mns-scheduler 1.4.3.5__py3-none-any.whl → 1.4.6.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mns-scheduler might be problematic. Click here for more details.

Files changed (46) hide show
  1. mns_scheduler/{company_info/announce → auto_da_ban}/__init__.py +1 -1
  2. mns_scheduler/auto_da_ban/auto_da_ban_service.py +89 -0
  3. mns_scheduler/company_info/clean/company_info_clean_api.py +37 -16
  4. mns_scheduler/company_info/{base → common}/__init__.py +1 -1
  5. mns_scheduler/company_info/common/company_common_query_service.py +45 -0
  6. mns_scheduler/company_info/constant/company_constant_data.py +59 -49
  7. mns_scheduler/company_info/em_stock_info/clean_em_us_hk_stock_info.py +30 -0
  8. mns_scheduler/company_info/em_stock_info/sync_em_stock_info_sync.py +100 -39
  9. mns_scheduler/company_info/{remark → sync}/__init__.py +1 -1
  10. mns_scheduler/company_info/sync/company_info_set_service.py +208 -0
  11. mns_scheduler/company_info/sync/sync_company_info_task.py +203 -0
  12. mns_scheduler/company_info/task/__init__.py +7 -0
  13. mns_scheduler/company_info/{announce/company_announce_sync_service.py → task/company_announce_info_task.py} +25 -13
  14. mns_scheduler/company_info/task/company_base_info_task.py +64 -0
  15. mns_scheduler/company_info/{base/sync_company_product_area_industry.py → task/company_business_info_task.py} +33 -17
  16. mns_scheduler/company_info/task/company_hold_info_task.py +66 -0
  17. mns_scheduler/company_info/task/company_industry_info_task.py +167 -0
  18. mns_scheduler/company_info/task/company_total_task.py +69 -0
  19. mns_scheduler/concept/ths/common/ths_concept_sync_common_api.py +3 -3
  20. mns_scheduler/concept/ths/update_concept_info/sync_one_symbol_all_concepts_api.py +1 -1
  21. mns_scheduler/db/script/sync/remote_data_sync_to_local.py +11 -3
  22. mns_scheduler/irm/api/sh_stock_sns_sse_info_api.py +7 -57
  23. mns_scheduler/irm/api/sz_stock_sns_sse_info_api.py +14 -25
  24. mns_scheduler/irm/stock_irm_cninfo_service.py +34 -26
  25. mns_scheduler/irm/stock_question_id_service.py +169 -0
  26. mns_scheduler/k_line/clean/k_line_info_clean_task.py +1 -0
  27. mns_scheduler/kpl/theme/__init__.py +7 -0
  28. mns_scheduler/kpl/theme/kpl_theme_sync_service.py +231 -0
  29. mns_scheduler/self_choose/ths_self_choose_service.py +53 -25
  30. mns_scheduler/trade/auto_login/trader_auto_service.py +2 -1
  31. mns_scheduler/trade/task/trader_task_service.py +13 -2
  32. mns_scheduler/trade/tfp/stock_tfp_info_sync.py +1 -1
  33. mns_scheduler/zb/stock_zb_pool_sync.py +1 -1
  34. mns_scheduler/zt/zt_pool/em_zt_pool_sync_api.py +45 -130
  35. mns_scheduler/zt/zt_pool/ths_zt_pool_sync_api.py +1 -1
  36. mns_scheduler/zt/zt_pool/update_null_zt_reason_api.py +49 -31
  37. mns_scheduler/zz_task/compensation/compensate_task.py +1 -1
  38. mns_scheduler/zz_task/compensation/compensate_task_one_day.py +6 -6
  39. mns_scheduler/zz_task/data_sync_task.py +58 -37
  40. {mns_scheduler-1.4.3.5.dist-info → mns_scheduler-1.4.6.4.dist-info}/METADATA +1 -1
  41. {mns_scheduler-1.4.3.5.dist-info → mns_scheduler-1.4.6.4.dist-info}/RECORD +43 -33
  42. mns_scheduler/company_info/base/sync_company_base_info_api.py +0 -531
  43. mns_scheduler/company_info/base/sync_company_hold_info_api.py +0 -37
  44. mns_scheduler/company_info/remark/company_remark_info_sync.py +0 -46
  45. {mns_scheduler-1.4.3.5.dist-info → mns_scheduler-1.4.6.4.dist-info}/WHEEL +0 -0
  46. {mns_scheduler-1.4.3.5.dist-info → mns_scheduler-1.4.6.4.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,208 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 16
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+ import mns_common.component.common_service_fun_api as common_service_fun_api
9
+ from mns_common.db.MongodbUtil import MongodbUtil
10
+ import mns_common.utils.data_frame_util as data_frame_util
11
+ import mns_common.api.kpl.constant.kpl_constant as kpl_constant
12
+ import mns_common.constant.db_name_constant as db_name_constant
13
+ from functools import lru_cache
14
+ from loguru import logger
15
+
16
+ mongodb_util = MongodbUtil('27017')
17
+
18
+
19
+ def set_kpl_plate_info(company_one_df, company_one, kpl_real_time_quotes):
20
+ try:
21
+ if data_frame_util.is_not_empty(kpl_real_time_quotes):
22
+ kpl_real_time_quotes_one = kpl_real_time_quotes.loc[
23
+ kpl_real_time_quotes['symbol'] == company_one.symbol]
24
+
25
+ if data_frame_util.is_not_empty(kpl_real_time_quotes_one):
26
+ company_one_df['kpl_plate_name'] = list(kpl_real_time_quotes_one['plate_name_list'])[0]
27
+ company_one_df['kpl_most_relative_name'] = \
28
+ list(kpl_real_time_quotes_one['most_relative_name'])[
29
+ 0]
30
+ company_one_df = set_kpl_data(kpl_real_time_quotes_one, company_one_df, company_one)
31
+
32
+ if bool(1 - ("kpl_plate_name" in company_one_df.columns)) or bool(
33
+ 1 - ("kpl_most_relative_name" in company_one_df.columns)):
34
+ company_one_df['kpl_plate_name'] = ""
35
+ company_one_df['kpl_most_relative_name'] = ""
36
+ except BaseException as e:
37
+ logger.warning("设置开盘啦数据异常:{},{}", company_one.symbol, e)
38
+ return company_one_df
39
+
40
+ def set_kpl_data(kpl_real_time_quotes_one, company_one_df, company_one):
41
+ if data_frame_util.is_not_empty(kpl_real_time_quotes_one):
42
+ company_one_df['kpl_plate_name'] = list(kpl_real_time_quotes_one['plate_name_list'])[0]
43
+ company_one_df['kpl_most_relative_name'] = list(kpl_real_time_quotes_one['most_relative_name'])[
44
+ 0]
45
+ symbol = company_one.symbol
46
+
47
+ query = {'symbol': symbol, "index_class": kpl_constant.FIRST_INDEX}
48
+ kpl_best_choose_index_detail = mongodb_util.find_query_data('kpl_best_choose_index_detail', query)
49
+ if data_frame_util.is_not_empty(kpl_best_choose_index_detail):
50
+ kpl_best_choose_index_detail = kpl_best_choose_index_detail[[
51
+ "plate_code",
52
+ "plate_name",
53
+ "first_plate_code",
54
+ "first_plate_name",
55
+ "index_class"
56
+ ]]
57
+
58
+ # 去除空格
59
+ kpl_best_choose_index_detail['plate_name'] = kpl_best_choose_index_detail['plate_name'].str.replace(' ', '')
60
+ # 去除空格
61
+ kpl_best_choose_index_detail['first_plate_name'] = kpl_best_choose_index_detail[
62
+ 'first_plate_name'].str.replace(' ', '')
63
+
64
+ company_one_df.loc[:, 'kpl_plate_list_info'] = kpl_best_choose_index_detail.to_string(index=False)
65
+ return company_one_df
66
+
67
+
68
+ # 获取可转债信息
69
+ @lru_cache(maxsize=None)
70
+ def get_kzz_debt_info():
71
+ query = {}
72
+ kzz_debt_info_df = mongodb_util.find_query_data(db_name_constant.KZZ_DEBT_INFO, query)
73
+ kzz_debt_info_df = kzz_debt_info_df[[
74
+ 'symbol',
75
+ 'name',
76
+ 'stock_code',
77
+ 'apply_date',
78
+ 'list_date',
79
+ 'due_date'
80
+ ]]
81
+ return kzz_debt_info_df
82
+
83
+
84
+ def set_kzz_debt(company_one_df, symbol):
85
+ kzz_debt_info_df_all = get_kzz_debt_info()
86
+ kzz_debt_info_df = kzz_debt_info_df_all.loc[kzz_debt_info_df_all['stock_code'] == symbol]
87
+
88
+ if data_frame_util.is_not_empty(kzz_debt_info_df):
89
+ kzz_debt_info_df_list = kzz_debt_info_df.to_dict(orient='records')
90
+ company_one_df['kzz_debt_list'] = [kzz_debt_info_df_list]
91
+ return company_one_df
92
+
93
+
94
+ # 获取最近年报收入
95
+ def set_recent_year_income(symbol, company_one_df):
96
+ query = {'symbol': symbol, "REPORT_TYPE": "年报"}
97
+ em_stock_profit = mongodb_util.descend_query(query, db_name_constant.EM_STOCK_PROFIT, 'REPORT_DATE', 1)
98
+ if data_frame_util.is_not_empty(em_stock_profit):
99
+ company_one_df['operate_profit'] = list(em_stock_profit['OPERATE_PROFIT'])[0]
100
+ company_one_df['operate_date_name'] = list(em_stock_profit['REPORT_DATE_NAME'])[0]
101
+ total_operate_income = list(em_stock_profit['TOTAL_OPERATE_INCOME'])[0]
102
+ # 金融机构大多收入计入在这个字段中
103
+ if total_operate_income == 0:
104
+ total_operate_income = list(em_stock_profit['OPERATE_INCOME'])[0]
105
+
106
+ company_one_df['total_operate_income'] = total_operate_income
107
+ else:
108
+ company_one_df['operate_profit'] = 0
109
+ company_one_df['total_operate_income'] = 0
110
+ company_one_df['operate_date_name'] = '暂无年报'
111
+ company_one_df['operate_profit'] = round(
112
+ company_one_df['operate_profit'] / common_service_fun_api.HUNDRED_MILLION, 2)
113
+ company_one_df['total_operate_income'] = round(
114
+ company_one_df['total_operate_income'] / common_service_fun_api.HUNDRED_MILLION, 2)
115
+ return company_one_df
116
+
117
+
118
+ # 计算真实流通比例
119
+ def set_calculate_circulation_ratio(symbol, now_str_day, company_one_df):
120
+ query = {"symbol": symbol}
121
+ stock_gdfx_free_top_1 = mongodb_util.descend_query(query, 'stock_gdfx_free_top_10', "period", 1)
122
+ if stock_gdfx_free_top_1.shape[0] == 0:
123
+ mv_circulation_ratio = 1
124
+ qfii_number = 0
125
+ qfii_type = 'A股'
126
+ share_holder_sync_day = now_str_day
127
+ else:
128
+ period_time = list(stock_gdfx_free_top_1['period'])[0]
129
+
130
+ query_free = {'symbol': symbol, 'period': period_time}
131
+ stock_gdfx_free_top_10 = mongodb_util.find_query_data('stock_gdfx_free_top_10', query_free)
132
+
133
+ stock_gdfx_free_top_10['shares_number_str'] = stock_gdfx_free_top_10['shares_number'].astype(str)
134
+
135
+ stock_gdfx_free_top_10['id_key'] = stock_gdfx_free_top_10['symbol'] + '_' + stock_gdfx_free_top_10[
136
+ 'period'] + '_' + stock_gdfx_free_top_10.shares_number_str
137
+
138
+ stock_gdfx_free_top_10.drop_duplicates('id_key', keep='last', inplace=True)
139
+
140
+ # 排除香港结算公司 大于5%减持不用发公告 香港中央结算 HKSCC
141
+ stock_gdfx_free_top_10['is_hk'] = stock_gdfx_free_top_10['shareholder_name'].apply(
142
+ lambda shareholder_name: "HK" if shareholder_name.startswith('香港中央结算') or shareholder_name.startswith(
143
+ 'HKSCC') else "A")
144
+
145
+ # 持股大于5% 减持需要发公告
146
+ # 排除香港结算公司不发公共 小于5%减持不用发公告
147
+ # 香港中央结算 HKSCC
148
+ stock_free_top_greater_than_5 = stock_gdfx_free_top_10.loc[
149
+ (stock_gdfx_free_top_10['circulation_ratio'] >= 5) & (stock_gdfx_free_top_10['is_hk'] == 'A')]
150
+
151
+ stock_free_qfii = stock_gdfx_free_top_10.loc[stock_gdfx_free_top_10['shareholder_nature'] == 'QFII']
152
+
153
+ share_holder_sync_day = list(stock_gdfx_free_top_10['create_day'])[0]
154
+
155
+ # qfii 数量
156
+ qfii_number = stock_free_qfii.shape[0]
157
+ # qfii 类型
158
+ qfii_type = set_qfii_type(qfii_number, stock_free_qfii.copy())
159
+
160
+ circulation_ratio = sum(stock_free_top_greater_than_5['circulation_ratio'])
161
+ mv_circulation_ratio = round((100 - circulation_ratio) / 100, 2)
162
+ # 防止错误数据
163
+ if mv_circulation_ratio < 0:
164
+ mv_circulation_ratio = 1
165
+
166
+ company_one_df['mv_circulation_ratio'] = mv_circulation_ratio
167
+ company_one_df['qfii_type'] = qfii_type
168
+ company_one_df['qfii_number'] = qfii_number
169
+ company_one_df['share_holder_sync_day'] = share_holder_sync_day
170
+
171
+ return company_one_df
172
+
173
+
174
+ # 设置QFII持股
175
+ def set_qfii_type(qfii_number, stock_free_qfii):
176
+ if qfii_number > 0:
177
+ stock_free_qfii['new_change'] = stock_free_qfii['change']
178
+ stock_free_qfii.loc[stock_free_qfii['change_ratio'] == 0, 'new_change'] = 0
179
+ stock_free_qfii.loc[stock_free_qfii['change'] == '新进', 'new_change'] = \
180
+ stock_free_qfii['shares_number']
181
+ stock_free_qfii['new_change'] = stock_free_qfii['new_change'].astype(float)
182
+
183
+ stock_free_qfii_new_in = stock_free_qfii.loc[stock_free_qfii['change'] == '新进']
184
+ if data_frame_util.is_not_empty(stock_free_qfii_new_in):
185
+ qfii_type = 1
186
+ return qfii_type
187
+
188
+ stock_free_qfii_add = stock_free_qfii.loc[
189
+ (~stock_free_qfii['change'].isin(['不变', '新进'])) & (stock_free_qfii['new_change'] > 0)]
190
+
191
+ if data_frame_util.is_not_empty(stock_free_qfii_add):
192
+ qfii_type = 2
193
+ return qfii_type
194
+
195
+ stock_free_qfii_not_change = stock_free_qfii.loc[stock_free_qfii['change'] == '不变']
196
+
197
+ if data_frame_util.is_not_empty(stock_free_qfii_not_change):
198
+ qfii_type = 3
199
+ return qfii_type
200
+
201
+ stock_free_qfii_reduce = stock_free_qfii.loc[
202
+ (~stock_free_qfii['change'].isin(['不变', '新进'])) & (stock_free_qfii['new_change'] < 0)]
203
+
204
+ if data_frame_util.is_not_empty(stock_free_qfii_reduce):
205
+ qfii_type = 4
206
+ return qfii_type
207
+ else:
208
+ return 0
@@ -0,0 +1,203 @@
1
+ import os
2
+ import sys
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 17
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+
9
+ from datetime import datetime
10
+ import pandas as pd
11
+ from loguru import logger
12
+
13
+ import mns_common.component.common_service_fun_api as common_service_fun_api
14
+ import mns_common.component.concept.ths_concept_common_service_api as ths_concept_common_service_api
15
+ from mns_common.db.MongodbUtil import MongodbUtil
16
+ import mns_common.api.kpl.symbol.kpl_real_time_quotes_api as kpl_real_time_quotes_api
17
+ import mns_common.utils.data_frame_util as data_frame_util
18
+ import mns_common.component.k_line.common.k_line_common_service_api as k_line_common_service_api
19
+ import mns_common.constant.db_name_constant as db_name_constant
20
+ from mns_scheduler.company_info.common.company_common_query_service import get_company_info
21
+ import mns_scheduler.company_info.sync.company_info_set_service as company_info_set_service
22
+ import mns_scheduler.company_info.constant.company_constant_data as company_constant_data
23
+
24
+ mongodb_util = MongodbUtil('27017')
25
+ # 分页大小
26
+ MAX_PAGE_NUMBER = 500
27
+ import threading
28
+
29
+ # 定义一个全局锁,用于保护 result 变量的访问
30
+ result_lock = threading.Lock()
31
+ # 初始化 result 变量为一个空的 Pandas DataFrame
32
+ result = []
33
+
34
+
35
+ # 同步公司基本信息
36
+
37
+ def sync_company_base_info(symbol_list):
38
+ global result
39
+ result = []
40
+
41
+ east_money_stock_info = get_company_info()
42
+
43
+ east_money_stock_info = common_service_fun_api.total_mv_classification(east_money_stock_info)
44
+ east_money_stock_info = common_service_fun_api.classify_symbol(east_money_stock_info)
45
+ # 将日期数值转换为日期时间格式
46
+ east_money_stock_info['list_date_01'] = pd.to_datetime(east_money_stock_info['list_date'], format='%Y%m%d')
47
+ # 开盘啦实时数据
48
+ kpl_real_time_quotes = kpl_real_time_quotes_api.get_kpl_real_time_quotes()
49
+ if len(symbol_list) > 0:
50
+ east_money_stock_info = east_money_stock_info.loc[east_money_stock_info['symbol'].isin(symbol_list)]
51
+ count = east_money_stock_info.shape[0]
52
+ page_number = round(count / MAX_PAGE_NUMBER, 0) + 1
53
+ page_number = int(page_number)
54
+ threads = []
55
+ # 创建多个线程来获取数据
56
+ for page in range(page_number): # 0到100页
57
+ end_count = (page + 1) * MAX_PAGE_NUMBER
58
+ begin_count = page * MAX_PAGE_NUMBER
59
+ page_df = east_money_stock_info.iloc[begin_count:end_count]
60
+ thread = threading.Thread(target=single_thread_sync_company_info,
61
+ args=(page_df, kpl_real_time_quotes))
62
+ threads.append(thread)
63
+ thread.start()
64
+
65
+ # 等待所有线程完成
66
+ for thread in threads:
67
+ thread.join()
68
+
69
+ fail_df = east_money_stock_info.loc[east_money_stock_info['symbol'].isin(result)]
70
+ single_thread_sync_company_info(fail_df, kpl_real_time_quotes)
71
+
72
+
73
+ def single_thread_sync_company_info(east_money_stock_info,
74
+ kpl_real_time_quotes):
75
+ global result
76
+ fail_list = []
77
+ for company_one in east_money_stock_info.itertuples():
78
+ try:
79
+
80
+ company_one_df = east_money_stock_info.loc[east_money_stock_info['symbol'] == company_one.symbol]
81
+
82
+ company_one_df = company_one_df.rename(columns={
83
+ "industry": "em_industry",
84
+ "concept": "em_concept"
85
+ })
86
+ now_date = datetime.now()
87
+ str_day = now_date.strftime('%Y-%m-%d')
88
+ str_now_date = now_date.strftime('%Y-%m-%d %H:%M:%S')
89
+
90
+ # 计算日期差值 距离现在上市时间
91
+ company_one_df['diff_days'] = (now_date - company_one.list_date_01).days
92
+ company_one_df = company_one_df[[
93
+ 'symbol',
94
+ 'name',
95
+ 'em_industry',
96
+ 'em_concept',
97
+ 'hk_stock_code',
98
+ 'hk_stock_name',
99
+ 'amount',
100
+ 'now_price',
101
+ 'total_share',
102
+ 'flow_share',
103
+ 'total_mv',
104
+ 'flow_mv',
105
+ 'area',
106
+ 'list_date',
107
+ 'diff_days',
108
+ 'pe_ttm',
109
+ 'pb',
110
+ 'ROE',
111
+ 'flow_mv_sp',
112
+ 'total_mv_sp',
113
+ 'flow_mv_level',
114
+ 'classification',
115
+ ]]
116
+
117
+ company_one_df['sync_date'] = str_now_date
118
+
119
+ # 行业信息
120
+ company_industry_info_df = mongodb_util.find_query_data(db_name_constant.COMPANY_INDUSTRY_INFO,
121
+ {"symbol": company_one.symbol})
122
+
123
+ if data_frame_util.is_empty(company_industry_info_df):
124
+ company_one_df['business_nature'] = '数据异常'
125
+ company_one_df['holder_controller_name'] = '数据异常'
126
+ company_one_df['holder_controller_rate'] = 0
127
+ company_one_df['final_controller_name'] = '数据异常'
128
+ company_one_df['final_controller_rate'] = 0
129
+ company_one_df['actual_controller_name'] = '数据异常'
130
+ company_one_df['actual_controller_rate'] = 0
131
+ company_one_df['base_business'] = ''
132
+ company_one_df['intro'] = ''
133
+ company_one_df['address'] = ''
134
+ company_one_df['market_id'] = ''
135
+ company_one_df['main_business_list'] = [[] for _ in range(len(company_one_df))]
136
+ company_one_df['most_profitable_business'] = ''
137
+ company_one_df['most_profitable_business_rate'] = '0'
138
+ company_one_df['most_profitable_business_profit'] = 0
139
+ company_one_df['first_industry_code'] = '0'
140
+ company_one_df['second_industry_code'] = '0'
141
+ company_one_df['third_industry_code'] = '0'
142
+ company_one_df['first_sw_industry'] = '数据异常'
143
+ company_one_df['second_sw_industry'] = '数据异常'
144
+ company_one_df['third_sw_industry'] = '数据异常'
145
+ company_one_df['industry'] = '数据异常'
146
+ else:
147
+
148
+ del company_industry_info_df['_id']
149
+ del company_industry_info_df['name']
150
+ # 申万二级行业 作业行业
151
+ company_industry_info_df['industry'] = company_industry_info_df['second_sw_industry']
152
+
153
+ company_industry_info_df = company_industry_info_df.set_index(['symbol'], drop=True)
154
+ company_one_df = company_one_df.set_index(['symbol'], drop=False)
155
+ company_one_df = pd.merge(company_one_df, company_industry_info_df, how='outer',
156
+ left_index=True, right_index=True)
157
+
158
+ # 设置流通比例和外资持股
159
+ company_one_df = company_info_set_service.set_calculate_circulation_ratio(company_one.symbol, str_day,
160
+ company_one_df)
161
+
162
+ # 获取同花顺最新概念
163
+ company_one_df = ths_concept_common_service_api.set_ths_concept(company_one.symbol, company_one_df)
164
+ # 修改行业
165
+ fix_symbol_industry_df = company_constant_data.get_fix_symbol_industry()
166
+ if company_one.symbol in list(fix_symbol_industry_df['symbol']):
167
+ # fix sw_industry
168
+ company_one_df = company_constant_data.fix_symbol_industry(company_one_df,
169
+ company_one.symbol)
170
+
171
+ # 交易天数
172
+ deal_days = k_line_common_service_api.get_deal_days(str_day, company_one.symbol)
173
+ company_one_df['deal_days'] = deal_days
174
+
175
+ # 设置财务年报信息
176
+ company_one_df = company_info_set_service.set_recent_year_income(company_one.symbol, company_one_df)
177
+ # 设置开盘信息
178
+ company_one_df['kpl_plate_list_info'] = '-'
179
+ company_one_df['kpl_plate_name'] = '-'
180
+ company_one_df['kpl_most_relative_name'] = '-'
181
+ company_one_df = company_info_set_service.set_kpl_plate_info(company_one_df, company_one,
182
+ kpl_real_time_quotes)
183
+ # 设置可转债 信息
184
+ company_one_df['kzz_debt_list'] = [[] for _ in range(len(company_one_df))]
185
+ company_one_df = company_info_set_service.set_kzz_debt(company_one_df, company_one.symbol)
186
+
187
+ company_one_df['_id'] = company_one_df['symbol']
188
+
189
+ company_one_df = company_constant_data.filed_sort(company_one_df)
190
+ mongodb_util.save_mongo(company_one_df.copy(), db_name_constant.COMPANY_INFO_TEMP)
191
+ logger.info("同步公司信息完成:{}", company_one.symbol + '-' + company_one.name)
192
+ except BaseException as e:
193
+ fail_list.append(company_one.symbol)
194
+ logger.error("同步公司信息发生异常:{},{}", company_one.symbol, e)
195
+ with result_lock:
196
+ # 使用锁来保护 result 变量的访问,将每页的数据添加到结果中
197
+ result = fail_list
198
+
199
+
200
+ if __name__ == '__main__':
201
+
202
+ sync_company_base_info(['688795'])
203
+ # sync_company_base_info([])
@@ -0,0 +1,7 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 16
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
@@ -1,15 +1,24 @@
1
1
  import sys
2
2
  import os
3
+ import time
4
+
5
+ file_path = os.path.abspath(__file__)
6
+ end = file_path.index('mns') + 16
7
+ project_path = file_path[0:end]
8
+ sys.path.append(project_path)
9
+ import sys
10
+ import os
3
11
 
4
12
  file_path = os.path.abspath(__file__)
5
13
  end = file_path.index('mns') + 17
6
14
  project_path = file_path[0:end]
7
15
  sys.path.append(project_path)
8
- import mns_common.component.company.company_common_service_new_api as company_common_service_new_api
9
16
  import mns_common.api.ths.company.ths_company_announce_api as ths_company_announce_api
10
17
  from loguru import logger
11
18
  from mns_common.db.MongodbUtil import MongodbUtil
12
19
  import mns_common.constant.db_name_constant as db_name_constant
20
+ from mns_scheduler.company_info.common.company_common_query_service import get_company_info
21
+ import mns_common.component.common_service_fun_api as common_service_fun_api
13
22
 
14
23
  mongodb_util = MongodbUtil('27017')
15
24
 
@@ -17,7 +26,7 @@ mongodb_util = MongodbUtil('27017')
17
26
  # 同步最新公告
18
27
  # eq-f1001 业绩预告 eq-f1002 重大事项 eq-f1003 股份变动公告
19
28
 
20
- def sync_company_announce(symbol_list):
29
+ def sync_company_announce_task(symbol_list):
21
30
  page_size = 100
22
31
  announce_type_list = ['all', 'eq-f1003', 'eq-f1001', 'eq-f1002']
23
32
  for announce_type_one in announce_type_list:
@@ -25,21 +34,25 @@ def sync_company_announce(symbol_list):
25
34
  get_company_announce(announce_type_one, page_size, symbol_list)
26
35
  except BaseException as e:
27
36
  logger.error("更新公告出现异常:{}", e)
28
- logger.info("同步到公告信息完成")
29
37
 
30
38
 
31
39
  def get_company_announce(announce_type, page_size, symbol_list):
32
- company_all_df = company_common_service_new_api.get_company_all_info_info()
33
- de_list_company = company_common_service_new_api.get_de_list_company()
34
- company_all_df = company_all_df.loc[~(company_all_df['symbol'].isin(de_list_company))]
40
+ all_company_info_df = get_company_info()
35
41
 
36
- if symbol_list is not None:
37
- company_all_df = company_all_df.loc[(company_all_df['symbol'].isin(symbol_list))]
42
+ if len(symbol_list) > 0:
43
+ all_company_info_df = all_company_info_df.loc[(all_company_info_df['symbol'].isin(symbol_list))]
44
+ all_company_info_df = common_service_fun_api.classify_symbol(all_company_info_df)
38
45
 
39
- for stock_one in company_all_df.itertuples():
46
+ for stock_one in all_company_info_df.itertuples():
40
47
  try:
41
48
  symbol = stock_one.symbol
42
- market_id = stock_one.market_id
49
+ classification = stock_one.classification
50
+ if classification in ['H', 'K']:
51
+ market_id = '17'
52
+ elif classification in ['S', 'C']:
53
+ market_id = '33'
54
+ elif classification in ['X']:
55
+ market_id = '151'
43
56
  # 公告应该不多 只更新一页的数据 页码设置100已经是最大
44
57
  page_number = 1
45
58
  try:
@@ -55,11 +68,10 @@ def get_company_announce(announce_type, page_size, symbol_list):
55
68
  ths_company_announce_result['_id'] = ths_company_announce_result['guid'] + '_' + \
56
69
  ths_company_announce_result['seq'] + "_" + announce_type
57
70
  mongodb_util.save_mongo(ths_company_announce_result, db_name_constant.COMPANY_ANNOUNCE_INFO)
58
- logger.info("更新公告完成:{},{}", symbol, stock_one.name)
59
-
71
+ time.sleep(1)
60
72
  except BaseException as e:
61
73
  logger.error("更新公告出现异常:{}", e)
62
74
 
63
75
 
64
76
  if __name__ == '__main__':
65
- sync_company_announce(None)
77
+ sync_company_announce_task([])
@@ -0,0 +1,64 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 17
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+ import mns_common.api.ths.company.ths_company_info_web as ths_company_info_web
9
+ from mns_common.db.MongodbUtil import MongodbUtil
10
+ import mns_common.utils.data_frame_util as data_frame_util
11
+ import mns_common.constant.db_name_constant as db_name_constant
12
+ from loguru import logger
13
+ from mns_scheduler.company_info.common.company_common_query_service import get_company_info
14
+ import time
15
+ from datetime import datetime
16
+
17
+ mongodb_util = MongodbUtil('27017')
18
+
19
+
20
+ def sync_company_base_info_task(symbol_list):
21
+ all_company_info_df = get_company_info()
22
+ if len(symbol_list) > 0:
23
+ all_company_info_df = all_company_info_df.loc[all_company_info_df['symbol'].isin(symbol_list)]
24
+ fail_list = []
25
+ for stock_one in all_company_info_df.itertuples():
26
+ try:
27
+ sync_one_symbol_base_info(stock_one.symbol)
28
+ time.sleep(0.5)
29
+ except BaseException as e:
30
+ time.sleep(3)
31
+ logger.error("同步公司基础信息发生异常:{},{}", stock_one.symbol, e)
32
+ fail_list.append(stock_one.symbol)
33
+ sync_number = 1
34
+ while len(fail_list) > 0 and sync_number < 10:
35
+ for symbol in fail_list:
36
+ try:
37
+ sync_one_symbol_base_info(symbol)
38
+ time.sleep(5)
39
+ except BaseException as e:
40
+ time.sleep(10)
41
+ logger.error("同步公司基础信息发生异常:{},{}", symbol, e)
42
+ sync_number = sync_number + 1
43
+
44
+
45
+ def sync_one_symbol_base_info(symbol):
46
+ company_remark_info = ths_company_info_web.get_company_info(symbol)
47
+ company_remark_info['_id'] = symbol
48
+ company_remark_info['symbol'] = symbol
49
+ company_remark_info['remark'] = ''
50
+
51
+ now_date = datetime.now()
52
+ sync_str_date = now_date.strftime('%Y-%m-%d %H:%M:%S')
53
+
54
+ company_remark_info['sync_str_date'] = sync_str_date
55
+
56
+ exist_company_remark_df = mongodb_util.find_query_data(db_name_constant.COMPANY_BASE_INFO,
57
+ query={"symbol": symbol})
58
+ if data_frame_util.is_not_empty(exist_company_remark_df):
59
+ company_remark_info['remark'] = list(exist_company_remark_df['remark'])[0]
60
+ mongodb_util.save_mongo(company_remark_info, db_name_constant.COMPANY_BASE_INFO)
61
+
62
+
63
+ if __name__ == '__main__':
64
+ sync_company_base_info_task([])
@@ -5,7 +5,7 @@ file_path = os.path.abspath(__file__)
5
5
  end = file_path.index('mns') + 17
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
8
- import mns_common.component.em.em_stock_info_api as em_stock_info_api
8
+
9
9
  import mns_common.component.common_service_fun_api as common_service_fun_api
10
10
  import mns_common.api.ths.company.company_product_area_industry_index_query as company_product_area_industry_index_query
11
11
  from loguru import logger
@@ -14,38 +14,40 @@ import mns_common.constant.db_name_constant as db_name_constant
14
14
  import mns_common.utils.data_frame_util as data_frame_util
15
15
  import pandas as pd
16
16
  from datetime import datetime
17
+ from mns_scheduler.company_info.common.company_common_query_service import get_company_info
17
18
 
18
19
  mongodb_util = MongodbUtil('27017')
19
20
 
20
21
 
21
- def sync_company_product_area_industry_task(symbol):
22
+ def sync_company_business_task(symbol_list):
22
23
  now_date = datetime.now()
23
24
  now_year = now_date.year
24
25
  now_month = now_date.month
25
26
 
26
27
  if now_month in [1, 2, 3, 4]:
27
28
  period_time_year = str(now_year - 1) + "-12-31"
28
- sync_company_product_area_industry(symbol, period_time_year)
29
+ sync_company_product_area_industry(symbol_list, period_time_year)
29
30
 
30
31
  if now_month in [4, 5, 6]:
31
32
  period_time_one = str(now_year) + "-03-31"
32
- sync_company_product_area_industry(symbol, period_time_one)
33
+ sync_company_product_area_industry(symbol_list, period_time_one)
33
34
 
34
35
  elif now_month in [7, 8, 9]:
35
36
  period_time_two = str(now_year) + "-06-30"
36
- sync_company_product_area_industry(symbol, period_time_two)
37
+ sync_company_product_area_industry(symbol_list, period_time_two)
37
38
 
38
39
  elif now_month in [10, 11, 12]:
39
40
  period_time_three = str(now_year) + "-09-30"
40
- sync_company_product_area_industry(symbol, period_time_three)
41
+ sync_company_product_area_industry(symbol_list, period_time_three)
42
+
41
43
 
44
+ def sync_company_product_area_industry(symbol_list, date):
45
+ all_company_info_df = get_company_info()
42
46
 
43
- def sync_company_product_area_industry(symbol, date):
44
- real_time_quotes_all_stocks = em_stock_info_api.get_a_stock_info()
45
- real_time_quotes_all_stocks = common_service_fun_api.classify_symbol(real_time_quotes_all_stocks)
46
- if symbol is not None:
47
- real_time_quotes_all_stocks = real_time_quotes_all_stocks.loc[real_time_quotes_all_stocks['symbol'] == symbol]
48
- for stock_one in real_time_quotes_all_stocks.itertuples():
47
+ all_company_info_df = common_service_fun_api.classify_symbol(all_company_info_df)
48
+ if len(symbol_list) > 0:
49
+ all_company_info_df = all_company_info_df.loc[all_company_info_df['symbol'].isin(symbol_list)]
50
+ for stock_one in all_company_info_df.itertuples():
49
51
  try:
50
52
  symbol = stock_one.symbol
51
53
 
@@ -57,6 +59,22 @@ def sync_company_product_area_industry(symbol, date):
57
59
  elif classification in ['X']:
58
60
  market = '151'
59
61
 
62
+ query_exist = {'symbol': symbol, 'time': date}
63
+ exist_company_business_info_df = mongodb_util.find_query_data(db_name_constant.COMPANY_BUSINESS_INFO,
64
+ query_exist)
65
+ if data_frame_util.is_empty(exist_company_business_info_df):
66
+ exist_all = False
67
+ else:
68
+ exist_all = (
69
+ (exist_company_business_info_df.loc[
70
+ exist_company_business_info_df['analysis_type'] == 'area'].shape[0] > 0)
71
+ and (exist_company_business_info_df.loc[
72
+ exist_company_business_info_df['analysis_type'] == 'industry'].shape[0] > 0)
73
+ and (exist_company_business_info_df.loc[
74
+ exist_company_business_info_df['analysis_type'] == 'product'].shape[
75
+ 0] > 0))
76
+ if exist_all:
77
+ continue
60
78
  company_product_area_industry_list = company_product_area_industry_index_query.company_product_area_industry(
61
79
  symbol, market, date)
62
80
  for company_one in company_product_area_industry_list:
@@ -74,10 +92,8 @@ def sync_company_product_area_industry(symbol, date):
74
92
  handle_industry_area_product(time_operate_index_item_df, symbol)
75
93
  except BaseException as e:
76
94
  logger.error("同步经营数据异常:{},{}", symbol, e)
77
-
78
- logger.info("同步经营数据完成:{}", stock_one.symbol)
79
95
  except BaseException as e:
80
- logger.error("同步经营数据:{},{}", stock_one.symbol, e)
96
+ logger.error("同步经营数据异常:{},{}", stock_one.symbol, e)
81
97
 
82
98
 
83
99
  def handle_industry_area_product(time_operate_index_item_df, symbol):
@@ -149,7 +165,7 @@ def handle_industry_area_product(time_operate_index_item_df, symbol):
149
165
 
150
166
 
151
167
  if __name__ == '__main__':
152
- sync_company_product_area_industry('300211', '2025-09-30')
168
+ sync_company_product_area_industry('300211', '2024-12-31')
153
169
  # sync_company_product_area_industry('002323')
154
170
  # sync_company_product_area_industry('300901')
155
171
  # sync_company_product_area_industry('603225')
@@ -158,4 +174,4 @@ if __name__ == '__main__':
158
174
  # sync_company_product_area_industry('000508')
159
175
  # sync_company_product_area_industry('810011')
160
176
 
161
- sync_company_product_area_industry(None, None)
177
+ sync_company_product_area_industry([], None)