_Modes: float,
646
- number of modes to be computed
647
- :param SAVE_SPOD: bool,
648
- If True, MODULO will save the output in self.FOLDER OUT/MODULO_tmp
649
- :return Psi_P: np.array
650
- SPOD Psis
651
- :return Sigma_P: np.array
652
- SPOD Sigmas.
653
- :return Phi_P: np.array
654
- SPOD Phis
655
- """
656
-
657
- if self.D is None:
658
- D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
659
-
660
- self.K = CorrelationMatrix(self.N_T, self.N_PARTITIONS, self.MEMORY_SAVING,
661
- self.FOLDER_OUT, self.SAVE_K, D=D)
662
-
663
- Phi_sP, Psi_sP, Sigma_sP = compute_SPOD_s(D, self.K, F_S, self.N_S, self.N_T, N_O, f_c,
664
- n_Modes, SAVE_SPOD, self.FOLDER_OUT, self.MEMORY_SAVING,
665
- self.N_PARTITIONS)
666
-
667
- else:
668
- self.K = CorrelationMatrix(self.N_T, self.N_PARTITIONS, self.MEMORY_SAVING,
669
- self.FOLDER_OUT, self.SAVE_K, D=self.D)
670
-
671
- Phi_sP, Psi_sP, Sigma_sP = compute_SPOD_s(self.D, self.K, F_S, self.N_S, self.N_T, N_O, f_c,
672
- n_Modes, SAVE_SPOD, self.FOLDER_OUT, self.MEMORY_SAVING,
673
- self.N_PARTITIONS)
674
-
675
- # if self.D is None:
676
- # D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
677
- # SAVE_SPOD = True
678
- # # TODO : Lorenzo check this stuff
679
- # else:
680
- # D = self.D
681
- #
682
- # n_s = self.N_S # Repeat variable for debugging compatibility
683
- # n_t = self.N_T
684
- #
685
- # print('Computing Correlation Matrix \n')
686
- #
687
- # # The first step is the same as the POD: we compute the correlation matrix
688
- # K = CorrelationMatrix(self.N_T, self.N_PARTITIONS, self.MEMORY_SAVING,
689
- # self.FOLDER_OUT, D=self.D)
690
- #
691
- # # 1. Initialize the extended
692
- # K_e = np.zeros((n_t + 2 * N_o, n_t + 2 * N_o))
693
- # # From which we clearly know that:
694
- # K_e[N_o:n_t + N_o, N_o:n_t + N_o] = K
695
- #
696
- # # 2. We fill the edges ( a bit of repetition but ok.. )
697
- #
698
- # # Row-wise, Upper part
699
- # for i in range(0, N_o):
700
- # K_e[i, i:i + n_t] = K[0, :]
701
- #
702
- # # Row-wise, bottom part
703
- # for i in range(N_o + n_t, n_t + 2 * N_o):
704
- # K_e[i, i - n_t + 1:i + 1] = K[-1, :]
705
- #
706
- # # Column-wise, left part
707
- # for j in range(0, N_o):
708
- # K_e[j:j + n_t, j] = K[:, 0]
709
- #
710
- # # Column-wise, right part
711
- # for j in range(N_o + n_t, 2 * N_o + n_t):
712
- # K_e[j - n_t + 1:j + 1, j] = K[:, -1]
713
- #
714
- # # Now you create the diagonal kernel in 2D
715
- # h_f = firwin(N_o, f_c) # Kernel in 1D
716
- # # This is also something that must be put in a separate file:
717
- # # To cancel the phase lag we make this non-causal with a symmetric
718
- # # shift, hence with zero padding as equal as possible on both sides
719
- # n_padd_l = round((n_t - N_o) / 2);
720
- # n_padd_r = n_t - N_o - n_padd_l
721
- #
722
- # h_f_pad = np.pad(h_f, (n_padd_l, n_padd_r)) # symmetrically padded kernel in 1D
723
- # h_f_2 = np.diag(h_f_pad)
724
- #
725
- # # Finally the filtered K is just
726
- # K_F = signal.fftconvolve(K_e, h_f_2, mode='same')[N_o:n_t + N_o, N_o:n_t + N_o]
727
- # # plt.plot(np.diag(K),'b--'); plt.plot(np.diag(K_F_e),'r')
728
- #
729
- # # From now on it's just POD:
730
- # Psi_P, Sigma_P = Temporal_basis_POD(K_F, SAVE_SPOD,
731
- # self.FOLDER_OUT, self.n_Modes)
732
- #
733
- # Phi_P = Spatial_basis_POD(self.D, N_T=self.N_T, PSI_P=Psi_P, Sigma_P=Sigma_P,
734
- # MEMORY_SAVING=self.MEMORY_SAVING, FOLDER_OUT=self.FOLDER_OUT,
735
- # N_PARTITIONS=self.N_PARTITIONS)
736
-
737
- return Phi_sP, Psi_sP, Sigma_sP
738
-
739
- def compute_kPOD(self, M_DIST=[1, 10], k_m=0.1, cent=True,
740
- n_Modes=10, alpha=1e-6, metric='rbf', K_out=False):
741
- """
742
- This function implements the kernel PCA as described in the VKI course https://www.vki.ac.be/index.php/events-ls/events/eventdetail/552/-/online-on-site-hands-on-machine-learning-for-fluid-dynamics-2023
743
-
744
- The computation of the kernel function is carried out as in https://arxiv.org/pdf/2208.07746.pdf.
745
-
746
-
747
- :param M_DIST: array,
748
- position of the two snapshots that will be considered to
749
- estimate the minimal k. They should be the most different ones.
750
- :param k_m: float,
751
- minimum value for the kernelized correlation
752
- :param alpha: float
753
- regularization for K_zeta
754
- :param cent: bool,
755
- if True, the matrix K is centered. Else it is not
756
- :param n_Modes: float,
757
- number of modes to be computed
758
- :param metric: string,
759
- This identifies the metric for the kernel matrix. It is a wrapper to 'pairwise_kernels' from sklearn.metrics.pairwise
760
- Note that different metrics would need different set of parameters. For the moment, only rbf was tested; use any other option at your peril !
761
- :param K_out: bool,
762
- If true, the matrix K is also exported as a fourth output.
763
- :return Psi_xi: np.array
764
- kPOD's Psis
765
- :return Sigma_xi: np.array
766
- kPOD's Sigmas.
767
- :return Phi_xi: np.array
768
- kPOD's Phis
769
- :return K_zeta: np.array
770
- Kernel Function from which the decomposition is computed.
771
- (exported only if K_out=True)
772
-
773
-
774
- """
775
- if self.D is None:
776
- D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
777
- else:
778
- D = self.D
779
-
780
- # Compute Eucledean distances
781
- i, j = M_DIST;
782
- n_s, n_t = np.shape(D)
783
- M_ij = np.linalg.norm(D[:, i] - D[:, j]) ** 2
784
-
785
- gamma = -np.log(k_m) / M_ij
786
-
787
- K_zeta = pairwise_kernels(D.T, metric='rbf', gamma=gamma)
788
- print('Kernel K ready')
789
-
790
- # Compute the Kernel Matrix
791
- n_t = np.shape(D)[1]
792
- # Center the Kernel Matrix (if cent is True):
793
- if cent:
794
- H = np.eye(n_t) - 1 / n_t * np.ones_like(K_zeta)
795
- K_zeta = H @ K_zeta @ H.T
796
- print('K_zeta centered')
797
- # Diagonalize and Sort
798
- lambdas, Psi_xi = linalg.eigh(K_zeta + alpha * np.eye(n_t), subset_by_index=[n_t - n_Modes, n_t - 1])
799
- lambdas, Psi_xi = lambdas[::-1], Psi_xi[:, ::-1];
800
- Sigma_xi = np.sqrt(lambdas);
801
- print('K_zeta diagonalized')
802
- # Encode
803
- # Z_xi=np.diag(Sigma_xi)@Psi_xi.T
804
- # We compute the spatial structures as projections of the data
805
- # onto the Psi_xi!
806
- R = Psi_xi.shape[1]
807
- PHI_xi_SIGMA_xi = np.dot(D, (Psi_xi))
808
- # Initialize the output
809
- PHI_xi = np.zeros((n_s, R))
810
- SIGMA_xi = np.zeros((R))
811
-
812
- for i in tqdm(range(0, R)):
813
- # Assign the norm as amplitude
814
- SIGMA_xi[i] = np.linalg.norm(PHI_xi_SIGMA_xi[:, i])
815
- # Normalize the columns of C to get spatial modes
816
- PHI_xi[:, i] = PHI_xi_SIGMA_xi[:, i] / SIGMA_xi[i]
817
-
818
- Indices = np.flipud(np.argsort(SIGMA_xi)) # find indices for sorting in decreasing order
819
- Sorted_Sigmas = SIGMA_xi[Indices] # Sort all the sigmas
820
- Phi_xi = PHI_xi[:, Indices] # Sorted Spatial Structures Matrix
821
- Psi_xi = Psi_xi[:, Indices] # Sorted Temporal Structures Matrix
822
- Sigma_xi = Sorted_Sigmas # Sorted Amplitude Matrix
823
- print('Phi_xi computed')
824
-
825
- if K_out:
826
- return Phi_xi, Psi_xi, Sigma_xi, K_zeta
827
- else:
828
- return Phi_xi, Psi_xi, Sigma_xi
1
+ # Functional ones:
2
+ import os
3
+ import numpy as np
4
+ from scipy import linalg
5
+ from sklearn.metrics.pairwise import pairwise_kernels
6
+ # To have fancy loading bar
7
+ from tqdm import tqdm
8
+
9
+ # All the functions from the modulo package
10
+ from modulo_vki.core._dft import dft_fit
11
+ from modulo_vki.core._dmd_s import dmd_s
12
+ from modulo_vki.core._k_matrix import CorrelationMatrix
13
+ from modulo_vki.core._mpod_space import spatial_basis_mPOD
14
+ from modulo_vki.core._mpod_time import temporal_basis_mPOD
15
+ from modulo_vki.core._pod_space import Spatial_basis_POD
16
+ from modulo_vki.core._pod_time import Temporal_basis_POD
17
+ from modulo_vki.core._spod_s import compute_SPOD_s
18
+ from modulo_vki.core._spod_t import compute_SPOD_t
19
+ from modulo_vki.utils._utils import switch_svds
20
+
21
+ from modulo_vki.utils.read_db import ReadData
22
+
23
+ class ModuloVKI:
24
+ """
25
+ MODULO (MODal mULtiscale pOd) is a software developed at the von Karman Institute to perform Multiscale
26
+ Modal Analysis of numerical and experimental data using the Multiscale Proper Orthogonal Decomposition (mPOD).
27
+
28
+ Theoretical foundation can be found at:
29
+ https://arxiv.org/abs/1804.09646
30
+
31
+ Presentation of the MODULO framework available here:
32
+ https://arxiv.org/pdf/2004.12123.pdf
33
+
34
+ YouTube channel with hands-on tutorials can be found at:
35
+ https://youtube.com/playlist?list=PLEJZLD0-4PeKW6Ze984q08bNz28GTntkR
36
+
37
+ All the codes so far assume that the dataset is equally spaced both in space (i.e. along a Cartesian grid)
38
+ and in time. The extension to non-uniformly sampled data will be included in future releases.
39
+
40
+
41
+ """
42
+
43
+ def __init__(self, data: np.array,
44
+ N_PARTITIONS: int = 1,
45
+ FOLDER_OUT='./',
46
+ SAVE_K: bool = False,
47
+ N_T: int = 100,
48
+ N_S: int = 200,
49
+ n_Modes: int = 10,
50
+ dtype: str = 'float32',
51
+ eig_solver: str = 'eigh',
52
+ svd_solver: str = 'svd_sklearn_truncated',
53
+ weights: np.array = np.array([])):
54
+ """
55
+ This function initializes the main parameters needed by MODULO.
56
+
57
+ Attributes:
58
+
59
+ :param data: This is the data matrix to factorize. It is a np.array with
60
+ shape ((N_S, N_T)). If the data has not yet been prepared in the form of a np.array,
61
+ the method ReadData in MODULO can be used (see ReadData). If the memory saving is active (N_PARTITIONS >1), the folder with partitions should be prepared.
62
+ If the memory saving is active, this entry = None. The data matrix is assumed to big to be saved and the
63
+
64
+ :param N_PARTITIONS: If memory saving feature is active, this parameter sets the number of partitions
65
+ that will be used to store the data matrices during the computations.
66
+
67
+ :param FOLDER_OUT: Folder in which the output will be stored.The output includes the matrices Phi, Sigma and Psi (optional) and temporary files
68
+ used for some of the calculations (e.g.: for memory saving).
69
+
70
+ :param SAVE_K: A flag deciding if the matrix will be stored in the disk (in FOLDER_OUT/correlation_matrix) or not.
71
+ Default option is 'False'.
72
+
73
+ :param N_T: Number of time steps, must be given when N_PARTITIONS >1
74
+
75
+ :param N_S: Number of grid points, must be given when N_PARTITIONS >1
76
+
77
+ :param n_Modes: Number of Modes to be computed
78
+
79
+ :param dtype: Cast "data" with type dtype
80
+
81
+ :param eig_solver: Numerical solver to compute the eigen values
82
+
83
+ :param svd_solver: Numerical solver to compute the Single Value Decomposition
84
+
85
+ :param weights: weight vector [w_i,....,w_{N_s}] where w_i = area_cell_i/area_grid
86
+ Only needed if grid is non-uniform.
87
+
88
+
89
+ """
90
+
91
+ print("MODULO (MODal mULtiscale pOd) is a software developed at the von Karman Institute to perform "
92
+ "data driven modal decomposition of numerical and experimental data. \n")
93
+
94
+ if not isinstance(data, np.ndarray) and N_PARTITIONS == 1:
95
+ raise TypeError(
96
+ "Please check that your database is in an numpy array format. If D=None, then you must have memory saving (N_PARTITIONS>1)")
97
+
98
+ # Load the data matrix
99
+ if isinstance(data, np.ndarray):
100
+ # Number of points in time and space
101
+ self.N_T = data.shape[1]
102
+ self.N_S = data.shape[0]
103
+ # Check the data type
104
+ self.D = data.astype(dtype)
105
+ else:
106
+ self.D = None # D is never saved when N_partitions >1
107
+ self.N_S = N_S # so N_S and N_t must be given as parameters of modulo
108
+ self.N_T = N_T
109
+
110
+ # Load and applied the weights to the D matrix
111
+ if weights.size != 0:
112
+ if len(weights) == self.N_S:
113
+ print("The weights you have input have the size of the columns of D \n"
114
+ "MODULO has considered that you have already duplicated the dimensions of the weights "
115
+ "to match the dimensions of the D columns \n")
116
+ self.weights = weights
117
+ elif 2 * len(weights) == self.N_S: # 2D computation only
118
+ self.weights = np.concatenate((weights, weights))
119
+ print("Modulo assumes you have a 2D domain and has duplicated the weight "
120
+ "array to match the size of the D columns \n")
121
+ print(weights)
122
+ else:
123
+ raise AttributeError("Make sure the size of the weight array is twice smaller than the size of D")
124
+ # Dstar is used to compute the K matrix
125
+ if isinstance(data, np.ndarray):
126
+ # Apply the weights only if D exist.
127
+ # If not (i.e. N_partitions >1), weights are applied in _k_matrix.py when loading partitions of D
128
+ self.Dstar = np.transpose(np.transpose(self.D) * np.sqrt(self.weights))
129
+ else:
130
+ self.Dstar = None
131
+ else:
132
+ print("Modulo assumes you have a uniform grid. "
133
+ "If not, please give the weights as parameters of MODULO!")
134
+ self.weights = weights
135
+ self.Dstar = self.D
136
+
137
+ if N_PARTITIONS > 1:
138
+ self.MEMORY_SAVING = True
139
+ else:
140
+ self.MEMORY_SAVING = False
141
+
142
+ # Assign the number of modes
143
+ self.n_Modes = n_Modes
144
+ # If particular needs, override choice for svd and eigen solve
145
+ self.svd_solver = svd_solver.lower()
146
+ self.eig_solver = eig_solver.lower()
147
+ possible_svds = ['svd_numpy', 'svd_scipy_sparse', 'svd_sklearn_randomized', 'svd_sklearn_truncated']
148
+ possible_eigs = ['svd_sklearn_randomized', 'eigsh', 'eigh']
149
+
150
+ if self.svd_solver not in possible_svds:
151
+ raise NotImplementedError("The requested SVD solver is not implemented. Please pick one of the following:"
152
+ "which belongs to: \n {}".format(possible_svds))
153
+
154
+ if self.eig_solver not in possible_eigs:
155
+ raise NotImplementedError("The requested EIG solver is not implemented. Please pick one of the following: "
156
+ " \n {}".format(possible_eigs))
157
+
158
+ # if N_PARTITIONS >= self.N_T:
159
+ # raise AttributeError("The number of requested partitions is greater of the total columns (N_T). Please,"
160
+ # "try again.")
161
+
162
+ self.N_PARTITIONS = N_PARTITIONS
163
+
164
+ self.FOLDER_OUT = FOLDER_OUT
165
+
166
+ self.SAVE_K = SAVE_K
167
+
168
+ if self.MEMORY_SAVING:
169
+ os.makedirs(self.FOLDER_OUT, exist_ok=True)
170
+
171
+ def _temporal_basis_POD(self,
172
+ SAVE_T_POD: bool = False):
173
+ """
174
+ This method computes the temporal structure for the Proper Orthogonal Decomposition (POD) computation.
175
+ The theoretical background of the POD is briefly recalled here:
176
+
177
+ https://youtu.be/8fhupzhAR_M
178
+
179
+ The diagonalization of K is computed via Singular Value Decomposition (SVD).
180
+ A speedup is available if the user is on Linux machine, in which case MODULO
181
+ exploits the power of JAX and its Numpy implementation.
182
+
183
+ For more on JAX:
184
+
185
+ https://github.com/google/jax
186
+ https://jax.readthedocs.io/en/latest/jax.numpy.html
187
+
188
+ If the user is on a Win machine, Linux OS can be used using
189
+ the Windows Subsystem for Linux.
190
+
191
+ For more on WSL:
192
+ https://docs.microsoft.com/en-us/windows/wsl/install-win10
193
+
194
+ :param SAVE_T_POD: bool
195
+ Flag deciding if the results will be stored on the disk.
196
+ Default value is True, to limit the RAM's usage.
197
+ Note that this might cause a minor slowdown for the loading,
198
+ but the tradeoff seems worthy.
199
+ This attribute is passed to the MODULO class.
200
+
201
+
202
+ POD temporal basis are returned if MEMORY_SAVING is not active. Otherwise all the results are saved on disk.
203
+
204
+ :return Psi_P: np.array
205
+ POD Psis
206
+
207
+ :return Sigma_P: np.array
208
+ POD Sigmas. If needed, Lambdas can be easily computed recalling that: Sigma_P = np.sqrt(Lambda_P)
209
+ """
210
+
211
+ if self.MEMORY_SAVING:
212
+ K = np.load(self.FOLDER_OUT + "/correlation_matrix/k_matrix.npz")['K']
213
+ SAVE_T_POD = True
214
+ else:
215
+ K = self.K
216
+
217
+ Psi_P, Sigma_P = Temporal_basis_POD(K, SAVE_T_POD,
218
+ self.FOLDER_OUT, self.n_Modes, self.eig_solver)
219
+
220
+ del K
221
+ return Psi_P, Sigma_P if not self.MEMORY_SAVING else None
222
+
223
+ def _spatial_basis_POD(self, Psi_P, Sigma_P,
224
+ SAVE_SPATIAL_POD: bool = True):
225
+ """
226
+ This method computes the spatial structure for the Proper Orthogonal Decomposition (POD) computation.
227
+ The theoretical background of the POD is briefly recalled here:
228
+
229
+ https://youtu.be/8fhupzhAR_M
230
+
231
+ :param Psi_P: np.array
232
+ POD temporal basis
233
+ :param Sigma_P: np.array
234
+ POD Sigmas
235
+ :param SAVE_SPATIAL_POD: bool
236
+ Flag deciding if the results will be stored on the disk.
237
+ Default value is True, to limit the RAM's usage.
238
+ Note that this might cause a minor slowdown for the loading,
239
+ but the tradeoff seems worthy.
240
+ This attribute is passed to the MODULO class.
241
+
242
+ :return Phi_P: np.array
243
+ POD Phis
244
+
245
+ """
246
+
247
+ self.SAVE_SPATIAL_POD = SAVE_SPATIAL_POD
248
+
249
+ if self.MEMORY_SAVING:
250
+ '''Loading temporal basis from disk. They're already in memory otherwise.'''
251
+ Psi_P = np.load(self.FOLDER_OUT + 'POD/temporal_basis.npz')['Psis']
252
+ Sigma_P = np.load(self.FOLDER_OUT + 'POD/temporal_basis.npz')['Sigmas']
253
+
254
+ Phi_P = Spatial_basis_POD(self.D, N_T=self.N_T, PSI_P=Psi_P, Sigma_P=Sigma_P,
255
+ MEMORY_SAVING=self.MEMORY_SAVING, FOLDER_OUT=self.FOLDER_OUT,
256
+ N_PARTITIONS=self.N_PARTITIONS, SAVE_SPATIAL_POD=SAVE_SPATIAL_POD)
257
+
258
+ return Phi_P if not self.MEMORY_SAVING else None
259
+
260
+ def _temporal_basis_mPOD(self, K, Nf, Ex, F_V, Keep, boundaries, MODE, dt, K_S=False):
261
+ """
262
+ This function computes the temporal structures of each scale in the mPOD, as in step 4 of the algorithm
263
+ ref: Multi-Scale Proper Orthogonal Decomposition of Complex Fluid Flows - M. A. Mendez et al.
264
+
265
+ :param K: np.array
266
+ Temporal correlation matrix
267
+ :param Nf: np.array
268
+ Order of the FIR filters that are used to isolate each of the scales
269
+ :param Ex: int
270
+ Extension at the boundaries of K to impose the boundary conditions (see boundaries)
271
+ It must be at least as Nf.
272
+ :param F_V: np.array
273
+ Frequency splitting vector, containing the frequencies of each scale (see article).
274
+ If the time axis is in seconds, these frequencies are in Hz.
275
+ :param Keep: np.array
276
+ Scale keep
277
+ :param boundaries: str -> {'nearest', 'reflect', 'wrap' or 'extrap'}
278
+ Define the boundary conditions for the filtering process, in order to avoid edge effects.
279
+ The available boundary conditions are the classic ones implemented for image processing:
280
+ nearest', 'reflect', 'wrap' or 'extrap'. See also https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html
281
+ :param MODE: str -> {‘reduced’, ‘complete’, ‘r’, ‘raw’}
282
+ A QR factorization is used to enforce the orthonormality of the mPOD basis, to compensate
283
+ for the non-ideal frequency response of the filters.
284
+ The option MODE from np.linalg.qr carries out this operation.
285
+
286
+ :return PSI_M: np.array
287
+ Multiscale POD temporal basis
288
+
289
+ """
290
+
291
+ if self.MEMORY_SAVING:
292
+ K = np.load(self.FOLDER_OUT + "/correlation_matrix/k_matrix.npz")['K']
293
+
294
+ PSI_M = temporal_basis_mPOD(K=K, Nf=Nf, Ex=Ex, F_V=F_V, Keep=Keep, boundaries=boundaries,
295
+ MODE=MODE, dt=dt, FOLDER_OUT=self.FOLDER_OUT,
296
+ n_Modes=self.n_Modes, K_S=False,
297
+ MEMORY_SAVING=self.MEMORY_SAVING, SAT=self.SAT, eig_solver=self.eig_solver)
298
+
299
+ return PSI_M if not self.MEMORY_SAVING else None
300
+
301
+ def _spatial_basis_mPOD(self, D, PSI_M, SAVE):
302
+ """
303
+ This function implements the last step of the mPOD algorithm:
304
+ completing the decomposition. Here we project from psis, to get phis and sigmas
305
+
306
+ :param D: np.array
307
+ data matrix
308
+ :param PSI_M: np.array
309
+ temporal basis for the mPOD. Remember that it is not possible to impose both basis matrices
310
+ phis and psis: given one of the two, the other is univocally determined.
311
+ :param SAVE: bool
312
+ if True, MODULO saves the results on disk.
313
+
314
+ :return Phi_M: np.array
315
+ mPOD Phis (Matrix of spatial structures)
316
+ :return Psi_M: np.array
317
+ mPOD Psis (Matrix of temporal structures)
318
+ :return Sigma_M: np.array
319
+ mPOD Sigmas (vector of amplitudes, i.e. the diagonal of Sigma_M)
320
+
321
+ """
322
+
323
+ Phi_M, Psi_M, Sigma_M = spatial_basis_mPOD(D, PSI_M, N_T=self.N_T, N_PARTITIONS=self.N_PARTITIONS,
324
+ N_S=self.N_S, MEMORY_SAVING=self.MEMORY_SAVING,
325
+ FOLDER_OUT=self.FOLDER_OUT,
326
+ SAVE=SAVE)
327
+
328
+ return Phi_M, Psi_M, Sigma_M
329
+
330
+ def compute_mPOD(self, Nf, Ex, F_V, Keep, SAT, boundaries, MODE, dt, SAVE=False):
331
+ """
332
+ This function computes the temporal structures of each scale in the mPOD, as in step 4 of the algorithm
333
+ ref: Multi-Scale Proper Orthogonal Decomposition of Complex Fluid Flows - M. A. Mendez et al.
334
+
335
+ :param K: np.array
336
+ Temporal correlation matrix
337
+
338
+ :param Nf: np.array
339
+ Order of the FIR filters that are used to isolate each of the scales
340
+
341
+ :param Ex: int
342
+ Extension at the boundaries of K to impose the boundary conditions (see boundaries)
343
+ It must be at least as Nf.
344
+
345
+ :param F_V: np.array
346
+ Frequency splitting vector, containing the frequencies of each scale (see article).
347
+ If the time axis is in seconds, these frequencies are in Hz.
348
+
349
+ :param Keep: np.array
350
+ Scale keep
351
+
352
+ :param boundaries: str -> {'nearest', 'reflect', 'wrap' or 'extrap'}
353
+ Define the boundary conditions for the filtering process, in order to avoid edge effects.
354
+ The available boundary conditions are the classic ones implemented for image processing:
355
+ nearest', 'reflect', 'wrap' or 'extrap'. See also https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html
356
+
357
+ :param MODE: str -> {‘reduced’, ‘complete’, ‘r’, ‘raw’}
358
+ A QR factorization is used to enforce the orthonormality of the mPOD basis, to compensate
359
+ for the non-ideal frequency response of the filters.
360
+ The option MODE from np.linalg.qr carries out this operation.
361
+
362
+ :param SAT: Maximum number of modes per scale.
363
+ Only used for mPOD (max number of modes per scale)
364
+
365
+ :param dt: float
366
+ temporal step
367
+
368
+ :return Phi_M: np.array
369
+ mPOD Phis (Matrix of spatial structures)
370
+ :return Psi_M: np.array
371
+ mPOD Psis (Matrix of temporal structures)
372
+ :return Sigma_M: np.array
373
+ mPOD Sigmas (vector of amplitudes, i.e. the diagonal of Sigma_M
374
+
375
+ """
376
+
377
+ print('Computing correlation matrix D matrix...')
378
+ self.K = CorrelationMatrix(self.N_T, self.N_PARTITIONS,
379
+ self.MEMORY_SAVING,
380
+ self.FOLDER_OUT, self.SAVE_K, D=self.Dstar)
381
+
382
+ if self.MEMORY_SAVING:
383
+ self.K = np.load(self.FOLDER_OUT + '/correlation_matrix/k_matrix.npz')['K']
384
+
385
+ print("Computing Temporal Basis...")
386
+
387
+ PSI_M = temporal_basis_mPOD(K=self.K, Nf=Nf, Ex=Ex, F_V=F_V, Keep=Keep, boundaries=boundaries,
388
+ MODE=MODE, dt=dt, FOLDER_OUT=self.FOLDER_OUT,
389
+ n_Modes=self.n_Modes, MEMORY_SAVING=self.MEMORY_SAVING, SAT=SAT,
390
+ eig_solver=self.eig_solver)
391
+
392
+ print("Done.")
393
+
394
+ if hasattr(self, 'D'): # if self.D is available:
395
+ print('Computing Phi from D...')
396
+ Phi_M, Psi_M, Sigma_M = spatial_basis_mPOD(self.D, PSI_M, N_T=self.N_T, N_PARTITIONS=self.N_PARTITIONS,
397
+ N_S=self.N_S, MEMORY_SAVING=self.MEMORY_SAVING,
398
+ FOLDER_OUT=self.FOLDER_OUT,
399
+ SAVE=SAVE)
400
+
401
+ else: # if not, the memory saving is on and D will not be used. We pass a dummy D
402
+ print('Computing Phi from partitions...')
403
+ Phi_M, Psi_M, Sigma_M = spatial_basis_mPOD(np.array([1]), PSI_M, N_T=self.N_T,
404
+ N_PARTITIONS=self.N_PARTITIONS,
405
+ N_S=self.N_S, MEMORY_SAVING=self.MEMORY_SAVING,
406
+ FOLDER_OUT=self.FOLDER_OUT,
407
+ SAVE=SAVE)
408
+
409
+ print("Done.")
410
+
411
+ return Phi_M, Psi_M, Sigma_M
412
+
413
+ def compute_POD_K(self, SAVE_T_POD: bool = False):
414
+ """
415
+ This method computes the Proper Orthogonal Decomposition (POD) of a dataset
416
+ using the snapshot approach, i.e. working on the temporal correlation matrix.
417
+ The eig solver for K is defined in 'eig_solver'
418
+ The theoretical background of the POD is briefly recalled here:
419
+
420
+ https://youtu.be/8fhupzhAR_M
421
+
422
+ :return Psi_P: np.array
423
+ POD Psis
424
+
425
+ :return Sigma_P: np.array
426
+ POD Sigmas. If needed, Lambdas can be easily computed recalling that: Sigma_P = np.sqrt(Lambda_P)
427
+
428
+ :return Phi_P: np.array
429
+ POD Phis
430
+ """
431
+
432
+ print('Computing correlation matrix...')
433
+ self.K = CorrelationMatrix(self.N_T, self.N_PARTITIONS,
434
+ self.MEMORY_SAVING,
435
+ self.FOLDER_OUT, self.SAVE_K, D=self.Dstar, weights=self.weights)
436
+
437
+ if self.MEMORY_SAVING:
438
+ self.K = np.load(self.FOLDER_OUT + '/correlation_matrix/k_matrix.npz')['K']
439
+
440
+ print("Computing Temporal Basis...")
441
+ Psi_P, Sigma_P = Temporal_basis_POD(self.K, SAVE_T_POD,
442
+ self.FOLDER_OUT, self.n_Modes, eig_solver=self.eig_solver)
443
+ print("Done.")
444
+ print("Computing Spatial Basis...")
445
+
446
+ if self.MEMORY_SAVING: # if self.D is available:
447
+ print('Computing Phi from partitions...')
448
+ Phi_P = Spatial_basis_POD(np.array([1]), N_T=self.N_T,
449
+ PSI_P=Psi_P,
450
+ Sigma_P=Sigma_P,
451
+ MEMORY_SAVING=self.MEMORY_SAVING,
452
+ FOLDER_OUT=self.FOLDER_OUT,
453
+ N_PARTITIONS=self.N_PARTITIONS)
454
+
455
+ else: # if not, the memory saving is on and D will not be used. We pass a dummy D
456
+ print('Computing Phi from D...')
457
+ Phi_P = Spatial_basis_POD(self.D, N_T=self.N_T,
458
+ PSI_P=Psi_P,
459
+ Sigma_P=Sigma_P,
460
+ MEMORY_SAVING=self.MEMORY_SAVING,
461
+ FOLDER_OUT=self.FOLDER_OUT,
462
+ N_PARTITIONS=self.N_PARTITIONS)
463
+ print("Done.")
464
+
465
+ return Phi_P, Psi_P, Sigma_P
466
+
467
+ def compute_POD_svd(self, SAVE_T_POD: bool = False):
468
+ """
469
+ This method computes the Proper Orthogonal Decomposition (POD) of a dataset
470
+ using the SVD decomposition. The svd solver is defined by 'svd_solver'.
471
+ Note that in this case, the memory saving option is of no help, since
472
+ the SVD must be performed over the entire dataset.
473
+
474
+ https://youtu.be/8fhupzhAR_M
475
+
476
+ :return Psi_P: np.array
477
+ POD Psis
478
+
479
+ :return Sigma_P: np.array
480
+ POD Sigmas. If needed, Lambdas can be easily computed recalling that: Sigma_P = np.sqrt(Lambda_P)
481
+
482
+ :return Phi_P: np.array
483
+ POD Phis
484
+ """
485
+ # If Memory saving is active, we must load back the data.
486
+ # This process is memory demanding. Different SVD solver will handle this differently.
487
+
488
+ if self.MEMORY_SAVING:
489
+ if self.N_T % self.N_PARTITIONS != 0:
490
+ tot_blocks_col = self.N_PARTITIONS + 1
491
+ else:
492
+ tot_blocks_col = self.N_PARTITIONS
493
+
494
+ # Prepare the D matrix again
495
+ D = np.zeros((self.N_S, self.N_T))
496
+ R1 = 0
497
+
498
+ # print(' \n Reloading D from tmp...')
499
+ for k in tqdm(range(tot_blocks_col)):
500
+ di = np.load(self.FOLDER_OUT + f"/data_partitions/di_{k + 1}.npz")['di']
501
+ R2 = R1 + np.shape(di)[1]
502
+ D[:, R1:R2] = di
503
+ R1 = R2
504
+
505
+ # Now that we have D back, we can proceed with the SVD approach
506
+ Phi_P, Psi_P, Sigma_P = switch_svds(D, self.n_Modes, self.svd_solver)
507
+
508
+
509
+ else: # self.MEMORY_SAVING:
510
+ Phi_P, Psi_P, Sigma_P = switch_svds(self.D, self.n_Modes, self.svd_solver)
511
+
512
+ return Phi_P, Psi_P, Sigma_P
513
+
514
+ def compute_DMD_PIP(self, SAVE_T_DMD: bool = True, F_S=1):
515
+ """
516
+ This method computes the Dynamic Mode Decomposition of the data
517
+ using the algorithm in https://arxiv.org/abs/1312.0041, which is basically the same as
518
+ the PIP algorithm proposed in https://www.sciencedirect.com/science/article/abs/pii/0167278996001248
519
+ See v1 of this paper https://arxiv.org/abs/2001.01971 for more details (yes, reviewers did ask to omit this detail in v2).
520
+
521
+ :return Phi_D: np.array
522
+ DMD Phis. As for the DFT, these are complex.
523
+
524
+ :return Lambda_D: np.array
525
+ DMD Eigenvalues (of the reduced propagator). These are complex.
526
+
527
+ :return freqs: np.array
528
+ Frequencies (in Hz, associated to the DMD modes)
529
+
530
+ :return a0s: np.array
531
+ Initial Coefficients of the Modes
532
+
533
+ """
534
+
535
+ # If Memory saving is active, we must load back the data
536
+ if self.MEMORY_SAVING:
537
+ if self.N_T % self.N_PARTITIONS != 0:
538
+ tot_blocks_col = self.N_PARTITIONS + 1
539
+ else:
540
+ tot_blocks_col = self.N_PARTITIONS
541
+
542
+ # Prepare the D matrix again
543
+ D = np.zeros((self.N_S, self.N_T))
544
+ R1 = 0
545
+
546
+ # print(' \n Reloading D from tmp...')
547
+ for k in tqdm(range(tot_blocks_col)):
548
+ di = np.load(self.FOLDER_OUT + f"/data_partitions/di_{k + 1}.npz")['di']
549
+ R2 = R1 + np.shape(di)[1]
550
+ D[:, R1:R2] = di
551
+ R1 = R2
552
+
553
+ # Compute the DMD
554
+ Phi_D, Lambda, freqs, a0s = dmd_s(D[:, 0:self.N_T - 1],
555
+ D[:, 1:self.N_T], self.n_Modes, F_S, svd_solver=self.svd_solver)
556
+
557
+ else:
558
+ Phi_D, Lambda, freqs, a0s = dmd_s(self.D[:, 0:self.N_T - 1],
559
+ self.D[:, 1:self.N_T], self.n_Modes, F_S, SAVE_T_DMD=SAVE_T_DMD,
560
+ svd_solver=self.svd_solver, FOLDER_OUT=self.FOLDER_OUT)
561
+
562
+ return Phi_D, Lambda, freqs, a0s
563
+
564
+ def compute_DFT(self, F_S, SAVE_DFT=False):
565
+ """
566
+ This method computes the Discrete Fourier Transform of your data.
567
+
568
+ Check out this tutorial: https://www.youtube.com/watch?v=8fhupzhAR_M&list=PLEJZLD0-4PeKW6Ze984q08bNz28GTntkR&index=2
569
+
570
+ :param F_S: float,
571
+ Sampling Frequency [Hz]
572
+ :param SAVE_DFT: bool,
573
+ If True, MODULO will save the output in self.FOLDER OUT/MODULO_tmp
574
+
575
+ :return: Sorted_Freqs: np.array,
576
+ Sorted Frequencies
577
+ :return Phi_F: np.array,
578
+ DFT Phis
579
+ :return Sigma_F: np.array,
580
+ DFT Sigmas
581
+ """
582
+ if self.D is None:
583
+ D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
584
+ SAVE_DFT = True
585
+ Sorted_Freqs, Phi_F, SIGMA_F = dft_fit(self.N_T, F_S, D, self.FOLDER_OUT, SAVE_DFT=SAVE_DFT)
586
+
587
+ else:
588
+ Sorted_Freqs, Phi_F, SIGMA_F = dft_fit(self.N_T, F_S, self.D, self.FOLDER_OUT, SAVE_DFT=SAVE_DFT)
589
+
590
+ return Sorted_Freqs, Phi_F, SIGMA_F
591
+
592
+ def compute_SPOD_t(self, F_S, L_B=500, O_B=250, n_Modes=10, SAVE_SPOD=True):
593
+ """
594
+ This method computes the Spectral POD of your data. This is the one by Towne et al
595
+ (https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/spectral-proper-orthogonal-decomposition-and-its-relationship-to-dynamic-mode-decomposition-and-resolvent-analysis/EC2A6DF76490A0B9EB208CC2CA037717)
596
+
597
+ :param F_S: float,
598
+ Sampling Frequency [Hz]
599
+ :param L_B: float,
600
+ lenght of the chunks
601
+ :param O_B: float,
602
+ Overlapping between blocks in the chunk
603
+ :param n_Modes: float,
604
+ number of modes to be computed for each frequency
605
+ :param SAVE_SPOD: bool,
606
+ If True, MODULO will save the output in self.FOLDER OUT/MODULO_tmp
607
+ :return Psi_P_hat: np.array
608
+ Spectra of the SPOD Modes
609
+ :return Sigma_P: np.array
610
+ Amplitudes of the SPOD Modes.
611
+ :return Phi_P: np.array
612
+ SPOD Phis
613
+ :return freq: float
614
+ frequency bins for the Spectral POD
615
+
616
+
617
+ """
618
+ if self.D is None:
619
+ D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
620
+ Phi_SP, Sigma_SP, Freqs_Pos = compute_SPOD_t(D, F_S, L_B=L_B, O_B=O_B,
621
+ n_Modes=n_Modes, SAVE_SPOD=SAVE_SPOD,
622
+ FOLDER_OUT=self.FOLDER_OUT, possible_svds=self.svd_solver)
623
+ else:
624
+ Phi_SP, Sigma_SP, Freqs_Pos = compute_SPOD_t(self.D, F_S, L_B=L_B, O_B=O_B,
625
+ n_Modes=n_Modes, SAVE_SPOD=SAVE_SPOD,
626
+ FOLDER_OUT=self.FOLDER_OUT, possible_svds=self.svd_solver)
627
+
628
+ return Phi_SP, Sigma_SP, Freqs_Pos
629
+
630
+ # New Decomposition: SPOD f
631
+
632
+ def compute_SPOD_s(self, F_S, N_O=100, f_c=0.3, n_Modes=10, SAVE_SPOD=True):
633
+ """
634
+ This method computes the Spectral POD of your data.
635
+ This is the one by Sieber
636
+ et al (https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/abs/spectral-proper-orthogonal-decomposition/DCD8A6EDEFD56F5A9715DBAD38BD461A)
637
+
638
+ :param F_S: float,
639
+ Sampling Frequency [Hz]
640
+ :param N_o: float,
641
+ Semi-Order of the diagonal filter.
642
+ Note that the filter order will be 2 N_o +1 (to make sure it is odd)
643
+ :param f_c: float,
644
+ cut-off frequency of the diagonal filter
645
+ :param n_Modes: float,
646
+ number of modes to be computed
647
+ :param SAVE_SPOD: bool,
648
+ If True, MODULO will save the output in self.FOLDER OUT/MODULO_tmp
649
+ :return Psi_P: np.array
650
+ SPOD Psis
651
+ :return Sigma_P: np.array
652
+ SPOD Sigmas.
653
+ :return Phi_P: np.array
654
+ SPOD Phis
655
+ """
656
+
657
+ if self.D is None:
658
+ D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
659
+
660
+ self.K = CorrelationMatrix(self.N_T, self.N_PARTITIONS, self.MEMORY_SAVING,
661
+ self.FOLDER_OUT, self.SAVE_K, D=D)
662
+
663
+ Phi_sP, Psi_sP, Sigma_sP = compute_SPOD_s(D, self.K, F_S, self.N_S, self.N_T, N_O, f_c,
664
+ n_Modes, SAVE_SPOD, self.FOLDER_OUT, self.MEMORY_SAVING,
665
+ self.N_PARTITIONS)
666
+
667
+ else:
668
+ self.K = CorrelationMatrix(self.N_T, self.N_PARTITIONS, self.MEMORY_SAVING,
669
+ self.FOLDER_OUT, self.SAVE_K, D=self.D)
670
+
671
+ Phi_sP, Psi_sP, Sigma_sP = compute_SPOD_s(self.D, self.K, F_S, self.N_S, self.N_T, N_O, f_c,
672
+ n_Modes, SAVE_SPOD, self.FOLDER_OUT, self.MEMORY_SAVING,
673
+ self.N_PARTITIONS)
674
+
675
+ # if self.D is None:
676
+ # D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
677
+ # SAVE_SPOD = True
678
+ # # TODO : Lorenzo check this stuff
679
+ # else:
680
+ # D = self.D
681
+ #
682
+ # n_s = self.N_S # Repeat variable for debugging compatibility
683
+ # n_t = self.N_T
684
+ #
685
+ # print('Computing Correlation Matrix \n')
686
+ #
687
+ # # The first step is the same as the POD: we compute the correlation matrix
688
+ # K = CorrelationMatrix(self.N_T, self.N_PARTITIONS, self.MEMORY_SAVING,
689
+ # self.FOLDER_OUT, D=self.D)
690
+ #
691
+ # # 1. Initialize the extended
692
+ # K_e = np.zeros((n_t + 2 * N_o, n_t + 2 * N_o))
693
+ # # From which we clearly know that:
694
+ # K_e[N_o:n_t + N_o, N_o:n_t + N_o] = K
695
+ #
696
+ # # 2. We fill the edges ( a bit of repetition but ok.. )
697
+ #
698
+ # # Row-wise, Upper part
699
+ # for i in range(0, N_o):
700
+ # K_e[i, i:i + n_t] = K[0, :]
701
+ #
702
+ # # Row-wise, bottom part
703
+ # for i in range(N_o + n_t, n_t + 2 * N_o):
704
+ # K_e[i, i - n_t + 1:i + 1] = K[-1, :]
705
+ #
706
+ # # Column-wise, left part
707
+ # for j in range(0, N_o):
708
+ # K_e[j:j + n_t, j] = K[:, 0]
709
+ #
710
+ # # Column-wise, right part
711
+ # for j in range(N_o + n_t, 2 * N_o + n_t):
712
+ # K_e[j - n_t + 1:j + 1, j] = K[:, -1]
713
+ #
714
+ # # Now you create the diagonal kernel in 2D
715
+ # h_f = firwin(N_o, f_c) # Kernel in 1D
716
+ # # This is also something that must be put in a separate file:
717
+ # # To cancel the phase lag we make this non-causal with a symmetric
718
+ # # shift, hence with zero padding as equal as possible on both sides
719
+ # n_padd_l = round((n_t - N_o) / 2);
720
+ # n_padd_r = n_t - N_o - n_padd_l
721
+ #
722
+ # h_f_pad = np.pad(h_f, (n_padd_l, n_padd_r)) # symmetrically padded kernel in 1D
723
+ # h_f_2 = np.diag(h_f_pad)
724
+ #
725
+ # # Finally the filtered K is just
726
+ # K_F = signal.fftconvolve(K_e, h_f_2, mode='same')[N_o:n_t + N_o, N_o:n_t + N_o]
727
+ # # plt.plot(np.diag(K),'b--'); plt.plot(np.diag(K_F_e),'r')
728
+ #
729
+ # # From now on it's just POD:
730
+ # Psi_P, Sigma_P = Temporal_basis_POD(K_F, SAVE_SPOD,
731
+ # self.FOLDER_OUT, self.n_Modes)
732
+ #
733
+ # Phi_P = Spatial_basis_POD(self.D, N_T=self.N_T, PSI_P=Psi_P, Sigma_P=Sigma_P,
734
+ # MEMORY_SAVING=self.MEMORY_SAVING, FOLDER_OUT=self.FOLDER_OUT,
735
+ # N_PARTITIONS=self.N_PARTITIONS)
736
+
737
+ return Phi_sP, Psi_sP, Sigma_sP
738
+
739
+ def compute_kPOD(self, M_DIST=[1, 10], k_m=0.1, cent=True,
740
+ n_Modes=10, alpha=1e-6, metric='rbf', K_out=False):
741
+ """
742
+ This function implements the kernel PCA as described in the VKI course https://www.vki.ac.be/index.php/events-ls/events/eventdetail/552/-/online-on-site-hands-on-machine-learning-for-fluid-dynamics-2023
743
+
744
+ The computation of the kernel function is carried out as in https://arxiv.org/pdf/2208.07746.pdf.
745
+
746
+
747
+ :param M_DIST: array,
748
+ position of the two snapshots that will be considered to
749
+ estimate the minimal k. They should be the most different ones.
750
+ :param k_m: float,
751
+ minimum value for the kernelized correlation
752
+ :param alpha: float
753
+ regularization for K_zeta
754
+ :param cent: bool,
755
+ if True, the matrix K is centered. Else it is not
756
+ :param n_Modes: float,
757
+ number of modes to be computed
758
+ :param metric: string,
759
+ This identifies the metric for the kernel matrix. It is a wrapper to 'pairwise_kernels' from sklearn.metrics.pairwise
760
+ Note that different metrics would need different set of parameters. For the moment, only rbf was tested; use any other option at your peril !
761
+ :param K_out: bool,
762
+ If true, the matrix K is also exported as a fourth output.
763
+ :return Psi_xi: np.array
764
+ kPOD's Psis
765
+ :return Sigma_xi: np.array
766
+ kPOD's Sigmas.
767
+ :return Phi_xi: np.array
768
+ kPOD's Phis
769
+ :return K_zeta: np.array
770
+ Kernel Function from which the decomposition is computed.
771
+ (exported only if K_out=True)
772
+
773
+
774
+ """
775
+ if self.D is None:
776
+ D = np.load(self.FOLDER_OUT + '/MODULO_tmp/data_matrix/database.npz')['D']
777
+ else:
778
+ D = self.D
779
+
780
+ # Compute Eucledean distances
781
+ i, j = M_DIST;
782
+ n_s, n_t = np.shape(D)
783
+ M_ij = np.linalg.norm(D[:, i] - D[:, j]) ** 2
784
+
785
+ gamma = -np.log(k_m) / M_ij
786
+
787
+ K_zeta = pairwise_kernels(D.T, metric='rbf', gamma=gamma)
788
+ print('Kernel K ready')
789
+
790
+ # Compute the Kernel Matrix
791
+ n_t = np.shape(D)[1]
792
+ # Center the Kernel Matrix (if cent is True):
793
+ if cent:
794
+ H = np.eye(n_t) - 1 / n_t * np.ones_like(K_zeta)
795
+ K_zeta = H @ K_zeta @ H.T
796
+ print('K_zeta centered')
797
+ # Diagonalize and Sort
798
+ lambdas, Psi_xi = linalg.eigh(K_zeta + alpha * np.eye(n_t), subset_by_index=[n_t - n_Modes, n_t - 1])
799
+ lambdas, Psi_xi = lambdas[::-1], Psi_xi[:, ::-1];
800
+ Sigma_xi = np.sqrt(lambdas);
801
+ print('K_zeta diagonalized')
802
+ # Encode
803
+ # Z_xi=np.diag(Sigma_xi)@Psi_xi.T
804
+ # We compute the spatial structures as projections of the data
805
+ # onto the Psi_xi!
806
+ R = Psi_xi.shape[1]
807
+ PHI_xi_SIGMA_xi = np.dot(D, (Psi_xi))
808
+ # Initialize the output
809
+ PHI_xi = np.zeros((n_s, R))
810
+ SIGMA_xi = np.zeros((R))
811
+
812
+ for i in tqdm(range(0, R)):
813
+ # Assign the norm as amplitude
814
+ SIGMA_xi[i] = np.linalg.norm(PHI_xi_SIGMA_xi[:, i])
815
+ # Normalize the columns of C to get spatial modes
816
+ PHI_xi[:, i] = PHI_xi_SIGMA_xi[:, i] / SIGMA_xi[i]
817
+
818
+ Indices = np.flipud(np.argsort(SIGMA_xi)) # find indices for sorting in decreasing order
819
+ Sorted_Sigmas = SIGMA_xi[Indices] # Sort all the sigmas
820
+ Phi_xi = PHI_xi[:, Indices] # Sorted Spatial Structures Matrix
821
+ Psi_xi = Psi_xi[:, Indices] # Sorted Temporal Structures Matrix
822
+ Sigma_xi = Sorted_Sigmas # Sorted Amplitude Matrix
823
+ print('Phi_xi computed')
824
+
825
+ if K_out:
826
+ return Phi_xi, Psi_xi, Sigma_xi, K_zeta
827
+ else:
828
+ return Phi_xi, Psi_xi, Sigma_xi