mns-scheduler 1.0.2.8__py3-none-any.whl → 1.0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mns-scheduler might be problematic. Click here for more details.

@@ -469,7 +469,7 @@ if __name__ == '__main__':
469
469
  # sync_company_base_info()
470
470
  # 300293
471
471
  # sync_company_base_info(None)
472
- new_company_info_update()
473
- sync_company_base_info()
472
+ # new_company_info_update()
473
+ sync_company_base_info(None)
474
474
  fix_company_industry(None)
475
475
  # group_by_industry()
@@ -80,6 +80,9 @@ def sync_all_plate_info():
80
80
  # 同步精选概念股票组成
81
81
  multi_thread_sync_kpl_best_choose_detail()
82
82
  logger.info("同步开票啦精选概念股票组成完成")
83
+ # 更新开票啦空名字名称
84
+ update_null_name()
85
+ logger.info("更新开票啦空名字名称")
83
86
 
84
87
 
85
88
  # 更新一二级关系
@@ -135,7 +138,50 @@ def update_sub_index_relation(first_index_df, kpl_all_concept_df):
135
138
  mongodb_util.update_many(update_query, new_values, db_name_constant.KPL_BEST_CHOOSE_INDEX)
136
139
 
137
140
 
141
+ def update_null_name():
142
+ query = {"plate_name": ''}
143
+ kpl_best_choose_index_df = mongodb_util.find_query_data(db_name_constant.KPL_BEST_CHOOSE_INDEX, query)
144
+ if data_frame_util.is_empty(kpl_best_choose_index_df):
145
+ return
146
+ else:
147
+ kpl_best_choose_index_df_sub = kpl_best_choose_index_df.loc[
148
+ kpl_best_choose_index_df["index_class"] == kpl_constant.SUB_INDEX]
149
+ if data_frame_util.is_not_empty(kpl_best_choose_index_df_sub):
150
+ for sub_one in kpl_best_choose_index_df_sub.itertuples():
151
+ try:
152
+ first_plate_code = sub_one.first_plate_code
153
+ sub_plate_code = sub_one.plate_code
154
+ kpl_best_choose_sub_index_detail = selection_plate_api.best_choose_sub_index(first_plate_code)
155
+ sub_kpl_best_choose_sub_index_detail = kpl_best_choose_sub_index_detail.loc[
156
+ kpl_best_choose_sub_index_detail['plate_code'] == sub_plate_code]
157
+ if data_frame_util.is_not_empty(sub_kpl_best_choose_sub_index_detail):
158
+ plate_name = list(sub_kpl_best_choose_sub_index_detail['plate_name'])[0]
159
+ new_values = {"$set": {"plate_name": plate_name}}
160
+ update_query = {"plate_code": sub_plate_code}
161
+ mongodb_util.update_many(update_query, new_values, db_name_constant.KPL_BEST_CHOOSE_INDEX)
162
+ except BaseException as e:
163
+ logger.error("更新板块kpl概念名称出现异常:{},{}", sub_plate_code, e)
164
+ kpl_best_choose_index_df_first = kpl_best_choose_index_df.loc[
165
+ kpl_best_choose_index_df["index_class"] == kpl_constant.FIRST_INDEX]
166
+ if data_frame_util.is_not_empty(kpl_best_choose_index_df_first):
167
+ for first_one in kpl_best_choose_index_df_sub.itertuples():
168
+ try:
169
+ first_plate_code = first_one.plate_code
170
+ first_index_df = sync_best_choose_first_index.choose_field_choose_first_index()
171
+ first_index_df_one = first_index_df.loc[first_index_df['plate_code'] == first_plate_code]
172
+ if data_frame_util.is_not_empty(first_index_df_one):
173
+ plate_name = list(first_index_df_one['plate_name'])[0]
174
+ new_values = {"$set": {"plate_name": plate_name}}
175
+ update_query = {"plate_code": first_plate_code}
176
+ mongodb_util.update_many(update_query, new_values, db_name_constant.KPL_BEST_CHOOSE_INDEX)
177
+ except BaseException as e:
178
+ logger.error("更新板块kpl概念名称出现异常:{},{}", first_plate_code, e)
179
+
180
+ return kpl_best_choose_index_df
181
+
182
+
138
183
  if __name__ == '__main__':
184
+ update_null_name()
139
185
  update_best_choose_plate_relation()
140
186
 
141
187
  # 同步第一和第二级别精选指数
@@ -1,4 +1,4 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mns-scheduler
3
- Version: 1.0.2.8
3
+ Version: 1.0.3.0
4
4
 
@@ -3,7 +3,7 @@ mns_scheduler/big_deal/__init__.py,sha256=QWBdZwBCvQw8aS4hnL9_pg3U3ZiNLUXzlImyy9
3
3
  mns_scheduler/big_deal/ths_big_deal_sync.py,sha256=wezGJWFRnKYBaPP9PVXLqMbHENOXgvJtw3HSGCSlX5c,4555
4
4
  mns_scheduler/company_info/__init__.py,sha256=QWBdZwBCvQw8aS4hnL9_pg3U3ZiNLUXzlImyy9WhUcI,163
5
5
  mns_scheduler/company_info/company_constant_data.py,sha256=LwyBWLoErAUPXss68ebVj3Qe8GouvKDFtyHrWuMd-qU,15238
6
- mns_scheduler/company_info/company_info_sync_api.py,sha256=Ovfa3prfpEYZYGjFY7YaykikHLVrPKas3la5ZZxaYv8,20326
6
+ mns_scheduler/company_info/company_info_sync_api.py,sha256=2sQk197p5qjq2DQlRpVbotSSIN87x43T-RGAtMiXQI4,20332
7
7
  mns_scheduler/concept/__init__.py,sha256=QWBdZwBCvQw8aS4hnL9_pg3U3ZiNLUXzlImyy9WhUcI,163
8
8
  mns_scheduler/concept/clean/__init__.py,sha256=QWBdZwBCvQw8aS4hnL9_pg3U3ZiNLUXzlImyy9WhUcI,163
9
9
  mns_scheduler/concept/clean/ths_effective_concept_clean_api.py,sha256=2CzG7zvA2mydjIvnckMWz8eR_tmdfOl8k-I0eov9fy4,2440
@@ -45,7 +45,7 @@ mns_scheduler/kpl/selection/index/sync_best_choose_index.py,sha256=-34drqAMsx792
45
45
  mns_scheduler/kpl/selection/symbol/__init__.py,sha256=QWBdZwBCvQw8aS4hnL9_pg3U3ZiNLUXzlImyy9WhUcI,163
46
46
  mns_scheduler/kpl/selection/symbol/sync_best_choose_symbol.py,sha256=kUKs0SWCqekhvV0o5A1pDv0Nw4x6VTS-ij0AryzKe8w,4679
47
47
  mns_scheduler/kpl/selection/total/__init__.py,sha256=QWBdZwBCvQw8aS4hnL9_pg3U3ZiNLUXzlImyy9WhUcI,163
48
- mns_scheduler/kpl/selection/total/sync_kpl_best_total_sync_api.py,sha256=B03DKH6IcmFK_OmXrbnjrxSOSjRrnYXrSUXOw9ft-HM,7527
48
+ mns_scheduler/kpl/selection/total/sync_kpl_best_total_sync_api.py,sha256=WRK-Pu0-7ub9q1n5TK406_sAGQwOEUl2CZLu9suo70k,10461
49
49
  mns_scheduler/real_time/__init__.py,sha256=QWBdZwBCvQw8aS4hnL9_pg3U3ZiNLUXzlImyy9WhUcI,163
50
50
  mns_scheduler/real_time/realtime_quotes_now_create_db_index.py,sha256=qQCjcsG3WYgn3zemS45Ms0AHtbkCwlSVPPCntxVvK8Q,1066
51
51
  mns_scheduler/real_time/realtime_quotes_now_sync.py,sha256=YldmBI19eKNEL_yTZvBrWewL33B5G6a8cuEn7YQMV9w,8850
@@ -60,7 +60,7 @@ mns_scheduler/zt/zt_pool_sync_api.py,sha256=tzSCnqAelV7MQBZ3KcpOQQHNYnjFnmvoDFca
60
60
  mns_scheduler/zz_task/__init__.py,sha256=QWBdZwBCvQw8aS4hnL9_pg3U3ZiNLUXzlImyy9WhUcI,163
61
61
  mns_scheduler/zz_task/data_sync_task.py,sha256=oeEC_bSL8lsmdx3SRFnW_EUfv3HXcpByut4zAszQu3w,13768
62
62
  mns_scheduler/zz_task/sync_realtime_quotes_task.py,sha256=DN3bq2XCDZC-PHlbD2NTog48bR44EruIEc2QVGKg7Tk,932
63
- mns_scheduler-1.0.2.8.dist-info/METADATA,sha256=NDL_zwSci2ka1Hl_A0RWmRcbW1s8mYHVMHxGzWIqyyE,64
64
- mns_scheduler-1.0.2.8.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
65
- mns_scheduler-1.0.2.8.dist-info/top_level.txt,sha256=PXQDFBGR1pWmsUbH5yiLAh71P5HZODTRED0zJ8CCgOc,14
66
- mns_scheduler-1.0.2.8.dist-info/RECORD,,
63
+ mns_scheduler-1.0.3.0.dist-info/METADATA,sha256=v7UN3md1rRa8LgR_WWNi0lP7udOkmeswwN2dISBSi64,64
64
+ mns_scheduler-1.0.3.0.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
65
+ mns_scheduler-1.0.3.0.dist-info/top_level.txt,sha256=PXQDFBGR1pWmsUbH5yiLAh71P5HZODTRED0zJ8CCgOc,14
66
+ mns_scheduler-1.0.3.0.dist-info/RECORD,,