moderne-visualizations-misc 0.68.0__py3-none-any.whl → 0.70.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- moderne_visualizations_misc/call_graph_uml.ipynb +1 -1
- moderne_visualizations_misc/cobol_relationships_data_grid.ipynb +0 -1
- moderne_visualizations_misc/comment_language_distribution.ipynb +1 -1
- moderne_visualizations_misc/composite_recipe_results_sankey.ipynb +176 -164
- moderne_visualizations_misc/dependency_vulnerabilities.ipynb +0 -1
- moderne_visualizations_misc/dependency_vulnerabilities_npm.ipynb +0 -1
- moderne_visualizations_misc/dependency_vulnerabilities_nuget.ipynb +0 -1
- moderne_visualizations_misc/embeddings_clustering.ipynb +1 -2
- moderne_visualizations_misc/eslint_problems.ipynb +1 -2
- moderne_visualizations_misc/find_source_files.ipynb +1 -1
- moderne_visualizations_misc/get_embeddings_and_cluster.ipynb +24 -13
- moderne_visualizations_misc/images/ui5lint_rule_treemap.300.png +0 -0
- moderne_visualizations_misc/images/ui5lint_violations_heatmap.300.png +0 -0
- moderne_visualizations_misc/java_versions_by_sourceset.ipynb +15 -15
- moderne_visualizations_misc/java_versions_in_use.ipynb +14 -18
- moderne_visualizations_misc/parse_failure_stacktraces.ipynb +0 -2
- moderne_visualizations_misc/recommendations.ipynb +1 -1
- moderne_visualizations_misc/specs/ui5lint_rule_treemap.yml +7 -0
- moderne_visualizations_misc/specs/ui5lint_violations_heatmap.yml +7 -0
- moderne_visualizations_misc/spring_component_relationships.ipynb +185 -186
- moderne_visualizations_misc/ui5lint_rule_treemap.ipynb +110 -0
- moderne_visualizations_misc/ui5lint_violations_heatmap.ipynb +76 -0
- moderne_visualizations_misc-0.70.0.dist-info/METADATA +19 -0
- {moderne_visualizations_misc-0.68.0.dist-info → moderne_visualizations_misc-0.70.0.dist-info}/RECORD +26 -20
- {moderne_visualizations_misc-0.68.0.dist-info → moderne_visualizations_misc-0.70.0.dist-info}/WHEEL +1 -1
- moderne_visualizations_misc-0.68.0.dist-info/METADATA +0 -28
- {moderne_visualizations_misc-0.68.0.dist-info → moderne_visualizations_misc-0.70.0.dist-info}/top_level.txt +0 -0
|
@@ -15,21 +15,21 @@
|
|
|
15
15
|
},
|
|
16
16
|
{
|
|
17
17
|
"cell_type": "code",
|
|
18
|
-
"execution_count":
|
|
18
|
+
"execution_count": 2,
|
|
19
19
|
"id": "701147ab-62bd-490f-8a26-8ad1dd80f4d7",
|
|
20
20
|
"metadata": {},
|
|
21
21
|
"outputs": [],
|
|
22
22
|
"source": [
|
|
23
|
-
"
|
|
24
|
-
"
|
|
25
|
-
"
|
|
26
|
-
"
|
|
27
|
-
"
|
|
28
|
-
"
|
|
29
|
-
"
|
|
30
|
-
"
|
|
31
|
-
"
|
|
32
|
-
")\n",
|
|
23
|
+
"columns_to_drop = [\n",
|
|
24
|
+
" \"repositoryOrigin\",\n",
|
|
25
|
+
" \"repositoryPath\",\n",
|
|
26
|
+
" \"repositoryBranch\",\n",
|
|
27
|
+
" \"scmType\",\n",
|
|
28
|
+
" \"repositoryLink\",\n",
|
|
29
|
+
" \"targetVersion\",\n",
|
|
30
|
+
"]\n",
|
|
31
|
+
"\n",
|
|
32
|
+
"data = df.drop(columns=[col for col in columns_to_drop if col in df.columns])\n",
|
|
33
33
|
"data"
|
|
34
34
|
]
|
|
35
35
|
},
|
|
@@ -40,11 +40,7 @@
|
|
|
40
40
|
"metadata": {},
|
|
41
41
|
"outputs": [],
|
|
42
42
|
"source": [
|
|
43
|
-
"versions = (\n",
|
|
44
|
-
" data.groupby([\"sourceVersion\"], as_index=True)\n",
|
|
45
|
-
" .value_counts()\n",
|
|
46
|
-
" .fillna(0)\n",
|
|
47
|
-
")\n",
|
|
43
|
+
"versions = data.groupby([\"sourceVersion\"], as_index=True).value_counts().fillna(0)\n",
|
|
48
44
|
"versions"
|
|
49
45
|
]
|
|
50
46
|
},
|
|
@@ -66,7 +62,7 @@
|
|
|
66
62
|
],
|
|
67
63
|
"metadata": {
|
|
68
64
|
"kernelspec": {
|
|
69
|
-
"display_name": "Python 3
|
|
65
|
+
"display_name": "Python 3",
|
|
70
66
|
"language": "python",
|
|
71
67
|
"name": "python3"
|
|
72
68
|
},
|
|
@@ -80,7 +76,7 @@
|
|
|
80
76
|
"name": "python",
|
|
81
77
|
"nbconvert_exporter": "python",
|
|
82
78
|
"pygments_lexer": "ipython3",
|
|
83
|
-
"version": "3.
|
|
79
|
+
"version": "3.10.14"
|
|
84
80
|
}
|
|
85
81
|
},
|
|
86
82
|
"nbformat": 4,
|
|
@@ -18,8 +18,6 @@
|
|
|
18
18
|
"from code_data_science import data_table as dt, data_grid as moderne_data_grid\n",
|
|
19
19
|
"import code_data_science.palette as palette\n",
|
|
20
20
|
"import re\n",
|
|
21
|
-
"from plotly.subplots import make_subplots\n",
|
|
22
|
-
"import plotly.graph_objects as go\n",
|
|
23
21
|
"\n",
|
|
24
22
|
"pd.set_option(\"expand_frame_repr\", True)\n",
|
|
25
23
|
"df = dt.read_csv(\"../samples/parse_failure_kotlin.csv\")\n",
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
type: specs.moderne.io/v1beta/visualization
|
|
2
|
+
name: io.moderne.UI5LintViolationsHeatmap
|
|
3
|
+
displayName: UI5 lint violations heatmap
|
|
4
|
+
description: >
|
|
5
|
+
Heatmap of UI5 lint violations by repository.
|
|
6
|
+
recipe: org.openrewrite.codemods.UI5
|
|
7
|
+
dataTable: org.openrewrite.codemods.UI5Messages
|
|
@@ -1,189 +1,188 @@
|
|
|
1
1
|
{
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
},
|
|
17
|
-
{
|
|
18
|
-
"cell_type": "code",
|
|
19
|
-
"execution_count": null,
|
|
20
|
-
"metadata": {},
|
|
21
|
-
"outputs": [],
|
|
22
|
-
"source": [
|
|
23
|
-
"import graphviz\n",
|
|
24
|
-
"from code_data_science import data_table as dt\n",
|
|
25
|
-
"import code_data_science.palette as palette\n",
|
|
26
|
-
"import html\n",
|
|
27
|
-
"\n",
|
|
28
|
-
"df = dt.read_csv(\"../samples/spring_component_relationships.csv\")"
|
|
29
|
-
]
|
|
30
|
-
},
|
|
31
|
-
{
|
|
32
|
-
"cell_type": "code",
|
|
33
|
-
"execution_count": null,
|
|
34
|
-
"metadata": {},
|
|
35
|
-
"outputs": [],
|
|
36
|
-
"source": [
|
|
37
|
-
"import networkx as nx\n",
|
|
38
|
-
"\n",
|
|
39
|
-
"relevant_nodes = set()\n",
|
|
40
|
-
"ancestor_nodes = set()\n",
|
|
41
|
-
"descendant_nodes = set()\n",
|
|
42
|
-
"\n",
|
|
43
|
-
"if filter_to_relevant:\n",
|
|
44
|
-
" G = nx.from_pandas_edgelist(\n",
|
|
45
|
-
" df, \"dependantType\", \"dependencyType\", create_using=nx.DiGraph()\n",
|
|
46
|
-
" )\n",
|
|
47
|
-
"\n",
|
|
48
|
-
" for node in G.nodes:\n",
|
|
49
|
-
" if filter_to_relevant in node:\n",
|
|
50
|
-
" relevant_nodes.add(node) # Include the node itself\n",
|
|
51
|
-
" # Add all descendants and ancestors of the node\n",
|
|
52
|
-
" descendant_nodes.update(nx.descendants(G, node))\n",
|
|
53
|
-
" ancestor_nodes.update(nx.ancestors(G, node))"
|
|
54
|
-
]
|
|
55
|
-
},
|
|
56
|
-
{
|
|
57
|
-
"cell_type": "code",
|
|
58
|
-
"execution_count": null,
|
|
59
|
-
"metadata": {},
|
|
60
|
-
"outputs": [],
|
|
61
|
-
"source": [
|
|
62
|
-
"# Continue with your Graphviz setup\n",
|
|
63
|
-
"graphviz.set_jupyter_format(\"svg\")\n",
|
|
64
|
-
"dot = graphviz.Digraph(\"spring-relationships\", comment=\"Spring component relationships\")\n",
|
|
65
|
-
"\n",
|
|
66
|
-
"dot.graph_attr = {\n",
|
|
67
|
-
" \"overlap\": \"true\",\n",
|
|
68
|
-
" \"normalize\": \"true\",\n",
|
|
69
|
-
" \"overlap_shrink\": \"true\",\n",
|
|
70
|
-
" \"overlap_scaling\": \"60\",\n",
|
|
71
|
-
" \"nodesep\": \"1\",\n",
|
|
72
|
-
"}\n",
|
|
73
|
-
"\n",
|
|
74
|
-
"added_nodes = set()\n",
|
|
75
|
-
"added_edges = set()\n",
|
|
76
|
-
"\n",
|
|
77
|
-
"\n",
|
|
78
|
-
"def map_relationship(row):\n",
|
|
79
|
-
" \"\"\"\n",
|
|
80
|
-
" For a row determine which node and relationship should be added to the graph\n",
|
|
81
|
-
" If a relevant filter has been applied then we only want to graph nodes that\n",
|
|
82
|
-
" are descendants or ancestors of the relevant nodes\n",
|
|
83
|
-
" \"\"\"\n",
|
|
84
|
-
" # Check if dependantType node already added\n",
|
|
85
|
-
" if row[\"dependantType\"] not in added_nodes:\n",
|
|
86
|
-
" if filter_to_relevant != \"\":\n",
|
|
87
|
-
" if row[\"dependantType\"] in relevant_nodes:\n",
|
|
88
|
-
" dot.node(\n",
|
|
89
|
-
" row[\"dependantType\"],\n",
|
|
90
|
-
" shape=node_shape,\n",
|
|
91
|
-
" style=\"filled\",\n",
|
|
92
|
-
" fillcolor=palette.__moderne_color_map[\"red\"][200],\n",
|
|
93
|
-
" )\n",
|
|
94
|
-
" added_nodes.add(row[\"dependantType\"])\n",
|
|
95
|
-
" if row[\"dependantType\"] in ancestor_nodes:\n",
|
|
96
|
-
" dot.node(\n",
|
|
97
|
-
" row[\"dependantType\"],\n",
|
|
98
|
-
" shape=node_shape,\n",
|
|
99
|
-
" style=\"filled\",\n",
|
|
100
|
-
" fillcolor=palette.__moderne_color_map[\"blue\"][200],\n",
|
|
101
|
-
" )\n",
|
|
102
|
-
" added_nodes.add(row[\"dependantType\"])\n",
|
|
103
|
-
" else:\n",
|
|
104
|
-
" dot.node(\n",
|
|
105
|
-
" row[\"dependantType\"],\n",
|
|
106
|
-
" shape=node_shape,\n",
|
|
107
|
-
" style=\"filled\",\n",
|
|
108
|
-
" fillcolor=palette.__moderne_color_map[\"blue\"][200],\n",
|
|
109
|
-
" )\n",
|
|
110
|
-
" added_nodes.add(row[\"dependantType\"])\n",
|
|
111
|
-
"\n",
|
|
112
|
-
" # Check if dependencyType node already added\n",
|
|
113
|
-
" if row[\"dependencyType\"] not in added_nodes:\n",
|
|
114
|
-
" if filter_to_relevant != \"\":\n",
|
|
115
|
-
" if row[\"dependencyType\"] in relevant_nodes:\n",
|
|
116
|
-
" dot.node(\n",
|
|
117
|
-
" row[\"dependencyType\"],\n",
|
|
118
|
-
" shape=node_shape,\n",
|
|
119
|
-
" style=\"filled\",\n",
|
|
120
|
-
" fillcolor=palette.__moderne_color_map[\"red\"][200],\n",
|
|
121
|
-
" )\n",
|
|
122
|
-
" added_nodes.add(row[\"dependantType\"])\n",
|
|
123
|
-
" if row[\"dependencyType\"] in descendant_nodes:\n",
|
|
124
|
-
" dot.node(\n",
|
|
125
|
-
" row[\"dependencyType\"],\n",
|
|
126
|
-
" shape=node_shape,\n",
|
|
127
|
-
" style=\"filled\",\n",
|
|
128
|
-
" fillcolor=palette.__moderne_color_map[\"blue\"][200],\n",
|
|
129
|
-
" )\n",
|
|
130
|
-
" added_nodes.add(row[\"dependencyType\"])\n",
|
|
131
|
-
" else:\n",
|
|
132
|
-
" dot.node(\n",
|
|
133
|
-
" row[\"dependencyType\"],\n",
|
|
134
|
-
" shape=node_shape,\n",
|
|
135
|
-
" style=\"filled\",\n",
|
|
136
|
-
" fillcolor=palette.__moderne_color_map[\"blue\"][200],\n",
|
|
137
|
-
" )\n",
|
|
138
|
-
" added_nodes.add(row[\"dependencyType\"])\n",
|
|
139
|
-
"\n",
|
|
140
|
-
" # Add edge\n",
|
|
141
|
-
" if (row[\"dependantType\"], row[\"dependencyType\"]) not in added_edges:\n",
|
|
142
|
-
" if filter_to_relevant != \"\":\n",
|
|
143
|
-
" if row[\"dependantType\"] in descendant_nodes:\n",
|
|
144
|
-
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
145
|
-
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
146
|
-
" if row[\"dependencyType\"] in ancestor_nodes:\n",
|
|
147
|
-
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
148
|
-
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
149
|
-
" if row[\"dependantType\"] in relevant_nodes:\n",
|
|
150
|
-
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
151
|
-
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
152
|
-
" if row[\"dependencyType\"] in relevant_nodes:\n",
|
|
153
|
-
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
154
|
-
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
155
|
-
" else:\n",
|
|
156
|
-
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
157
|
-
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
158
|
-
"\n",
|
|
159
|
-
"\n",
|
|
160
|
-
"# Apply mapping to each row\n",
|
|
161
|
-
"df.apply(map_relationship, axis=1)\n",
|
|
162
|
-
"\n",
|
|
163
|
-
"# Display the graph\n",
|
|
164
|
-
"dot"
|
|
165
|
-
]
|
|
166
|
-
}
|
|
167
|
-
],
|
|
168
|
-
"metadata": {
|
|
169
|
-
"kernelspec": {
|
|
170
|
-
"display_name": "Python 3",
|
|
171
|
-
"language": "python",
|
|
172
|
-
"name": "python3"
|
|
173
|
-
},
|
|
174
|
-
"language_info": {
|
|
175
|
-
"codemirror_mode": {
|
|
176
|
-
"name": "ipython",
|
|
177
|
-
"version": 3
|
|
178
|
-
},
|
|
179
|
-
"file_extension": ".py",
|
|
180
|
-
"mimetype": "text/x-python",
|
|
181
|
-
"name": "python",
|
|
182
|
-
"nbconvert_exporter": "python",
|
|
183
|
-
"pygments_lexer": "ipython3",
|
|
184
|
-
"version": "3.11.4"
|
|
185
|
-
}
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "code",
|
|
5
|
+
"execution_count": null,
|
|
6
|
+
"metadata": {
|
|
7
|
+
"tags": [
|
|
8
|
+
"parameters"
|
|
9
|
+
]
|
|
10
|
+
},
|
|
11
|
+
"outputs": [],
|
|
12
|
+
"source": [
|
|
13
|
+
"node_shape: str = \"box\"\n",
|
|
14
|
+
"filter_to_relevant: str = \"\""
|
|
15
|
+
]
|
|
186
16
|
},
|
|
187
|
-
|
|
188
|
-
|
|
17
|
+
{
|
|
18
|
+
"cell_type": "code",
|
|
19
|
+
"execution_count": null,
|
|
20
|
+
"metadata": {},
|
|
21
|
+
"outputs": [],
|
|
22
|
+
"source": [
|
|
23
|
+
"import graphviz\n",
|
|
24
|
+
"from code_data_science import data_table as dt\n",
|
|
25
|
+
"import code_data_science.palette as palette\n",
|
|
26
|
+
"\n",
|
|
27
|
+
"df = dt.read_csv(\"../samples/spring_component_relationships.csv\")"
|
|
28
|
+
]
|
|
29
|
+
},
|
|
30
|
+
{
|
|
31
|
+
"cell_type": "code",
|
|
32
|
+
"execution_count": null,
|
|
33
|
+
"metadata": {},
|
|
34
|
+
"outputs": [],
|
|
35
|
+
"source": [
|
|
36
|
+
"import networkx as nx\n",
|
|
37
|
+
"\n",
|
|
38
|
+
"relevant_nodes = set()\n",
|
|
39
|
+
"ancestor_nodes = set()\n",
|
|
40
|
+
"descendant_nodes = set()\n",
|
|
41
|
+
"\n",
|
|
42
|
+
"if filter_to_relevant:\n",
|
|
43
|
+
" G = nx.from_pandas_edgelist(\n",
|
|
44
|
+
" df, \"dependantType\", \"dependencyType\", create_using=nx.DiGraph()\n",
|
|
45
|
+
" )\n",
|
|
46
|
+
"\n",
|
|
47
|
+
" for node in G.nodes:\n",
|
|
48
|
+
" if filter_to_relevant in node:\n",
|
|
49
|
+
" relevant_nodes.add(node) # Include the node itself\n",
|
|
50
|
+
" # Add all descendants and ancestors of the node\n",
|
|
51
|
+
" descendant_nodes.update(nx.descendants(G, node))\n",
|
|
52
|
+
" ancestor_nodes.update(nx.ancestors(G, node))"
|
|
53
|
+
]
|
|
54
|
+
},
|
|
55
|
+
{
|
|
56
|
+
"cell_type": "code",
|
|
57
|
+
"execution_count": null,
|
|
58
|
+
"metadata": {},
|
|
59
|
+
"outputs": [],
|
|
60
|
+
"source": [
|
|
61
|
+
"# Continue with your Graphviz setup\n",
|
|
62
|
+
"graphviz.set_jupyter_format(\"svg\")\n",
|
|
63
|
+
"dot = graphviz.Digraph(\"spring-relationships\", comment=\"Spring component relationships\")\n",
|
|
64
|
+
"\n",
|
|
65
|
+
"dot.graph_attr = {\n",
|
|
66
|
+
" \"overlap\": \"true\",\n",
|
|
67
|
+
" \"normalize\": \"true\",\n",
|
|
68
|
+
" \"overlap_shrink\": \"true\",\n",
|
|
69
|
+
" \"overlap_scaling\": \"60\",\n",
|
|
70
|
+
" \"nodesep\": \"1\",\n",
|
|
71
|
+
"}\n",
|
|
72
|
+
"\n",
|
|
73
|
+
"added_nodes = set()\n",
|
|
74
|
+
"added_edges = set()\n",
|
|
75
|
+
"\n",
|
|
76
|
+
"\n",
|
|
77
|
+
"def map_relationship(row):\n",
|
|
78
|
+
" \"\"\"\n",
|
|
79
|
+
" For a row determine which node and relationship should be added to the graph\n",
|
|
80
|
+
" If a relevant filter has been applied then we only want to graph nodes that\n",
|
|
81
|
+
" are descendants or ancestors of the relevant nodes\n",
|
|
82
|
+
" \"\"\"\n",
|
|
83
|
+
" # Check if dependantType node already added\n",
|
|
84
|
+
" if row[\"dependantType\"] not in added_nodes:\n",
|
|
85
|
+
" if filter_to_relevant != \"\":\n",
|
|
86
|
+
" if row[\"dependantType\"] in relevant_nodes:\n",
|
|
87
|
+
" dot.node(\n",
|
|
88
|
+
" row[\"dependantType\"],\n",
|
|
89
|
+
" shape=node_shape,\n",
|
|
90
|
+
" style=\"filled\",\n",
|
|
91
|
+
" fillcolor=palette.__moderne_color_map[\"red\"][200],\n",
|
|
92
|
+
" )\n",
|
|
93
|
+
" added_nodes.add(row[\"dependantType\"])\n",
|
|
94
|
+
" if row[\"dependantType\"] in ancestor_nodes:\n",
|
|
95
|
+
" dot.node(\n",
|
|
96
|
+
" row[\"dependantType\"],\n",
|
|
97
|
+
" shape=node_shape,\n",
|
|
98
|
+
" style=\"filled\",\n",
|
|
99
|
+
" fillcolor=palette.__moderne_color_map[\"blue\"][200],\n",
|
|
100
|
+
" )\n",
|
|
101
|
+
" added_nodes.add(row[\"dependantType\"])\n",
|
|
102
|
+
" else:\n",
|
|
103
|
+
" dot.node(\n",
|
|
104
|
+
" row[\"dependantType\"],\n",
|
|
105
|
+
" shape=node_shape,\n",
|
|
106
|
+
" style=\"filled\",\n",
|
|
107
|
+
" fillcolor=palette.__moderne_color_map[\"blue\"][200],\n",
|
|
108
|
+
" )\n",
|
|
109
|
+
" added_nodes.add(row[\"dependantType\"])\n",
|
|
110
|
+
"\n",
|
|
111
|
+
" # Check if dependencyType node already added\n",
|
|
112
|
+
" if row[\"dependencyType\"] not in added_nodes:\n",
|
|
113
|
+
" if filter_to_relevant != \"\":\n",
|
|
114
|
+
" if row[\"dependencyType\"] in relevant_nodes:\n",
|
|
115
|
+
" dot.node(\n",
|
|
116
|
+
" row[\"dependencyType\"],\n",
|
|
117
|
+
" shape=node_shape,\n",
|
|
118
|
+
" style=\"filled\",\n",
|
|
119
|
+
" fillcolor=palette.__moderne_color_map[\"red\"][200],\n",
|
|
120
|
+
" )\n",
|
|
121
|
+
" added_nodes.add(row[\"dependantType\"])\n",
|
|
122
|
+
" if row[\"dependencyType\"] in descendant_nodes:\n",
|
|
123
|
+
" dot.node(\n",
|
|
124
|
+
" row[\"dependencyType\"],\n",
|
|
125
|
+
" shape=node_shape,\n",
|
|
126
|
+
" style=\"filled\",\n",
|
|
127
|
+
" fillcolor=palette.__moderne_color_map[\"blue\"][200],\n",
|
|
128
|
+
" )\n",
|
|
129
|
+
" added_nodes.add(row[\"dependencyType\"])\n",
|
|
130
|
+
" else:\n",
|
|
131
|
+
" dot.node(\n",
|
|
132
|
+
" row[\"dependencyType\"],\n",
|
|
133
|
+
" shape=node_shape,\n",
|
|
134
|
+
" style=\"filled\",\n",
|
|
135
|
+
" fillcolor=palette.__moderne_color_map[\"blue\"][200],\n",
|
|
136
|
+
" )\n",
|
|
137
|
+
" added_nodes.add(row[\"dependencyType\"])\n",
|
|
138
|
+
"\n",
|
|
139
|
+
" # Add edge\n",
|
|
140
|
+
" if (row[\"dependantType\"], row[\"dependencyType\"]) not in added_edges:\n",
|
|
141
|
+
" if filter_to_relevant != \"\":\n",
|
|
142
|
+
" if row[\"dependantType\"] in descendant_nodes:\n",
|
|
143
|
+
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
144
|
+
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
145
|
+
" if row[\"dependencyType\"] in ancestor_nodes:\n",
|
|
146
|
+
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
147
|
+
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
148
|
+
" if row[\"dependantType\"] in relevant_nodes:\n",
|
|
149
|
+
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
150
|
+
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
151
|
+
" if row[\"dependencyType\"] in relevant_nodes:\n",
|
|
152
|
+
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
153
|
+
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
154
|
+
" else:\n",
|
|
155
|
+
" dot.edge(row[\"dependantType\"], row[\"dependencyType\"])\n",
|
|
156
|
+
" added_edges.add((row[\"dependantType\"], row[\"dependencyType\"]))\n",
|
|
157
|
+
"\n",
|
|
158
|
+
"\n",
|
|
159
|
+
"# Apply mapping to each row\n",
|
|
160
|
+
"df.apply(map_relationship, axis=1)\n",
|
|
161
|
+
"\n",
|
|
162
|
+
"# Display the graph\n",
|
|
163
|
+
"dot"
|
|
164
|
+
]
|
|
165
|
+
}
|
|
166
|
+
],
|
|
167
|
+
"metadata": {
|
|
168
|
+
"kernelspec": {
|
|
169
|
+
"display_name": "Python 3",
|
|
170
|
+
"language": "python",
|
|
171
|
+
"name": "python3"
|
|
172
|
+
},
|
|
173
|
+
"language_info": {
|
|
174
|
+
"codemirror_mode": {
|
|
175
|
+
"name": "ipython",
|
|
176
|
+
"version": 3
|
|
177
|
+
},
|
|
178
|
+
"file_extension": ".py",
|
|
179
|
+
"mimetype": "text/x-python",
|
|
180
|
+
"name": "python",
|
|
181
|
+
"nbconvert_exporter": "python",
|
|
182
|
+
"pygments_lexer": "ipython3",
|
|
183
|
+
"version": "3.11.4"
|
|
184
|
+
}
|
|
185
|
+
},
|
|
186
|
+
"nbformat": 4,
|
|
187
|
+
"nbformat_minor": 2
|
|
189
188
|
}
|
|
@@ -0,0 +1,110 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "markdown",
|
|
5
|
+
"metadata": {},
|
|
6
|
+
"source": [
|
|
7
|
+
"UI5Lint rule treemap"
|
|
8
|
+
]
|
|
9
|
+
},
|
|
10
|
+
{
|
|
11
|
+
"cell_type": "code",
|
|
12
|
+
"execution_count": null,
|
|
13
|
+
"metadata": {},
|
|
14
|
+
"outputs": [],
|
|
15
|
+
"source": [
|
|
16
|
+
"import plotly.express as px\n",
|
|
17
|
+
"from code_data_science import data_table as dt\n",
|
|
18
|
+
"import code_data_science.palette as palette\n",
|
|
19
|
+
"\n",
|
|
20
|
+
"df = dt.read_csv(\"../samples/ui5_lint.csv\")\n",
|
|
21
|
+
"df[\"problems\"] = 1\n",
|
|
22
|
+
"\n",
|
|
23
|
+
"if len(df) == 0:\n",
|
|
24
|
+
" fig = px.treemap(names=[], parents=[])\n",
|
|
25
|
+
" fig.add_annotation(\n",
|
|
26
|
+
" x=0.5, y=0.5, text=\"No rows of data found\", showarrow=False, font=dict(size=20)\n",
|
|
27
|
+
" )\n",
|
|
28
|
+
"else:\n",
|
|
29
|
+
" # concat origin:path:branch into repository\n",
|
|
30
|
+
" df[\"repository\"] = (\n",
|
|
31
|
+
" df[\"repositoryOrigin\"]\n",
|
|
32
|
+
" + \":\"\n",
|
|
33
|
+
" + df[\"repositoryPath\"]\n",
|
|
34
|
+
" + \":\"\n",
|
|
35
|
+
" + df[\"repositoryBranch\"]\n",
|
|
36
|
+
" )\n",
|
|
37
|
+
" df[\"fileType\"] = df[\"sourcePath\"].str.split(\".\").str[-1]\n",
|
|
38
|
+
" df_file_grouped = df.groupby(\n",
|
|
39
|
+
" by=[\"ruleId\", \"repository\", \"fileType\"],\n",
|
|
40
|
+
" as_index=False,\n",
|
|
41
|
+
" ).sum(numeric_only=True)\n",
|
|
42
|
+
"\n",
|
|
43
|
+
" path = [\"ruleId\", \"repository\"]\n",
|
|
44
|
+
"\n",
|
|
45
|
+
" # number of rows in the dataframe\n",
|
|
46
|
+
" total_problems = len(df[\"sourcePath\"])\n",
|
|
47
|
+
"\n",
|
|
48
|
+
" measurement_field = \"problems\"\n",
|
|
49
|
+
"\n",
|
|
50
|
+
" # Set the color palette\n",
|
|
51
|
+
" colors = palette.qualitative()\n",
|
|
52
|
+
"\n",
|
|
53
|
+
" fig = px.treemap(\n",
|
|
54
|
+
" df_file_grouped,\n",
|
|
55
|
+
" path=path,\n",
|
|
56
|
+
" values=measurement_field,\n",
|
|
57
|
+
" color_discrete_sequence=colors,\n",
|
|
58
|
+
" )\n",
|
|
59
|
+
"\n",
|
|
60
|
+
" fig.update_layout(\n",
|
|
61
|
+
" margin=dict(t=28, l=0, r=0, b=0),\n",
|
|
62
|
+
" annotations=[\n",
|
|
63
|
+
" dict(\n",
|
|
64
|
+
" x=0.01,\n",
|
|
65
|
+
" y=1.055,\n",
|
|
66
|
+
" showarrow=False,\n",
|
|
67
|
+
" borderwidth=1,\n",
|
|
68
|
+
" text=\"<b>More info</b>\",\n",
|
|
69
|
+
" hovertext=(\n",
|
|
70
|
+
" f\"\"\"\n",
|
|
71
|
+
" <b>Total problems:</b> {\"{:,}\".format(total_problems)} </br> </br>\n",
|
|
72
|
+
" \"\"\"\n",
|
|
73
|
+
" ),\n",
|
|
74
|
+
" xref=\"paper\",\n",
|
|
75
|
+
" yref=\"paper\",\n",
|
|
76
|
+
" )\n",
|
|
77
|
+
" ],\n",
|
|
78
|
+
" )\n",
|
|
79
|
+
"\n",
|
|
80
|
+
" fig.update_traces(\n",
|
|
81
|
+
" marker=dict(cornerradius=3),\n",
|
|
82
|
+
" )\n",
|
|
83
|
+
"\n",
|
|
84
|
+
" fig.data[0].textinfo = \"label+text+value\"\n",
|
|
85
|
+
" fig.show()"
|
|
86
|
+
]
|
|
87
|
+
}
|
|
88
|
+
],
|
|
89
|
+
"metadata": {
|
|
90
|
+
"kernelspec": {
|
|
91
|
+
"display_name": ".venv",
|
|
92
|
+
"language": "python",
|
|
93
|
+
"name": "python3"
|
|
94
|
+
},
|
|
95
|
+
"language_info": {
|
|
96
|
+
"codemirror_mode": {
|
|
97
|
+
"name": "ipython",
|
|
98
|
+
"version": 3
|
|
99
|
+
},
|
|
100
|
+
"file_extension": ".py",
|
|
101
|
+
"mimetype": "text/x-python",
|
|
102
|
+
"name": "python",
|
|
103
|
+
"nbconvert_exporter": "python",
|
|
104
|
+
"pygments_lexer": "ipython3",
|
|
105
|
+
"version": "3.9.6"
|
|
106
|
+
}
|
|
107
|
+
},
|
|
108
|
+
"nbformat": 4,
|
|
109
|
+
"nbformat_minor": 4
|
|
110
|
+
}
|
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
{
|
|
2
|
+
"cells": [
|
|
3
|
+
{
|
|
4
|
+
"cell_type": "markdown",
|
|
5
|
+
"metadata": {},
|
|
6
|
+
"source": [
|
|
7
|
+
"UI5Lint violations heatmap"
|
|
8
|
+
]
|
|
9
|
+
},
|
|
10
|
+
{
|
|
11
|
+
"cell_type": "code",
|
|
12
|
+
"execution_count": null,
|
|
13
|
+
"metadata": {},
|
|
14
|
+
"outputs": [],
|
|
15
|
+
"source": [
|
|
16
|
+
"import plotly.express as px\n",
|
|
17
|
+
"from code_data_science import data_table as dt\n",
|
|
18
|
+
"import code_data_science.palette as palette\n",
|
|
19
|
+
"\n",
|
|
20
|
+
"df = dt.read_csv(\"../samples/ui5_lint.csv\")\n",
|
|
21
|
+
"\n",
|
|
22
|
+
"df[\"repository\"] = df[\"repositoryPath\"] + \":\" + df[\"repositoryBranch\"]\n",
|
|
23
|
+
"\n",
|
|
24
|
+
"df_heat = df.groupby([\"repository\", \"ruleId\"]).size().reset_index(name=\"count\")\n",
|
|
25
|
+
"\n",
|
|
26
|
+
"pivot_table = df_heat.pivot(\n",
|
|
27
|
+
" index=\"repository\", columns=\"ruleId\", values=\"count\"\n",
|
|
28
|
+
").fillna(0)\n",
|
|
29
|
+
"\n",
|
|
30
|
+
"colors = palette.color_gradient(\"yellow\")[0:4] + palette.color_gradient(\"red\")[3:6]\n",
|
|
31
|
+
"\n",
|
|
32
|
+
"fig_heat = px.imshow(\n",
|
|
33
|
+
" pivot_table,\n",
|
|
34
|
+
" text_auto=True,\n",
|
|
35
|
+
" aspect=\"auto\",\n",
|
|
36
|
+
" title=\"Heatmap of Rule Violations by Repository\",\n",
|
|
37
|
+
" color_continuous_scale=colors,\n",
|
|
38
|
+
")\n",
|
|
39
|
+
"\n",
|
|
40
|
+
"fig_heat.update_traces(\n",
|
|
41
|
+
" hovertemplate=\"Rule id: %{x}<br>Repository: %{y}<br>Count: %{z}<extra></extra>\"\n",
|
|
42
|
+
")\n",
|
|
43
|
+
"\n",
|
|
44
|
+
"fig_heat.show()"
|
|
45
|
+
]
|
|
46
|
+
},
|
|
47
|
+
{
|
|
48
|
+
"cell_type": "code",
|
|
49
|
+
"execution_count": null,
|
|
50
|
+
"metadata": {},
|
|
51
|
+
"outputs": [],
|
|
52
|
+
"source": []
|
|
53
|
+
}
|
|
54
|
+
],
|
|
55
|
+
"metadata": {
|
|
56
|
+
"kernelspec": {
|
|
57
|
+
"display_name": ".venv",
|
|
58
|
+
"language": "python",
|
|
59
|
+
"name": "python3"
|
|
60
|
+
},
|
|
61
|
+
"language_info": {
|
|
62
|
+
"codemirror_mode": {
|
|
63
|
+
"name": "ipython",
|
|
64
|
+
"version": 3
|
|
65
|
+
},
|
|
66
|
+
"file_extension": ".py",
|
|
67
|
+
"mimetype": "text/x-python",
|
|
68
|
+
"name": "python",
|
|
69
|
+
"nbconvert_exporter": "python",
|
|
70
|
+
"pygments_lexer": "ipython3",
|
|
71
|
+
"version": "3.9.6"
|
|
72
|
+
}
|
|
73
|
+
},
|
|
74
|
+
"nbformat": 4,
|
|
75
|
+
"nbformat_minor": 4
|
|
76
|
+
}
|