mns-scheduler 1.2.3.2__py3-none-any.whl → 1.2.3.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mns-scheduler might be problematic. Click here for more details.

@@ -27,13 +27,13 @@ def fix_company_industry(symbol):
27
27
  else:
28
28
  company_info = mongodb_util.find_all_data('company_info_base')
29
29
 
30
- company_info = company_info.set_index(['second_sw_industry'], drop=False)
31
- del company_info['industry']
30
+ # company_info = company_info.set_index(['second_sw_industry'], drop=False)
31
+ # del company_info['industry']
32
32
  # fix industry name
33
- industry_final_fix_df = company_constant_data.get_industry_final_fix_df()
34
- industry_final_fix_df = industry_final_fix_df.set_index(['second_sw_industry'], drop=True)
35
- company_info = pd.merge(company_info, industry_final_fix_df, how='outer',
36
- left_index=True, right_index=True)
33
+ # company_info = company_constant_data.remove_industry_name_special(company_info)
34
+ # industry_final_fix_df = industry_final_fix_df.set_index(['second_sw_industry'], drop=True)
35
+ # company_info = pd.merge(company_info, industry_final_fix_df, how='outer',
36
+ # left_index=True, right_index=True)
37
37
  # 将申万第三行业做为行业
38
38
  company_info = company_constant_data.fix_industry_use_sw_third(company_info.copy())
39
39
  company_info['industry'] = company_info['industry'].fillna('综合')
@@ -54,18 +54,47 @@ def get_fix_symbol_industry():
54
54
 
55
55
  ['002131', '利欧股份', '720501', '营销代理'],
56
56
 
57
-
58
57
  ],
59
58
  columns=['symbol', 'name', 'new_industry_code', 'new_industry'])
60
59
 
61
60
 
61
+ # def remove_industry_name_special(industry_df):
62
+ # industry_df['industry'] = industry_df['industry'].str.replace('Ⅱ', '', regex=False)
63
+ # return industry_df
64
+
65
+
66
+ # 修改行业名称
62
67
  def get_industry_final_fix_df():
63
68
  return pd.DataFrame([
64
- # 汽车
65
- ['汽车零部件', '汽车零部件'],
66
- ['汽车服务', '汽车服务'],
67
- ['乘用车', '汽车整车'], # = merge 汽车整车
68
- ['商用车', '汽车整车'],
69
+
70
+ # 交通运输
71
+ ['物流', '物流'],
72
+ ['铁路公路', '铁路公路'],
73
+ ['航运港口', '航运港口'],
74
+ ['航空机场', '航空机场'],
75
+
76
+ # 传媒
77
+ ['数字媒体', '数字媒体'],
78
+ ['电视广播Ⅱ', '电视广播'],
79
+ ['游戏Ⅱ', '游戏'],
80
+ ['出版', '出版'],
81
+ ['影视院线', '影视院线'],
82
+ ['广告营销', '广告营销'],
83
+
84
+ # 公用事业
85
+ ['燃气Ⅱ', '燃气'],
86
+ ['电力', '电力'],
87
+
88
+ # 农林牧渔
89
+ ['养殖业', '养殖业'], # merge 农林牧渔
90
+ ['农产品加工', '农产品加工'], # merge 农林牧渔
91
+ ['饲料', '饲料'], # merge to 农林牧渔
92
+ ['渔业', '渔业'], # merge to 农林牧渔
93
+ # merge 农林牧渔
94
+ ['动物保健Ⅱ', '动物保健'],
95
+ ['种植业', '种植业'],
96
+ ['林业Ⅱ', '林业'], # merge 农林牧渔
97
+ ['农业综合Ⅱ', '农业综合'], # merge 农林牧渔
69
98
 
70
99
  # 医药生物
71
100
  ['化学制药', '化学制药'],
@@ -75,6 +104,45 @@ def get_industry_final_fix_df():
75
104
  ['医疗服务', '医疗服务'],
76
105
  ['医药商业', '医药商业'],
77
106
 
107
+ # 商贸零售
108
+ ['一般零售', '一般零售'],
109
+ ['互联网电商', '互联网电商'],
110
+ ['贸易Ⅱ', '贸易'], #
111
+ ['专业连锁Ⅱ', '专业连锁'], # 专业连锁 综合Ⅱ
112
+ ['旅游零售Ⅱ', '旅游零售'], # m
113
+
114
+ # 国防
115
+ ['军工电子Ⅱ', '军工电子'], # todo merge 国防
116
+ ['地面兵装Ⅱ', '地面兵装'], # todo merge 国防
117
+ ['航天装备Ⅱ', '航天装备'],
118
+ ['航空装备Ⅱ', '航空装备'], # todo merge 国防
119
+ ['航海装备Ⅱ', '航海装备'],
120
+
121
+ # 基础化工
122
+ ['化学制品', '化学制品'],
123
+ ['化学原料', '化学原料'],
124
+ ['化学纤维', '化学纤维'],
125
+ ['农化制品', '化肥农药'],
126
+ ['塑料', '塑料'],
127
+ ['橡胶', '橡胶'], # todo exclude
128
+ ['非金属材料Ⅱ', '非金属材料'],
129
+
130
+ # 家用电器
131
+ ['白色家电', '白色家电'], # merge 家用电器
132
+ ['照明设备Ⅱ', '照明设备'], # merge 家用电器
133
+ ['其他家电Ⅱ', '其他家电'], # merge 家用电器
134
+ ['家电零部件Ⅱ', '家电零部件'], # merge 家用电器
135
+ ['小家电', '小家电'], # merge '家用电器'
136
+ ['黑色家电', '黑色家电'], # merge 家用电器
137
+ ['厨卫电器', '厨卫电器'], # merge 家用电器
138
+
139
+ # 汽车
140
+ ['汽车零部件', '汽车零部件'],
141
+ ['汽车服务', '汽车服务'],
142
+ ['乘用车', '汽车整车'], # = merge 汽车整车
143
+ ['商用车', '汽车整车'],
144
+ ['摩托车及其他', '摩托车及其他'],
145
+
78
146
  # 电力设备
79
147
  ['电网设备', '电网设备'],
80
148
  ['电池', '电池'],
@@ -104,13 +172,6 @@ def get_industry_final_fix_df():
104
172
  ['元件', '元件'],
105
173
  ['其他电子Ⅱ', '其他电子'], #
106
174
 
107
- # 国防
108
- ['军工电子Ⅱ', '军工电子'], # todo merge 国防
109
- ['地面兵装Ⅱ', '地面兵装'], # todo merge 国防
110
- ['航天装备Ⅱ', '航天装备'],
111
- ['航空装备Ⅱ', '航空装备'], # todo merge 国防
112
- ['航海装备Ⅱ', '航海装备'],
113
-
114
175
  # 金融 互联网金融 参股券商
115
176
  ['证券Ⅱ', '证券'],
116
177
  ['国有大型银行Ⅱ', '银行'], # merge to 银行
@@ -182,61 +243,9 @@ def get_industry_final_fix_df():
182
243
  ['玻璃玻纤', '玻璃玻纤'],
183
244
  ['水泥', '水泥'],
184
245
 
185
- # 家用电器
186
- ['白色家电', '家用电器'], # merge 家用电器
187
- ['照明设备Ⅱ', '家用电器'], # merge 家用电器
188
- ['其他家电Ⅱ', '家用电器'], # merge 家用电器
189
- ['家电零部件Ⅱ', '家用电器'], # merge 家用电器
190
- ['小家电', '家用电器'], # merge '家用电器'
191
- ['黑色家电', '家用电器'], # merge 家用电器
192
- ['厨卫电器', '家用电器'], # merge 家用电器
193
-
194
- # 基础化工
195
- ['化学制品', '化学制品'],
196
- ['化学原料', '化学原料'],
197
- ['化学纤维', '化学纤维'],
198
- ['农化制品', '化肥农药'],
199
- ['塑料', '塑料'],
200
- ['橡胶', '橡胶'], # todo exclude
201
- ['非金属材料Ⅱ', '非金属材料'],
202
-
203
- # 商贸零售
204
- ['一般零售', '一般零售'],
205
- ['互联网电商', '互联网电商'],
206
- ['贸易Ⅱ', '贸易'], #
207
-
208
- # 农林牧渔
209
- ['养殖业', '养殖业'], # merge 农林牧渔
210
- ['农产品加工', '农产品加工'], # merge 农林牧渔
211
- ['饲料', '饲料'], # merge to 农林牧渔
212
- ['渔业', '渔业'], # merge to 农林牧渔
213
- # merge 农林牧渔
214
- ['动物保健Ⅱ', '动物保健'],
215
- ['种植业', '种植业'],
216
- ['林业Ⅱ', '林业'], # merge 农林牧渔
217
- ['农业综合Ⅱ', '农业综合'], # merge 农林牧渔
218
-
219
- # 公用事业
220
- ['燃气Ⅱ', '燃气'],
221
- ['电力', '电力'],
222
-
223
- # 传媒
224
- ['数字媒体', '数字媒体'],
225
- ['电视广播Ⅱ', '电视广播'],
226
- ['游戏Ⅱ', '游戏'],
227
- ['出版', '出版'],
228
- ['影视院线', '影视院线'],
229
- ['广告营销', '广告营销'],
230
-
231
- # 交通运输
232
- ['物流', '物流'],
233
- ['铁路公路', '铁路公路'],
234
- ['航运港口', '航运港口'],
235
- ['航空机场', '航空机场'],
236
-
237
246
  # 旅游酒店
238
247
  ['酒店餐饮', '旅游酒店'], # merge to 旅游酒店
239
- ['旅游零售Ⅱ', '旅游酒店'], # merge 旅游酒店 中国中免
248
+
240
249
  ['旅游及景区', '旅游酒店'], # merge 旅游酒店
241
250
 
242
251
  # 煤炭
@@ -253,9 +262,6 @@ def get_industry_final_fix_df():
253
262
  ['专用设备', '专用设备'], # todo exclude
254
263
  ['通用设备', '通用设备'], # todo exclude
255
264
  ['专业服务', '专业服务'], # todo exclude 无法具体分类
256
- ['摩托车及其他', '摩托车及其他'], # todo exclude
257
-
258
- ['专业连锁Ⅱ', '专业连锁'], # 专业连锁 综合Ⅱ
259
265
 
260
266
  ['体育Ⅱ', '综合'], # merge 综合Ⅱ
261
267
  ['综合Ⅱ', '综合'] # todo exclude
@@ -406,5 +412,5 @@ def filed_sort(company_info):
406
412
 
407
413
  if __name__ == '__main__':
408
414
  fix_one_symbol()
409
- industry_df = get_industry_final_fix_df()
410
- print(industry_df)
415
+ industry_df_test = get_industry_final_fix_df()
416
+ print(industry_df_test)
@@ -488,7 +488,7 @@ blockingScheduler.add_job(sync_high_risk_stocks, 'cron', hour='0,09,12,16', minu
488
488
  blockingScheduler.add_job(sync_all_interactive_questions, 'cron', hour='08,12,17', minute='05')
489
489
 
490
490
  # 实时数据状态同步check
491
- blockingScheduler.add_job(real_time_task_check_status, 'interval', seconds=59, max_instances=4)
491
+ blockingScheduler.add_job(real_time_task_check_status, 'interval', seconds=20, max_instances=4)
492
492
 
493
493
  # 打开交易客户端
494
494
  blockingScheduler.add_job(trader_client_auto_login, 'cron', hour='08,12', minute='30')
@@ -1,4 +1,4 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mns-scheduler
3
- Version: 1.2.3.2
3
+ Version: 1.2.3.4
4
4
 
@@ -10,9 +10,9 @@ mns_scheduler/company_info/base/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4I
10
10
  mns_scheduler/company_info/base/sync_company_base_info_api.py,sha256=aaOqOs9X-0K7Wkqo0uOeuT4BERKx6HkmaSZmGuD3DBc,20553
11
11
  mns_scheduler/company_info/base/sync_company_hold_info_api.py,sha256=W3Nj9st45efx8cy_42PRTcOXijWKnkO1-ZFRyyfR3S0,1587
12
12
  mns_scheduler/company_info/clean/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
13
- mns_scheduler/company_info/clean/company_info_clean_api.py,sha256=n3kxsqihPjKJvGDkAjMYqB_U2EPemOi1Yjez5yOYJeo,4858
13
+ mns_scheduler/company_info/clean/company_info_clean_api.py,sha256=HvWZl70zgDxD74wk1z0jZqj3DIUBQGs0wqeT3g6yWi8,4876
14
14
  mns_scheduler/company_info/constant/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
15
- mns_scheduler/company_info/constant/company_constant_data.py,sha256=cVKhdiBCNEEOb8w3FIWYNtiqNVu41YwgcLYGm9V8m9I,17601
15
+ mns_scheduler/company_info/constant/company_constant_data.py,sha256=Ps68h0X_KuF6XgelVf8EODKB6phAkP-272TAeULOnjw,17758
16
16
  mns_scheduler/company_info/de_list_stock/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
17
17
  mns_scheduler/company_info/de_list_stock/de_list_stock_service.py,sha256=GCp6hlvO-SuH1oIpEsYZwEnGUOa6fXb2D7CqAUYXKQA,1993
18
18
  mns_scheduler/company_info/remark/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
@@ -142,8 +142,8 @@ mns_scheduler/zt/zt_pool/em_zt_pool_sync_api.py,sha256=0h8J5FsGHjP76S_yMFPH5tt37
142
142
  mns_scheduler/zt/zt_pool/ths_zt_pool_sync_api.py,sha256=Sy39T-yFwLSIIoSZqQzS-6-W1RlaFWvYpksEXKQVFdI,10456
143
143
  mns_scheduler/zt/zt_pool/update_null_zt_reason_api.py,sha256=OuklSKUhZMj1aKcwDLpZilKIqFbHY3hvvIuA_UFnPqA,2135
144
144
  mns_scheduler/zz_task/__init__.py,sha256=QWBdZwBCvQw8aS4hnL9_pg3U3ZiNLUXzlImyy9WhUcI,163
145
- mns_scheduler/zz_task/data_sync_task.py,sha256=gog95254ybh0QDeNdS-kowaTQRIdVZz9pdH5_8p8t2Y,21201
146
- mns_scheduler-1.2.3.2.dist-info/METADATA,sha256=f-Vg2CSVz9DlGn9jxY1pI3NsPs6WL7ZXi2lPET4enek,64
147
- mns_scheduler-1.2.3.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
148
- mns_scheduler-1.2.3.2.dist-info/top_level.txt,sha256=PXQDFBGR1pWmsUbH5yiLAh71P5HZODTRED0zJ8CCgOc,14
149
- mns_scheduler-1.2.3.2.dist-info/RECORD,,
145
+ mns_scheduler/zz_task/data_sync_task.py,sha256=Crp7ZHA24d-UX73hncEimLB4DA5JSuAWmyCCNoPMKps,21201
146
+ mns_scheduler-1.2.3.4.dist-info/METADATA,sha256=5H_xqFnJayFjnKV2g_MX0NzchzTqiN9cAonsYvk6ngY,64
147
+ mns_scheduler-1.2.3.4.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
148
+ mns_scheduler-1.2.3.4.dist-info/top_level.txt,sha256=PXQDFBGR1pWmsUbH5yiLAh71P5HZODTRED0zJ8CCgOc,14
149
+ mns_scheduler-1.2.3.4.dist-info/RECORD,,