mns-scheduler 1.4.3.5__py3-none-any.whl → 1.4.4.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mns-scheduler might be problematic. Click here for more details.

Files changed (39) hide show
  1. mns_scheduler/{company_info/announce → auto_da_ban}/__init__.py +1 -1
  2. mns_scheduler/auto_da_ban/auto_da_ban_service.py +87 -0
  3. mns_scheduler/company_info/clean/company_info_clean_api.py +37 -16
  4. mns_scheduler/company_info/{base → common}/__init__.py +1 -1
  5. mns_scheduler/company_info/common/company_common_query_service.py +45 -0
  6. mns_scheduler/company_info/constant/company_constant_data.py +60 -49
  7. mns_scheduler/company_info/em_stock_info/sync_em_stock_info_sync.py +1 -0
  8. mns_scheduler/company_info/{remark → sync}/__init__.py +1 -1
  9. mns_scheduler/company_info/sync/company_info_set_service.py +208 -0
  10. mns_scheduler/company_info/sync/sync_company_info_task.py +203 -0
  11. mns_scheduler/company_info/task/__init__.py +7 -0
  12. mns_scheduler/company_info/{announce/company_announce_sync_service.py → task/company_announce_info_task.py} +25 -13
  13. mns_scheduler/company_info/task/company_base_info_task.py +64 -0
  14. mns_scheduler/company_info/{base/sync_company_product_area_industry.py → task/company_business_info_task.py} +33 -17
  15. mns_scheduler/company_info/task/company_hold_info_task.py +66 -0
  16. mns_scheduler/company_info/task/company_industry_info_task.py +167 -0
  17. mns_scheduler/company_info/task/company_total_task.py +69 -0
  18. mns_scheduler/concept/ths/common/ths_concept_sync_common_api.py +3 -3
  19. mns_scheduler/concept/ths/update_concept_info/sync_one_symbol_all_concepts_api.py +1 -1
  20. mns_scheduler/db/script/sync/remote_data_sync_to_local.py +7 -2
  21. mns_scheduler/irm/api/sh_stock_sns_sse_info_api.py +7 -57
  22. mns_scheduler/irm/api/sz_stock_sns_sse_info_api.py +14 -25
  23. mns_scheduler/irm/stock_irm_cninfo_service.py +32 -26
  24. mns_scheduler/irm/stock_question_id_service.py +159 -0
  25. mns_scheduler/trade/auto_login/trader_auto_service.py +2 -1
  26. mns_scheduler/trade/task/trader_task_service.py +13 -2
  27. mns_scheduler/zb/stock_zb_pool_sync.py +1 -1
  28. mns_scheduler/zt/zt_pool/em_zt_pool_sync_api.py +210 -122
  29. mns_scheduler/zt/zt_pool/ths_zt_pool_sync_api.py +1 -1
  30. mns_scheduler/zt/zt_pool/update_null_zt_reason_api.py +1 -1
  31. mns_scheduler/zz_task/compensation/compensate_task_one_day.py +1 -1
  32. mns_scheduler/zz_task/data_sync_task.py +30 -36
  33. {mns_scheduler-1.4.3.5.dist-info → mns_scheduler-1.4.4.5.dist-info}/METADATA +1 -1
  34. {mns_scheduler-1.4.3.5.dist-info → mns_scheduler-1.4.4.5.dist-info}/RECORD +36 -29
  35. mns_scheduler/company_info/base/sync_company_base_info_api.py +0 -531
  36. mns_scheduler/company_info/base/sync_company_hold_info_api.py +0 -37
  37. mns_scheduler/company_info/remark/company_remark_info_sync.py +0 -46
  38. {mns_scheduler-1.4.3.5.dist-info → mns_scheduler-1.4.4.5.dist-info}/WHEEL +0 -0
  39. {mns_scheduler-1.4.3.5.dist-info → mns_scheduler-1.4.4.5.dist-info}/top_level.txt +0 -0
@@ -2,6 +2,6 @@ import sys
2
2
  import os
3
3
 
4
4
  file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 17
5
+ end = file_path.index('mns') + 16
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
@@ -0,0 +1,87 @@
1
+ import sys
2
+ import os
3
+ import time
4
+
5
+ file_path = os.path.abspath(__file__)
6
+ end = file_path.index('mns') + 16
7
+ project_path = file_path[0:end]
8
+ sys.path.append(project_path)
9
+
10
+ from mns_common.db.MongodbUtil import MongodbUtil
11
+ import mns_common.constant.db_name_constant as db_name_constant
12
+ import mns_common.utils.data_frame_util as data_frame_util
13
+ import mns_common.component.deal.deal_service_api as deal_service_api
14
+ from loguru import logger
15
+ from mns_common.utils.async_fun import async_fun
16
+ import mns_common.component.common_service_fun_api as common_service_fun_api
17
+ import mns_common.utils.date_handle_util as date_handle_util
18
+ mongodb_util = MongodbUtil('27017')
19
+ from datetime import datetime
20
+
21
+
22
+ def auto_da_ban_task():
23
+ logger.info("打板任务启动")
24
+ while True:
25
+ try:
26
+ now_date = datetime.now()
27
+ now_str_day = now_date.strftime('%Y-%m-%d')
28
+ if bool(1 - date_handle_util.is_trade_date(now_str_day)):
29
+ logger.info("非交易日不执行:{}", now_str_day)
30
+ break
31
+ else:
32
+ # 执行打板任务
33
+ auto_da_ban()
34
+ except BaseException as e:
35
+ logger.error("自动打板定时任务异常:{}", e)
36
+
37
+
38
+ def auto_da_ban():
39
+ now_date = datetime.now()
40
+ now_str_day = now_date.strftime('%Y-%m-%d')
41
+ over_night_da_ban_list = query_over_night_da_ban_list(now_str_day)
42
+ if data_frame_util.is_empty(over_night_da_ban_list):
43
+ return None
44
+ for stock_one in over_night_da_ban_list.itertuples():
45
+ try:
46
+ symbol = stock_one.symbol
47
+ buy_price = stock_one.zt_price
48
+ buy_volume = stock_one.buy_volume
49
+ xia_dan_to_ths(symbol, buy_price, buy_volume, now_str_day)
50
+ time.sleep(0.5)
51
+ except BaseException as e:
52
+ logger.error("自动打板出现异常:{},{}", symbol, e)
53
+
54
+
55
+ def xia_dan_to_ths(symbol, buy_price, buy_volume, str_day):
56
+ symbol = common_service_fun_api.add_after_prefix_one(symbol)
57
+
58
+ buy_result = deal_service_api.trade_buy(symbol, buy_price, buy_volume, 'qmt')
59
+
60
+ # 异步更新信息
61
+ handle_async_msg(buy_result, str_day, symbol)
62
+
63
+
64
+ @async_fun
65
+ def handle_async_msg(buy_result, str_day, symbol):
66
+ if "message" in buy_result:
67
+ result_msg = buy_result['message']
68
+ if result_msg == 'success':
69
+ auto_da_ban_flag = True
70
+ else:
71
+ auto_da_ban_flag = False
72
+ elif "entrust_no" in buy_result:
73
+ auto_da_ban_flag = True
74
+ if auto_da_ban_flag:
75
+ query = {"str_day": str_day, "symbol": symbol}
76
+ new_values = {"$set": {"valid": False}}
77
+ mongodb_util.update_many(query, new_values, db_name_constant.OVER_NIGHT_DA_BAN)
78
+
79
+
80
+ def query_over_night_da_ban_list(str_day):
81
+ query = {"str_day": str_day, "valid": True}
82
+ return mongodb_util.find_query_data(db_name_constant.OVER_NIGHT_DA_BAN, query)
83
+
84
+
85
+ if __name__ == '__main__':
86
+ while True:
87
+ auto_da_ban()
@@ -12,25 +12,28 @@ from loguru import logger
12
12
  import mns_scheduler.company_info.constant.company_constant_data as company_constant_data
13
13
  import mns_common.constant.db_name_constant as db_name_constant
14
14
  import mns_scheduler.concept.ths.detaill.ths_concept_detail_api as ths_concept_detail_api
15
- import mns_scheduler.company_info.base.sync_company_base_info_api as company_info_sync_api
15
+ import mns_scheduler.company_info.common.company_common_query_service as company_common_query_service
16
+ import mns_scheduler.company_info.sync.sync_company_info_task as sync_company_info_task
16
17
  import mns_common.utils.data_frame_util as data_frame_util
17
-
18
- mongodb_util = MongodbUtil('27017')
19
18
  import mns_common.component.common_service_fun_api as common_service_fun_api
20
19
  import mns_common.component.company.company_common_service_api as company_common_service_api
21
20
 
21
+ mongodb_util = MongodbUtil('27017')
22
+
22
23
 
23
24
  # 修改行业信息
24
- def clean_company_info(symbol):
25
- if symbol is not None:
26
- query = {"symbol": symbol}
27
- company_info = mongodb_util.find_query_data('company_info_base', query)
25
+ def clean_company_info(symbol_list):
26
+ create_company_info_index()
27
+
28
+ if len(symbol_list) > 0:
29
+ query = {"symbol": {"$in": symbol_list}}
30
+ company_info_temp_df = mongodb_util.find_query_data(db_name_constant.COMPANY_INFO_TEMP, query)
28
31
  else:
29
- company_info = mongodb_util.find_all_data('company_info_base')
32
+ company_info_temp_df = mongodb_util.find_query_data(db_name_constant.COMPANY_INFO_TEMP, {})
30
33
 
31
- company_info = company_constant_data.fix_second_industry(company_info)
34
+ company_info_temp_df = company_constant_data.fix_second_industry(company_info_temp_df)
32
35
 
33
- company_info = company_info.set_index(['second_sw_industry'], drop=False)
36
+ company_info = company_info_temp_df.set_index(['second_sw_industry'], drop=False)
34
37
 
35
38
  # 修改行业名称
36
39
  del company_info['industry']
@@ -69,7 +72,7 @@ def clean_company_info(symbol):
69
72
  sub_stock = ths_concept_detail_api.get_ths_concept_detail('885598', None)
70
73
  sub_stock_symbol_list = list(sub_stock['symbol'])
71
74
  except BaseException as e:
72
- logger.error("出现异常:{},{}", symbol, e)
75
+ logger.error("出现异常:{},", e)
73
76
  query = {'concept_code': 885598}
74
77
  ths_stock_concept_detail = mongodb_util.find_query_data(db_name_constant.THS_STOCK_CONCEPT_DETAIL, query)
75
78
  sub_stock_symbol_list = list(ths_stock_concept_detail['symbol'])
@@ -83,6 +86,9 @@ def clean_company_info(symbol):
83
86
  if data_frame_util.is_not_empty(ths_stock_industry_detail_df):
84
87
  ths_stock_industry_detail_df = ths_stock_industry_detail_df[
85
88
  ['symbol', 'ths_industry_name', 'ths_industry_code']]
89
+
90
+ ths_stock_industry_detail_df = ths_stock_industry_detail_df.loc[
91
+ ths_stock_industry_detail_df['symbol'].isin(list(company_info['symbol']))]
86
92
  ths_stock_industry_detail_df = ths_stock_industry_detail_df.set_index(['symbol'], drop=True)
87
93
  company_info = company_info.set_index(['_id'], drop=False)
88
94
  company_info = pd.merge(company_info, ths_stock_industry_detail_df, how='outer',
@@ -93,11 +99,13 @@ def clean_company_info(symbol):
93
99
  else:
94
100
  company_info['ths_industry_code'] = '0'
95
101
  company_info['ths_industry_name'] = '异常'
102
+ company_info.dropna(subset=['symbol'], axis=0, inplace=True)
103
+ company_info.dropna(subset=['_id'], axis=0, inplace=True)
96
104
  mongodb_util.save_mongo(company_info, db_name_constant.COMPANY_INFO)
97
105
  # 保存历史数据
98
106
  save_company_info_his(company_info)
99
107
  except BaseException as e:
100
- logger.error("出现异常:{},{}", symbol, e)
108
+ logger.error("出现异常:{}", e)
101
109
 
102
110
  return company_info
103
111
 
@@ -117,17 +125,30 @@ def save_company_info_his(company_info_df):
117
125
 
118
126
  # 更新新上市公司信息
119
127
  def new_company_info_update():
120
- east_money_stock_info = company_info_sync_api.get_east_money_stock_info()
128
+ east_money_stock_info = company_common_query_service.get_company_info()
121
129
  new_stock = common_service_fun_api.get_new_stock(east_money_stock_info.copy())
122
130
  for company_one in new_stock.itertuples():
123
131
  try:
124
- company_info_sync_api.sync_company_base_info([company_one.symbol])
125
- clean_company_info(company_one.symbol)
132
+ sync_company_info_task.sync_company_base_info([company_one.symbol])
133
+ clean_company_info([company_one.symbol])
126
134
 
127
135
  except BaseException as e:
128
136
  logger.error("出现异常:{}", e)
129
137
  company_common_service_api.company_info_industry_cache_clear
130
138
 
131
139
 
140
+ def create_company_info_index():
141
+ mongodb_util.create_index('company_info',
142
+ [("classification", 1)])
143
+ mongodb_util.create_index('company_info',
144
+ [("industry", 1)])
145
+ mongodb_util.create_index('company_info',
146
+ [("flow_mv", 1)])
147
+ mongodb_util.create_index('company_info',
148
+ [("list_date", 1)])
149
+ mongodb_util.create_index('company_info',
150
+ [("symbol", 1)])
151
+
152
+
132
153
  if __name__ == '__main__':
133
- clean_company_info(None)
154
+ clean_company_info(["688795"])
@@ -2,6 +2,6 @@ import sys
2
2
  import os
3
3
 
4
4
  file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 17
5
+ end = file_path.index('mns') + 16
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
@@ -0,0 +1,45 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 16
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+ import mns_common.component.em.em_stock_info_api as em_stock_info_api
9
+ import mns_common.component.company.company_common_service_api as company_common_service_api
10
+ import mns_common.component.common_service_fun_api as common_service_fun_api
11
+
12
+
13
+ def get_company_info():
14
+ em_company_info_df = em_stock_info_api.get_a_stock_info()
15
+ em_company_info_df = em_company_info_df[['symbol',
16
+ 'name',
17
+ "now_price",
18
+ 'total_mv',
19
+ 'flow_mv',
20
+ 'pe_ttm',
21
+ 'sz_sh',
22
+ 'area',
23
+ 'pb',
24
+ 'list_date',
25
+ 'ROE',
26
+ 'total_share',
27
+ 'flow_share',
28
+ 'industry',
29
+ 'amount',
30
+ "hk_stock_code",
31
+ "hk_stock_name",
32
+ 'concept']]
33
+
34
+ em_company_info_df = em_company_info_df.sort_values(by=['list_date'], ascending=False)
35
+
36
+ de_listed_stock_list = company_common_service_api.get_de_list_company()
37
+ em_company_info_df = em_company_info_df.loc[~(
38
+ em_company_info_df['symbol'].isin(de_listed_stock_list))]
39
+ em_company_info_df = common_service_fun_api.exclude_ts_symbol(em_company_info_df)
40
+
41
+ return em_company_info_df
42
+
43
+
44
+ if __name__ == '__main__':
45
+ get_company_info()
@@ -14,49 +14,60 @@ mongodb_util = MongodbUtil('27017')
14
14
 
15
15
  # 修改行业分类的股票
16
16
  def get_fix_symbol_industry():
17
- return pd.DataFrame([['688480', '赛恩斯', '760103', '环境治理'],
18
- ['000032', '深桑达A', '730204', '通信网络设备及器件'],
19
- ['688480', '赛恩斯', '640704', '自动化设备'],
20
- ['603260', '合盛硅业', '220316', '有机硅'],
21
- ['300559', '佳发教育', '461102', '培训教育'],
22
- ['300836', '佰奥智能', '640701', '机器人'],
23
- ['300293', '蓝英装备', '640701', '机器人'],
24
- ['688630', '芯碁微装', '270108', '半导体设备'],
25
- ['001309', '德明利', '270104', '数字芯片设计'],
26
- ['600338', '西藏珠峰', '240303', '铅锌'],
27
- ['300042', '朗科科技', '270108', '半导体设备'],
28
- ['688507', '索辰科技', '710402', '横向通用软件'],
29
- ['301387', '光大同创', '270504', '消费电子零部件及组装'],
30
- ['300295', '三六五网', '430301', '物业管理'],
31
- ['300947', '德必集团', '430301', '物业管理'],
32
- ['300483', '首华燃气', '410301', '燃气Ⅲ'],
33
- ['300215', '电科院', '410110', '电能综合服务'],
34
- # 持有上海微电子装备有限公司10%的股份 国产光刻机 主要炒作在芯片概念 不在房地产
35
- ['600895', '张江高科', '270108', '半导体设备'],
36
- ['301112', '信邦智能', '640704', '其他自动化设备'],
37
- ['002693', '双成药业', '270104', '数字芯片设计'],
38
- ['000670', '盈方微', '270401', '其他电子'],
39
- ['300803', '指南针', '490101', '证券'],
40
- ['300085', '银之杰', '490101', '证券'],
41
- ['300380', '安硕信息', '490101', '证券'],
42
- ['600446', '金证股份', '490101', '证券'],
43
- ['688318', '财富趋势', '490101', '证券'],
44
- ['600570', '恒生电子', '490101', '证券'],
45
- ['837592', '华信永道', '490101', '证券'],
46
- ['830799', '艾融软件', '490101', '证券'],
47
- ['300033', '同花顺', '490101', '证券'],
48
- ['300399', '天利科技', '490201', '保险'],
49
- # EDA软件
50
- ['301269', '华大九天', '270108', '半导体设备'],
51
- ['688206', '概伦电子', '270108', '半导体设备'],
52
- ['301095', '广立微', '270108', '半导体设备'],
53
- ['002131', '利欧股份', '720501', '营销代理'],
54
-
55
- ],
56
- columns=['symbol',
57
- 'name',
58
- 'new_industry_code', # 三级行业代码
59
- 'new_industry'])
17
+ return pd.DataFrame([
18
+ ['688480', '赛恩斯', '760103', '环境治理'],
19
+ ['000032', '深桑达A', '730204', '通信网络设备及器件'],
20
+ ['688480', '赛恩斯', '640704', '自动化设备'],
21
+ ['603260', '合盛硅业', '220316', '有机硅'],
22
+ ['300559', '佳发教育', '461102', '培训教育'],
23
+
24
+ ['600338', '西藏珠峰', '240303', '铅锌'],
25
+
26
+ ['688507', '索辰科技', '710402', '横向通用软件'],
27
+ ['301387', '光大同创', '270504', '消费电子零部件及组装'],
28
+ ['300295', '三六五网', '430301', '物业管理'],
29
+ ['300947', '德必集团', '430301', '物业管理'],
30
+ ['300483', '首华燃气', '410301', '燃气Ⅲ'],
31
+ ['300215', '电科院', '410110', '电能综合服务'],
32
+ # 持有上海微电子装备有限公司10%的股份 国产光刻机 主要炒作在芯片概念 不在房地产
33
+
34
+ ['300836', '佰奥智能', '640701', '机器人'],
35
+ ['300293', '蓝英装备', '640701', '机器人'],
36
+ ['301112', '信邦智能', '640704', '其他自动化设备'],
37
+
38
+
39
+
40
+ ['000670', '盈方微', '270401', '其他电子'],
41
+
42
+ ['300803', '指南针', '490101', '证券'],
43
+ ['300085', '银之杰', '490101', '证券'],
44
+ ['300380', '安硕信息', '490101', '证券'],
45
+ ['600446', '金证股份', '490101', '证券'],
46
+ ['688318', '财富趋势', '490101', '证券'],
47
+ ['600570', '恒生电子', '490101', '证券'],
48
+ ['837592', '华信永道', '490101', '证券'],
49
+ ['830799', '艾融软件', '490101', '证券'],
50
+ ['300033', '同花顺', '490101', '证券'],
51
+ ['300399', '天利科技', '490201', '保险'],
52
+
53
+ ['002131', '利欧股份', '720501', '营销代理'],
54
+
55
+ ['300042', '朗科科技', '270108', '半导体设备'],
56
+ # EDA软件
57
+ ['301269', '华大九天', '270108', '半导体设备'],
58
+ ['688206', '概伦电子', '270108', '半导体设备'],
59
+ ['301095', '广立微', '270108', '半导体设备'],
60
+ ['600895', '张江高科', '270108', '半导体设备'],
61
+
62
+ ['688630', '芯碁微装', '270108', '半导体设备'],
63
+ ['001309', '德明利', '270104', '数字芯片设计'],
64
+ ['688795', '摩尔线程', '270104', '数字芯片设计'],
65
+
66
+ ],
67
+ columns=['symbol',
68
+ 'name',
69
+ 'new_industry_code', # 三级行业代码
70
+ 'new_industry'])
60
71
 
61
72
 
62
73
  # 修改二级行业分类的股票
@@ -401,12 +412,12 @@ def find_sw_third_industry(new_third_industry_code):
401
412
  # 修改行业信息
402
413
  def fix_industry_data(new_third_industry_code, company_info):
403
414
  sw_industry = find_sw_third_industry(new_third_industry_code)
404
- company_info['first_sw_industry'] = sw_industry.first_sw_industry
405
- company_info['first_industry_code'] = sw_industry.industry_code
406
- company_info['second_sw_industry'] = sw_industry.second_sw_industry
407
- company_info['second_industry_code'] = sw_industry.second_industry_code
408
- company_info['third_sw_industry'] = sw_industry.third_sw_industry
409
- company_info['third_industry_code'] = sw_industry.industry_code
415
+ company_info['first_sw_industry'] = list(sw_industry['first_sw_industry'])[0]
416
+ company_info['first_industry_code'] = list(sw_industry['industry_code'])[0]
417
+ company_info['second_sw_industry'] = list(sw_industry['second_sw_industry'])[0]
418
+ company_info['second_industry_code'] = list(sw_industry['second_industry_code'])[0]
419
+ company_info['third_sw_industry'] = list(sw_industry['third_sw_industry'])[0]
420
+ company_info['third_industry_code'] = list(sw_industry['industry_code'])[0]
410
421
  return company_info
411
422
 
412
423
 
@@ -37,6 +37,7 @@ def sync_all_em_stock_info():
37
37
  logger.error("同步东方财富A股信息异常:{}", e)
38
38
  try:
39
39
  em_etf_info = east_money_etf_api.get_etf_real_time_quotes(30, 6)
40
+ em_etf_info['_id'] = em_etf_info['symbol']
40
41
  em_etf_info['sync_time'] = str_now_date
41
42
  mongodb_util.save_mongo(em_etf_info, extra_income_db_name.EM_ETF_INFO)
42
43
  except BaseException as e:
@@ -2,6 +2,6 @@ import sys
2
2
  import os
3
3
 
4
4
  file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 17
5
+ end = file_path.index('mns') + 16
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
@@ -0,0 +1,208 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 16
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+ import mns_common.component.common_service_fun_api as common_service_fun_api
9
+ from mns_common.db.MongodbUtil import MongodbUtil
10
+ import mns_common.utils.data_frame_util as data_frame_util
11
+ import mns_common.api.kpl.constant.kpl_constant as kpl_constant
12
+ import mns_common.constant.db_name_constant as db_name_constant
13
+ from functools import lru_cache
14
+ from loguru import logger
15
+
16
+ mongodb_util = MongodbUtil('27017')
17
+
18
+
19
+ def set_kpl_plate_info(company_one_df, company_one, kpl_real_time_quotes):
20
+ try:
21
+ if data_frame_util.is_not_empty(kpl_real_time_quotes):
22
+ kpl_real_time_quotes_one = kpl_real_time_quotes.loc[
23
+ kpl_real_time_quotes['symbol'] == company_one.symbol]
24
+
25
+ if data_frame_util.is_not_empty(kpl_real_time_quotes_one):
26
+ company_one_df['kpl_plate_name'] = list(kpl_real_time_quotes_one['plate_name_list'])[0]
27
+ company_one_df['kpl_most_relative_name'] = \
28
+ list(kpl_real_time_quotes_one['most_relative_name'])[
29
+ 0]
30
+ company_one_df = set_kpl_data(kpl_real_time_quotes_one, company_one_df, company_one)
31
+
32
+ if bool(1 - ("kpl_plate_name" in company_one_df.columns)) or bool(
33
+ 1 - ("kpl_most_relative_name" in company_one_df.columns)):
34
+ company_one_df['kpl_plate_name'] = ""
35
+ company_one_df['kpl_most_relative_name'] = ""
36
+ except BaseException as e:
37
+ logger.warning("设置开盘啦数据异常:{},{}", company_one.symbol, e)
38
+ return company_one_df
39
+
40
+ def set_kpl_data(kpl_real_time_quotes_one, company_one_df, company_one):
41
+ if data_frame_util.is_not_empty(kpl_real_time_quotes_one):
42
+ company_one_df['kpl_plate_name'] = list(kpl_real_time_quotes_one['plate_name_list'])[0]
43
+ company_one_df['kpl_most_relative_name'] = list(kpl_real_time_quotes_one['most_relative_name'])[
44
+ 0]
45
+ symbol = company_one.symbol
46
+
47
+ query = {'symbol': symbol, "index_class": kpl_constant.FIRST_INDEX}
48
+ kpl_best_choose_index_detail = mongodb_util.find_query_data('kpl_best_choose_index_detail', query)
49
+ if data_frame_util.is_not_empty(kpl_best_choose_index_detail):
50
+ kpl_best_choose_index_detail = kpl_best_choose_index_detail[[
51
+ "plate_code",
52
+ "plate_name",
53
+ "first_plate_code",
54
+ "first_plate_name",
55
+ "index_class"
56
+ ]]
57
+
58
+ # 去除空格
59
+ kpl_best_choose_index_detail['plate_name'] = kpl_best_choose_index_detail['plate_name'].str.replace(' ', '')
60
+ # 去除空格
61
+ kpl_best_choose_index_detail['first_plate_name'] = kpl_best_choose_index_detail[
62
+ 'first_plate_name'].str.replace(' ', '')
63
+
64
+ company_one_df.loc[:, 'kpl_plate_list_info'] = kpl_best_choose_index_detail.to_string(index=False)
65
+ return company_one_df
66
+
67
+
68
+ # 获取可转债信息
69
+ @lru_cache(maxsize=None)
70
+ def get_kzz_debt_info():
71
+ query = {}
72
+ kzz_debt_info_df = mongodb_util.find_query_data(db_name_constant.KZZ_DEBT_INFO, query)
73
+ kzz_debt_info_df = kzz_debt_info_df[[
74
+ 'symbol',
75
+ 'name',
76
+ 'stock_code',
77
+ 'apply_date',
78
+ 'list_date',
79
+ 'due_date'
80
+ ]]
81
+ return kzz_debt_info_df
82
+
83
+
84
+ def set_kzz_debt(company_one_df, symbol):
85
+ kzz_debt_info_df_all = get_kzz_debt_info()
86
+ kzz_debt_info_df = kzz_debt_info_df_all.loc[kzz_debt_info_df_all['stock_code'] == symbol]
87
+
88
+ if data_frame_util.is_not_empty(kzz_debt_info_df):
89
+ kzz_debt_info_df_list = kzz_debt_info_df.to_dict(orient='records')
90
+ company_one_df['kzz_debt_list'] = [kzz_debt_info_df_list]
91
+ return company_one_df
92
+
93
+
94
+ # 获取最近年报收入
95
+ def set_recent_year_income(symbol, company_one_df):
96
+ query = {'symbol': symbol, "REPORT_TYPE": "年报"}
97
+ em_stock_profit = mongodb_util.descend_query(query, db_name_constant.EM_STOCK_PROFIT, 'REPORT_DATE', 1)
98
+ if data_frame_util.is_not_empty(em_stock_profit):
99
+ company_one_df['operate_profit'] = list(em_stock_profit['OPERATE_PROFIT'])[0]
100
+ company_one_df['operate_date_name'] = list(em_stock_profit['REPORT_DATE_NAME'])[0]
101
+ total_operate_income = list(em_stock_profit['TOTAL_OPERATE_INCOME'])[0]
102
+ # 金融机构大多收入计入在这个字段中
103
+ if total_operate_income == 0:
104
+ total_operate_income = list(em_stock_profit['OPERATE_INCOME'])[0]
105
+
106
+ company_one_df['total_operate_income'] = total_operate_income
107
+ else:
108
+ company_one_df['operate_profit'] = 0
109
+ company_one_df['total_operate_income'] = 0
110
+ company_one_df['operate_date_name'] = '暂无年报'
111
+ company_one_df['operate_profit'] = round(
112
+ company_one_df['operate_profit'] / common_service_fun_api.HUNDRED_MILLION, 2)
113
+ company_one_df['total_operate_income'] = round(
114
+ company_one_df['total_operate_income'] / common_service_fun_api.HUNDRED_MILLION, 2)
115
+ return company_one_df
116
+
117
+
118
+ # 计算真实流通比例
119
+ def set_calculate_circulation_ratio(symbol, now_str_day, company_one_df):
120
+ query = {"symbol": symbol}
121
+ stock_gdfx_free_top_1 = mongodb_util.descend_query(query, 'stock_gdfx_free_top_10', "period", 1)
122
+ if stock_gdfx_free_top_1.shape[0] == 0:
123
+ mv_circulation_ratio = 1
124
+ qfii_number = 0
125
+ qfii_type = 'A股'
126
+ share_holder_sync_day = now_str_day
127
+ else:
128
+ period_time = list(stock_gdfx_free_top_1['period'])[0]
129
+
130
+ query_free = {'symbol': symbol, 'period': period_time}
131
+ stock_gdfx_free_top_10 = mongodb_util.find_query_data('stock_gdfx_free_top_10', query_free)
132
+
133
+ stock_gdfx_free_top_10['shares_number_str'] = stock_gdfx_free_top_10['shares_number'].astype(str)
134
+
135
+ stock_gdfx_free_top_10['id_key'] = stock_gdfx_free_top_10['symbol'] + '_' + stock_gdfx_free_top_10[
136
+ 'period'] + '_' + stock_gdfx_free_top_10.shares_number_str
137
+
138
+ stock_gdfx_free_top_10.drop_duplicates('id_key', keep='last', inplace=True)
139
+
140
+ # 排除香港结算公司 大于5%减持不用发公告 香港中央结算 HKSCC
141
+ stock_gdfx_free_top_10['is_hk'] = stock_gdfx_free_top_10['shareholder_name'].apply(
142
+ lambda shareholder_name: "HK" if shareholder_name.startswith('香港中央结算') or shareholder_name.startswith(
143
+ 'HKSCC') else "A")
144
+
145
+ # 持股大于5% 减持需要发公告
146
+ # 排除香港结算公司不发公共 小于5%减持不用发公告
147
+ # 香港中央结算 HKSCC
148
+ stock_free_top_greater_than_5 = stock_gdfx_free_top_10.loc[
149
+ (stock_gdfx_free_top_10['circulation_ratio'] >= 5) & (stock_gdfx_free_top_10['is_hk'] == 'A')]
150
+
151
+ stock_free_qfii = stock_gdfx_free_top_10.loc[stock_gdfx_free_top_10['shareholder_nature'] == 'QFII']
152
+
153
+ share_holder_sync_day = list(stock_gdfx_free_top_10['create_day'])[0]
154
+
155
+ # qfii 数量
156
+ qfii_number = stock_free_qfii.shape[0]
157
+ # qfii 类型
158
+ qfii_type = set_qfii_type(qfii_number, stock_free_qfii.copy())
159
+
160
+ circulation_ratio = sum(stock_free_top_greater_than_5['circulation_ratio'])
161
+ mv_circulation_ratio = round((100 - circulation_ratio) / 100, 2)
162
+ # 防止错误数据
163
+ if mv_circulation_ratio < 0:
164
+ mv_circulation_ratio = 1
165
+
166
+ company_one_df['mv_circulation_ratio'] = mv_circulation_ratio
167
+ company_one_df['qfii_type'] = qfii_type
168
+ company_one_df['qfii_number'] = qfii_number
169
+ company_one_df['share_holder_sync_day'] = share_holder_sync_day
170
+
171
+ return company_one_df
172
+
173
+
174
+ # 设置QFII持股
175
+ def set_qfii_type(qfii_number, stock_free_qfii):
176
+ if qfii_number > 0:
177
+ stock_free_qfii['new_change'] = stock_free_qfii['change']
178
+ stock_free_qfii.loc[stock_free_qfii['change_ratio'] == 0, 'new_change'] = 0
179
+ stock_free_qfii.loc[stock_free_qfii['change'] == '新进', 'new_change'] = \
180
+ stock_free_qfii['shares_number']
181
+ stock_free_qfii['new_change'] = stock_free_qfii['new_change'].astype(float)
182
+
183
+ stock_free_qfii_new_in = stock_free_qfii.loc[stock_free_qfii['change'] == '新进']
184
+ if data_frame_util.is_not_empty(stock_free_qfii_new_in):
185
+ qfii_type = 1
186
+ return qfii_type
187
+
188
+ stock_free_qfii_add = stock_free_qfii.loc[
189
+ (~stock_free_qfii['change'].isin(['不变', '新进'])) & (stock_free_qfii['new_change'] > 0)]
190
+
191
+ if data_frame_util.is_not_empty(stock_free_qfii_add):
192
+ qfii_type = 2
193
+ return qfii_type
194
+
195
+ stock_free_qfii_not_change = stock_free_qfii.loc[stock_free_qfii['change'] == '不变']
196
+
197
+ if data_frame_util.is_not_empty(stock_free_qfii_not_change):
198
+ qfii_type = 3
199
+ return qfii_type
200
+
201
+ stock_free_qfii_reduce = stock_free_qfii.loc[
202
+ (~stock_free_qfii['change'].isin(['不变', '新进'])) & (stock_free_qfii['new_change'] < 0)]
203
+
204
+ if data_frame_util.is_not_empty(stock_free_qfii_reduce):
205
+ qfii_type = 4
206
+ return qfii_type
207
+ else:
208
+ return 0