mnspy 0.9.19__py3-none-any.whl → 0.9.21__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -690,10 +690,6 @@ class Ensamble:
690
690
  i = 0
691
691
  elif n.punto[1] == self._graf['lim_y'][1]:
692
692
  i = 2
693
- elif n.punto[0] == self._graf['lim_x'][0]:
694
- i = 4
695
- elif n.punto[0] == self._graf['lim_x'][1]:
696
- i = 6
697
693
  else:
698
694
  i = 0
699
695
  if len(n.get_soporte()) == 0:
@@ -825,10 +821,6 @@ class Ensamble:
825
821
  i = 0
826
822
  elif n.punto[1] == self._graf['lim_y'][1]:
827
823
  i = 2
828
- elif n.punto[0] == self._graf['lim_x'][0]:
829
- i = 4
830
- elif n.punto[0] == self._graf['lim_x'][1]:
831
- i = 6
832
824
  else:
833
825
  i = 0
834
826
  if len(n.get_soporte()) == 0:
@@ -23,7 +23,8 @@ class Biseccion(Raices):
23
23
  Tipo de error a utilizar para la convergencia:
24
24
  - ``'%'``: Error relativo porcentual.
25
25
  - ``'/'``: Error relativo.
26
- - ``'n'``: Número de cifras significativas.
26
+ - ``'n'``: Número de cifras significativas. εs = (0.5 * 10^(2-n))% [Scarborough, 1966]
27
+ - ``'t'``: Tolerancia. tol = |b - a|/2 (Solo aplica en los métodos cerrados)
27
28
 
28
29
  Methods
29
30
  -------
@@ -68,7 +69,7 @@ class Biseccion(Raices):
68
69
  max_iter: int
69
70
  Número máximo de iteraciones permitido.
70
71
  tipo_error: str
71
- Tipo de error a utilizar: ``'%'``, ``'/'`` o ``'n'``.
72
+ Tipo de error a utilizar: ``'%'``, ``'/'``, ``'n'`` o ``'t'``.
72
73
  """
73
74
  super().__init__(f, x_min, x_max, tol, max_iter, tipo_error)
74
75
  self._calcular()
@@ -135,9 +136,11 @@ class Biseccion(Raices):
135
136
  linea_base.set_xdata([self._tabla['x_min'][i], self._tabla['x_max'][i]])
136
137
  plt.title(f'x = {self.x}')
137
138
  if self._error_porcentual:
138
- plt.suptitle('Método de la Bisección (tol= ' + str(self._tol) + '%)')
139
- else:
139
+ plt.suptitle(r'Método de la Bisección ($\varepsilon_{s}[\%]$= ' + str(self._tol) + '%)')
140
+ elif self._error_tolerancia:
140
141
  plt.suptitle('Método de la Bisección (tol= ' + str(self._tol) + ')')
142
+ else:
143
+ plt.suptitle(r'Método de la Bisección ($\varepsilon_{s}$= ' + str(self._tol) + ')')
141
144
  super().graficar(mostrar_sol, mostrar_iter, mostrar_lin_iter, n_puntos)
142
145
 
143
146
 
@@ -2,7 +2,6 @@ from mnspy.raíces import Raices
2
2
  import numpy as np
3
3
  import matplotlib.pyplot as plt
4
4
  import sys
5
- plt.rcParams.update(plt.rcParamsDefault)
6
5
 
7
6
  class Brent(Raices):
8
7
  """Clase para la implementación del cálculo de raíces por el método cerrado de Brent.
@@ -23,7 +22,8 @@ class Brent(Raices):
23
22
  Tipo de error a utilizar para la convergencia:
24
23
  - ``'%'``: Error relativo porcentual.
25
24
  - ``'/'``: Error relativo.
26
- - ``'n'``: Número de cifras significativas.
25
+ - ``'n'``: Número de cifras significativas. εs = (0.5 * 10^(2-n))% [Scarborough, 1966]
26
+ - ``'t'``: Tolerancia. tol = |b - a|/2 (Solo aplica en los métodos cerrados)
27
27
 
28
28
  Methods
29
29
  -------
@@ -62,7 +62,7 @@ class Brent(Raices):
62
62
  max_iter: int
63
63
  Número máximo de iteraciones permitido.
64
64
  tipo_error: str
65
- Tipo de error a utilizar: ``'%'``, ``'/'`` o ``'n'``.
65
+ Tipo de error a utilizar: ``'%'``, ``'/'``, ``'n'`` o ``'t'``.
66
66
  """
67
67
  # Inicialización de la clase padre
68
68
  super().__init__(f, x_min, x_max, tol, max_iter, tipo_error)
@@ -167,9 +167,11 @@ class Brent(Raices):
167
167
  """
168
168
  plt.title(f'x = {self.x}')
169
169
  if self._error_porcentual:
170
- plt.suptitle('Método de Brent (tol= ' + str(self._tol) + '%)')
170
+ plt.suptitle(r'Método de la Brent ($\varepsilon_{s}[\%]$= ' + str(self._tol) + '%)')
171
+ elif self._error_tolerancia:
172
+ plt.suptitle('Método de la Brent (tol= ' + str(self._tol) + ')')
171
173
  else:
172
- plt.suptitle('Método de Brent (tol= ' + str(self._tol) + ')')
174
+ plt.suptitle(r'Método de la Brent ($\varepsilon_{s}$= ' + str(self._tol) + ')')
173
175
  super().graficar(mostrar_sol, mostrar_iter, mostrar_lin_iter, n_puntos)
174
176
 
175
177
 
@@ -2,7 +2,7 @@ from mnspy.raíces import Raices
2
2
  import numpy as np
3
3
  import matplotlib.pyplot as plt
4
4
  import sys
5
- plt.rcParams.update(plt.rcParamsDefault)
5
+
6
6
 
7
7
  class FalsaPosicion(Raices):
8
8
  """Clase para la implementación del cálculo de raíces por el método cerrado de la Falsa Posición.
@@ -23,7 +23,8 @@ class FalsaPosicion(Raices):
23
23
  Tipo de error a utilizar para la convergencia:
24
24
  - ``'%'``: Error relativo porcentual.
25
25
  - ``'/'``: Error relativo.
26
- - ``'n'``: Número de cifras significativas.
26
+ - ``'n'``: Número de cifras significativas. εs = (0.5 * 10^(2-n))% [Scarborough, 1966]
27
+ - ``'t'``: Tolerancia. tol = |b - a|/2 (Solo aplica en los métodos cerrados)
27
28
 
28
29
  Methods
29
30
  -------
@@ -65,7 +66,7 @@ class FalsaPosicion(Raices):
65
66
  max_iter: int
66
67
  Número máximo de iteraciones permitido.
67
68
  tipo_error: str
68
- Tipo de error a utilizar: ``'%'``, ``'/'`` o ``'n'``.
69
+ Tipo de error a utilizar: ``'%'``, ``'/'``, ``'n'`` o ``'t'``.
69
70
  """
70
71
  super().__init__(f, x_min, x_max, tol, max_iter, tipo_error)
71
72
  self._calcular()
@@ -127,9 +128,11 @@ class FalsaPosicion(Raices):
127
128
  plt.plot([a, b], [self._f(a), self._f(b)], linestyle='dashed', c='purple', lw=1)
128
129
  plt.title(f'x = {self.x}')
129
130
  if self._error_porcentual:
130
- plt.suptitle('Método de la Falsa Posición (tol= ' + str(self._tol) + '%)')
131
- else:
131
+ plt.suptitle(r'Método de la Falsa Posición ($\varepsilon_{s}[\%]$= ' + str(self._tol) + '%)')
132
+ elif self._error_tolerancia:
132
133
  plt.suptitle('Método de la Falsa Posición (tol= ' + str(self._tol) + ')')
134
+ else:
135
+ plt.suptitle(r'Método de la Falsa Posición ($\varepsilon_{s}$= ' + str(self._tol) + ')')
133
136
  super().graficar(mostrar_sol, mostrar_iter, mostrar_lin_iter, n_puntos)
134
137
 
135
138
 
@@ -1,7 +1,7 @@
1
1
  from mnspy.raíces import Raices
2
2
  import numpy as np
3
3
  import matplotlib.pyplot as plt
4
- plt.rcParams.update(plt.rcParamsDefault)
4
+
5
5
 
6
6
  class Muller(Raices):
7
7
  """Clase para la implementación del cálculo de raíces por el método abierto de Muller.
@@ -150,9 +150,9 @@ class Muller(Raices):
150
150
  plt.autoscale(True)
151
151
  plt.title(f'x = {self.x}')
152
152
  if self._error_porcentual:
153
- plt.suptitle('Método de Müller (tol= ' + str(self._tol) + '%)')
153
+ plt.suptitle(r'Método de Müller ($\varepsilon_{s}[\%]$= ' + str(self._tol) + '%)')
154
154
  else:
155
- plt.suptitle('Método de Müller (tol= ' + str(self._tol) + ')')
155
+ plt.suptitle(r'Método de Müller ($\varepsilon_{s}$= ' + str(self._tol) + ')')
156
156
  super().graficar(mostrar_sol, mostrar_iter, mostrar_lin_iter, n_puntos)
157
157
 
158
158
 
@@ -1,6 +1,6 @@
1
1
  from mnspy.raíces import Raices
2
2
  import matplotlib.pyplot as plt
3
- plt.rcParams.update(plt.rcParamsDefault)
3
+
4
4
 
5
5
  class NewtonRaphson(Raices):
6
6
  """Clase para la implementación del cálculo de raíces por el método abierto de Newton-Raphson.
@@ -155,9 +155,9 @@ class NewtonRaphson(Raices):
155
155
  plt.plot([x_next, x_next], [0, self._f(x_next)], linestyle='dashed', c='purple', lw=1)
156
156
  plt.title(f'x = {self.x}')
157
157
  if self._error_porcentual:
158
- plt.suptitle('Método de Newton-Raphson (tol= ' + str(self._tol) + '%)')
158
+ plt.suptitle(r'Método de Newton-Raphson ($\varepsilon_{s}[\%]$= ' + str(self._tol) + '%)')
159
159
  else:
160
- plt.suptitle('Método de Newton-Raphson (tol= ' + str(self._tol) + ')')
160
+ plt.suptitle(r'Método de Newton-Raphson ($\varepsilon_{s}$= ' + str(self._tol) + ')')
161
161
  super().graficar(mostrar_sol, mostrar_iter, mostrar_lin_iter, n_puntos)
162
162
 
163
163
 
@@ -1,7 +1,6 @@
1
1
  from mnspy.raíces import Raices
2
2
  import numpy as np
3
3
  import matplotlib.pyplot as plt
4
- plt.rcParams.update(plt.rcParamsDefault)
5
4
 
6
5
  class PuntoFijo(Raices):
7
6
  """Clase para la implementación del cálculo de raíces por el método abierto de Newton-Raphson.
@@ -116,9 +115,9 @@ class PuntoFijo(Raices):
116
115
  plt.plot([x, y], [y, y], linestyle='dashed', c='purple', lw=1)
117
116
  plt.title(f'x = {self.x}')
118
117
  if self._error_porcentual:
119
- plt.suptitle('Método de Punto Fijo (tol= ' + str(self._tol) + '%)')
118
+ plt.suptitle(r'Método de Punto Fijo ($\varepsilon_{s}[\%]$= ' + str(self._tol) + '%)')
120
119
  else:
121
- plt.suptitle('Método de Punto Fijo (tol= ' + str(self._tol) + ')')
120
+ plt.suptitle(r'Método de Punto Fijo ($\varepsilon_{s}$= ' + str(self._tol) + ')')
122
121
  super().graficar(mostrar_sol, mostrar_iter, mostrar_lin_iter, n_puntos)
123
122
 
124
123
 
@@ -1,7 +1,6 @@
1
1
  from mnspy.raíces import Raices
2
2
  import numpy as np
3
3
  import matplotlib.pyplot as plt
4
- plt.rcParams.update(plt.rcParamsDefault)
5
4
 
6
5
  class Secante(Raices):
7
6
  """Clase para la implementación del cálculo de raíces por el método abierto de la Secante.
@@ -125,9 +124,9 @@ class Secante(Raices):
125
124
  plt.plot([x_next, x_next], [0, self._f(x_next)], linestyle='dashed', c='purple', lw=1)
126
125
  plt.title(f'x = {self.x}')
127
126
  if self._error_porcentual:
128
- plt.suptitle('Método de la Secante (tol= ' + str(self._tol) + '%)')
127
+ plt.suptitle(r'Método de la Secante ($\varepsilon_{s}[\%]$= ' + str(self._tol) + '%)')
129
128
  else:
130
- plt.suptitle('Método de la Secante (tol= ' + str(self._tol) + ')')
129
+ plt.suptitle(r'Método de la Secante ($\varepsilon_{s}$= ' + str(self._tol) + ')')
131
130
  super().graficar(mostrar_sol, mostrar_iter, mostrar_lin_iter, n_puntos)
132
131
 
133
132
 
@@ -1,6 +1,6 @@
1
1
  from mnspy.raíces import Raices
2
2
  import matplotlib.pyplot as plt
3
- plt.rcParams.update(plt.rcParamsDefault)
3
+
4
4
 
5
5
  class SecanteModificada(Raices):
6
6
  """Clase para la implementación del cálculo de raíces por el método abierto de la Secante Modificada.
@@ -120,10 +120,10 @@ class SecanteModificada(Raices):
120
120
  plt.title(f'x = {self.x}')
121
121
  if self._error_porcentual:
122
122
  plt.suptitle(
123
- r'Método de la Secante Modificada, $\delta$ = ' + str(self._delta) + ' (tol= ' + str(self._tol) + '%)')
123
+ r'Método de la Secante Modificada, $\delta$ = ' + str(self._delta) + r' ($\varepsilon_{s}[\%]$= ' + str(self._tol) + '%)')
124
124
  else:
125
125
  plt.suptitle(
126
- r'Método de la Secante Modificada, $\delta$ = ' + str(self._delta) + ' (tol= ' + str(self._tol) + ')')
126
+ r'Método de la Secante Modificada, $\delta$ = ' + str(self._delta) + r' ($\varepsilon_{s}$= ' + str(self._tol) + ')')
127
127
  super().graficar(mostrar_sol, mostrar_iter, mostrar_lin_iter, n_puntos)
128
128
 
129
129
 
@@ -1,6 +1,5 @@
1
1
  from mnspy.raíces import Raices
2
2
  import matplotlib.pyplot as plt
3
- plt.rcParams.update(plt.rcParamsDefault)
4
3
 
5
4
  class Wegstein(Raices):
6
5
  """Clase para la implementación del cálculo de raíces por el método abierto de Wegstein.
@@ -132,9 +131,9 @@ class Wegstein(Raices):
132
131
  plt.plot([x_next, x_next], [0, x_next], linestyle='dashed', c='purple', lw=1)
133
132
  plt.title(f'x = {self.x}')
134
133
  if self._error_porcentual:
135
- plt.suptitle('Método de Wegstein (tol= ' + str(self._tol) + '%)')
134
+ plt.suptitle(r'Método de Wegstein ($\varepsilon_{s}[\%]$= ' + str(self._tol) + '%)')
136
135
  else:
137
- plt.suptitle('Método de Wegstein (tol= ' + str(self._tol) + ')')
136
+ plt.suptitle(r'Método de Wegstein ($\varepsilon_{s}$= ' + str(self._tol) + ')')
138
137
  super().graficar(mostrar_sol, mostrar_iter, mostrar_lin_iter, n_puntos)
139
138
 
140
139
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mnspy
3
- Version: 0.9.19
3
+ Version: 0.9.21
4
4
  Summary: Paquete didáctico para métodos numéricos
5
5
  Home-page: https://github.com/EdwinSoft/mnspy
6
6
  Author: Edwin Córdoba
@@ -27,7 +27,7 @@ mnspy/ecuaciones_diferenciales_parciales/mdf/mdf.py,sha256=d3YFg-AvomZ37BATojkeA
27
27
  mnspy/ecuaciones_diferenciales_parciales/mef/__init__.py,sha256=-ZqVb1Pn4CGcUKL5jNqAm_2PJrSBlghbQzRGLq6pOGw,1750
28
28
  mnspy/ecuaciones_diferenciales_parciales/mef/armadura.py,sha256=J0Og6NCSBLcwZCsb2_tzPdZAnUfLiSO-BZ82b86GC7Q,14761
29
29
  mnspy/ecuaciones_diferenciales_parciales/mef/barra.py,sha256=FB8dVdtRSMRAQYCjYgC8_yO8nShk8_uDBt5meHrAz9c,9867
30
- mnspy/ecuaciones_diferenciales_parciales/mef/ensamble.py,sha256=U6OrhxMubrmnIKkXyfTdM9UoQcAunTqRUcfxMGWtx30,105934
30
+ mnspy/ecuaciones_diferenciales_parciales/mef/ensamble.py,sha256=NK1dqOL_LM_tqbbTuBTsMqIItQaq5LJdHKnzbet1xhg,105482
31
31
  mnspy/ecuaciones_diferenciales_parciales/mef/marco.py,sha256=LGTZ--wfC3Bytp242aCX4iVQ4okD69tC04dIbaX8fJQ,70564
32
32
  mnspy/ecuaciones_diferenciales_parciales/mef/mef.py,sha256=SFdVCGO-bWFNOzmIgyfJFAcIuhojcx0nmuBC-1Jfiaw,45298
33
33
  mnspy/ecuaciones_diferenciales_parciales/mef/resorte.py,sha256=Jeq9bQjLfmIW0jkNA-ob6C27k5JGywZ1T9qLr4hMD0Q,13852
@@ -53,18 +53,18 @@ mnspy/interpolación/inter_spline_cubica.py,sha256=1oBT-t5zVB5RrLx6BkUWweKdwVwI_
53
53
  mnspy/interpolación/inter_spline_lineal.py,sha256=-UZUBcTLKIZqZw2ZZd2qIyxJK2Q4dqlZxRBdz-0jvuY,5196
54
54
  mnspy/interpolación/interpolacion.py,sha256=gV7OoLzGbN-p1L3vr-cXhoYd13vysVpLXpg8JujwfAc,1695
55
55
  mnspy/raíces/__init__.py,sha256=8_8u3bPEoHjh804bNVZVbNM2UOv-RiC7TmzCrz6zHCc,1497
56
- mnspy/raíces/bisección.py,sha256=JHP8o48I58NWNAQwEDUfzotMTJsY4ZkyHaET_fd1AlE,5638
57
- mnspy/raíces/brent.py,sha256=RwGSRcAeFp-Qy8XMmcEU6UqEcNb0RP1UYdmVMMiXngs,6689
58
- mnspy/raíces/falsa_posicion.py,sha256=NAqgo9_U1XkWtUc9s9lcV4IpJ_-vxw_3b5p9pzDOQvs,5371
59
- mnspy/raíces/muller.py,sha256=XkXLk99TrW_0hYam5CrzrmSJi6fJx-KhhaRL7_xLzcs,5886
60
- mnspy/raíces/newton_raphson.py,sha256=HccOD0TZovQEzBi16Rcsg7gc7tvlrWPNplcpGDL6g04,6431
61
- mnspy/raíces/punto_fijo.py,sha256=XCRl-rUsuMkYy2baptXT_wPXBLGht-r2_qegAKwv8xo,4635
56
+ mnspy/raíces/bisección.py,sha256=glMh-U4aHHxXzwRoOj464sd2VevjvA2E2bQyeq-ioTY,5931
57
+ mnspy/raíces/brent.py,sha256=2HEk8o6t4_Y6i24HTb9w1jkA5_Yiwqv07QzwsXHrxbI,6946
58
+ mnspy/raíces/falsa_posicion.py,sha256=ZGEf1G_SQpBcJbziZ30LTIADR9U_N3YLTobPlE_Qwkg,5629
59
+ mnspy/raíces/muller.py,sha256=y0XGJ1HCUnXbm5cHvdxBaH3o3ceRB2PBxVJogGAEkW0,5880
60
+ mnspy/raíces/newton_raphson.py,sha256=PEnAv6IDqyKIZ9v9htjCsMhfxgjIyuHA1TauhJxxvrk,6425
61
+ mnspy/raíces/punto_fijo.py,sha256=1bv4dPNo04GGpAdrJN3cqTShaqySQzy9GCti5V__aso,4628
62
62
  mnspy/raíces/raices.py,sha256=EpxP93x-G8f9gVNloEuQx5a8o8xpzk5ioGtrguYzLoQ,18656
63
- mnspy/raíces/secante.py,sha256=mLYNV4dwy2BLveAlehSVdqiAlY0-ORT-tEDlWbjvs3Y,5082
64
- mnspy/raíces/secante_modificada.py,sha256=0bLgcG8K_O6Ras3vKBIQpUdDlB69tWKHbx_fE8-47SE,5105
65
- mnspy/raíces/wegstein.py,sha256=23HQ6QuelMNo8S8W1fzha8ozbcy_NdsjK5XLMaH-m38,5397
66
- mnspy-0.9.19.dist-info/licenses/LICENSE,sha256=wd5I6QXFrp_ipRe4KbPQuhaab3abbCGIW48aOnUQxsg,1071
67
- mnspy-0.9.19.dist-info/METADATA,sha256=hADxn1a_PpKClQ0DsBtpko6CTYNZEJAuo3OsQUSlROI,4641
68
- mnspy-0.9.19.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
69
- mnspy-0.9.19.dist-info/top_level.txt,sha256=fbooZdZwS41I8vFuAXnn5qL4_mfc1aPt_DM60ZpvtKE,6
70
- mnspy-0.9.19.dist-info/RECORD,,
63
+ mnspy/raíces/secante.py,sha256=0SQt-og5W3yO_7QEF4AZt2IEp1G-b9HA3wbfyWHNjSo,5075
64
+ mnspy/raíces/secante_modificada.py,sha256=vUi54dGSpGRzZKqbr3LWNI3bmqHyAoXwnVkPdyGbHEQ,5099
65
+ mnspy/raíces/wegstein.py,sha256=PPP66unFOZ0HpHQLRBzQnnBwRCmlZENelonI4I5fRaM,5390
66
+ mnspy-0.9.21.dist-info/licenses/LICENSE,sha256=wd5I6QXFrp_ipRe4KbPQuhaab3abbCGIW48aOnUQxsg,1071
67
+ mnspy-0.9.21.dist-info/METADATA,sha256=vsW7ON7dMZKQKaMT9g4FgKBDhMrdOWHXSTfk_PzPvBs,4641
68
+ mnspy-0.9.21.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
69
+ mnspy-0.9.21.dist-info/top_level.txt,sha256=fbooZdZwS41I8vFuAXnn5qL4_mfc1aPt_DM60ZpvtKE,6
70
+ mnspy-0.9.21.dist-info/RECORD,,
File without changes