mns-common 1.5.1.8__py3-none-any.whl → 1.5.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mns-common might be problematic. Click here for more details.
- mns_common/api/em/concept/__init__.py +7 -0
- mns_common/api/em/concept/em_concept_index_api.py +230 -0
- mns_common/api/em/gd/__init__.py +7 -0
- mns_common/api/em/gd/east_money_stock_gdfx_free_top_10_api.py +252 -0
- mns_common/api/em/real_time/__init__.py +7 -0
- mns_common/api/em/real_time/east_money_debt_api.py +422 -0
- mns_common/api/em/real_time/east_money_etf_api.py +504 -0
- mns_common/api/em/real_time/east_money_stock_a_api.py +305 -0
- mns_common/api/em/real_time/east_money_stock_a_v2_api.py +296 -0
- mns_common/api/em/real_time/east_money_stock_hk_api.py +469 -0
- mns_common/api/em/real_time/east_money_stock_us_api.py +234 -0
- mns_common/api/em/real_time/real_time_quotes_repeat_api.py +359 -0
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.2.0.dist-info}/METADATA +1 -1
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.2.0.dist-info}/RECORD +16 -4
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.2.0.dist-info}/WHEEL +0 -0
- {mns_common-1.5.1.8.dist-info → mns_common-1.5.2.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,422 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
import sys
|
|
5
|
+
import os
|
|
6
|
+
|
|
7
|
+
file_path = os.path.abspath(__file__)
|
|
8
|
+
end = file_path.index('mns') + 14
|
|
9
|
+
project_path = file_path[0:end]
|
|
10
|
+
sys.path.append(project_path)
|
|
11
|
+
|
|
12
|
+
import json
|
|
13
|
+
import akshare as ak
|
|
14
|
+
import pandas as pd
|
|
15
|
+
from loguru import logger
|
|
16
|
+
import requests
|
|
17
|
+
import time
|
|
18
|
+
import numpy as np
|
|
19
|
+
import mns_common.component.proxies.proxy_common_api as proxy_common_api
|
|
20
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
21
|
+
from threading import Lock
|
|
22
|
+
import concurrent.futures
|
|
23
|
+
import mns_common.utils.data_frame_util as data_frame_util
|
|
24
|
+
|
|
25
|
+
# 最大返回条数
|
|
26
|
+
max_number = 600
|
|
27
|
+
# 最小返回条数
|
|
28
|
+
min_number = 500
|
|
29
|
+
# 分页条数
|
|
30
|
+
page_number = 100
|
|
31
|
+
|
|
32
|
+
fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,f33,f34,f35,f62,f66,f69,f72,f184,"
|
|
33
|
+
"f211,f212,f232,f233,f234")
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
def get_kzz_count(pn, proxies, page_size, time_out):
|
|
37
|
+
current_timestamp = str(int(round(time.time() * 1000, 0)))
|
|
38
|
+
url = "https://push2.eastmoney.com/api/qt/clist/get"
|
|
39
|
+
|
|
40
|
+
params = {
|
|
41
|
+
"cb": "jQuery34103608466964799838_" + current_timestamp,
|
|
42
|
+
"pn": str(pn),
|
|
43
|
+
"np": 3,
|
|
44
|
+
"ut": "8a086bfc3570bdde64a6a1c585cccb35",
|
|
45
|
+
"fltt": 1,
|
|
46
|
+
"invt": 1,
|
|
47
|
+
"fs": "m:0+e:11,m:1+e:11,m:1+e:11+s:4194304,m:0+e:11+s:8388608",
|
|
48
|
+
"dpt": "zqsc.zpg",
|
|
49
|
+
"fields": fields,
|
|
50
|
+
"wbp2u": "|0|0|0|wap",
|
|
51
|
+
"fid": "f12",
|
|
52
|
+
"po": 1,
|
|
53
|
+
"pz": str(page_size),
|
|
54
|
+
"_": current_timestamp
|
|
55
|
+
}
|
|
56
|
+
try:
|
|
57
|
+
if proxies is None:
|
|
58
|
+
r = requests.get(url, params, timeout=time_out)
|
|
59
|
+
else:
|
|
60
|
+
r = requests.get(url, params, proxies=proxies, timeout=time_out)
|
|
61
|
+
data_text = r.text
|
|
62
|
+
total_number = int(data_json['data']['total'])
|
|
63
|
+
return total_number
|
|
64
|
+
except Exception as e:
|
|
65
|
+
logger.error("获取可转债列表,实时行情异常:{}", e)
|
|
66
|
+
return 0
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
#
|
|
70
|
+
# url = https://push2.eastmoney.com/api/qt/clist/get?cb=jQuery34103608466964799838_1718163189869&pn=1&np=1&ut
|
|
71
|
+
# =8a086bfc3570bdde64a6a1c585cccb35&fltt=1&invt=1&fs=m:0+e:11,m:1+e:11,m:1+e:11+s:4194304,
|
|
72
|
+
# m:0+e:11+s:8388608&dpt=zqsc.zpg&fields=f1,f2,f3,f4,f5,f6,f8,f10,f12,f13,f14,f18,f22,f152,
|
|
73
|
+
# f237&wbp2u=|0|0|0|wap&fid=f3&po=1&pz=2000&_=1718163189870
|
|
74
|
+
def get_debt_page_data(pn, proxies, page_size, time_out) -> pd.DataFrame:
|
|
75
|
+
current_timestamp = str(int(round(time.time() * 1000, 0)))
|
|
76
|
+
url = "https://push2.eastmoney.com/api/qt/clist/get"
|
|
77
|
+
|
|
78
|
+
params = {
|
|
79
|
+
"cb": "jQuery34103608466964799838_" + current_timestamp,
|
|
80
|
+
"pn": str(pn),
|
|
81
|
+
"np": 3,
|
|
82
|
+
"ut": "8a086bfc3570bdde64a6a1c585cccb35",
|
|
83
|
+
"fltt": 1,
|
|
84
|
+
"invt": 1,
|
|
85
|
+
"fs": "m:0+e:11,m:1+e:11,m:1+e:11+s:4194304,m:0+e:11+s:8388608",
|
|
86
|
+
"dpt": "zqsc.zpg",
|
|
87
|
+
"fields": fields,
|
|
88
|
+
"wbp2u": "|0|0|0|wap",
|
|
89
|
+
"fid": "f12",
|
|
90
|
+
"po": 1,
|
|
91
|
+
"pz": str(page_size),
|
|
92
|
+
"_": current_timestamp
|
|
93
|
+
}
|
|
94
|
+
try:
|
|
95
|
+
if proxies is None:
|
|
96
|
+
r = requests.get(url, params, timeout=time_out)
|
|
97
|
+
else:
|
|
98
|
+
r = requests.get(url, params, proxies=proxies, timeout=time_out)
|
|
99
|
+
data_text = r.text
|
|
100
|
+
|
|
101
|
+
if pn == 1:
|
|
102
|
+
try:
|
|
103
|
+
begin_index_total = data_text.index('"total":')
|
|
104
|
+
|
|
105
|
+
end_index_total = data_text.index('"diff"')
|
|
106
|
+
global max_number
|
|
107
|
+
max_number = int(data_text[begin_index_total + 8:end_index_total - 1])
|
|
108
|
+
except Exception as e:
|
|
109
|
+
logger.error(f"获取第{pn}页可转债列表异常: {e}")
|
|
110
|
+
return pd.DataFrame()
|
|
111
|
+
|
|
112
|
+
begin_index = data_text.index('[')
|
|
113
|
+
end_index = data_text.index(']')
|
|
114
|
+
data_json = data_text[begin_index:end_index + 1]
|
|
115
|
+
data_json = json.loads(data_json)
|
|
116
|
+
if data_json is None:
|
|
117
|
+
return pd.DataFrame()
|
|
118
|
+
else:
|
|
119
|
+
return pd.DataFrame(data_json)
|
|
120
|
+
except Exception as e:
|
|
121
|
+
logger.error("获取可转债列表,实时行情异常:{}", e)
|
|
122
|
+
return pd.DataFrame()
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def all_debt_ticker_data(fields, proxies) -> pd.DataFrame:
|
|
126
|
+
"""
|
|
127
|
+
使用多线程获取所有债券数据
|
|
128
|
+
"""
|
|
129
|
+
# 计算总页数,假设总共有1000条数据,每页200条
|
|
130
|
+
|
|
131
|
+
per_page = page_number
|
|
132
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
133
|
+
|
|
134
|
+
# 创建线程池
|
|
135
|
+
with ThreadPoolExecutor(max_workers=3) as executor:
|
|
136
|
+
# 提交任务,获取每页数据
|
|
137
|
+
futures = [executor.submit(get_debt_page_data, fields, pn, proxies)
|
|
138
|
+
for pn in range(1, total_pages + 1)]
|
|
139
|
+
|
|
140
|
+
# 收集结果
|
|
141
|
+
results = []
|
|
142
|
+
for future in futures:
|
|
143
|
+
result = future.result()
|
|
144
|
+
if not result.empty:
|
|
145
|
+
results.append(result)
|
|
146
|
+
|
|
147
|
+
# 合并所有页面的数据
|
|
148
|
+
if results:
|
|
149
|
+
return pd.concat(results, ignore_index=True)
|
|
150
|
+
else:
|
|
151
|
+
return pd.DataFrame()
|
|
152
|
+
|
|
153
|
+
|
|
154
|
+
def get_debt_real_time_quotes(proxies):
|
|
155
|
+
# 获取第一页数据
|
|
156
|
+
page_one_df = get_debt_page_data(fields, 1, proxies)
|
|
157
|
+
# 数据接口正常返回5600以上的数量
|
|
158
|
+
if page_one_df.shape[0] > min_number:
|
|
159
|
+
page_one_df = rename_real_time_quotes_df(page_one_df)
|
|
160
|
+
page_one_df.drop_duplicates('symbol', keep='last', inplace=True)
|
|
161
|
+
return page_one_df
|
|
162
|
+
else:
|
|
163
|
+
page_df = all_debt_ticker_data(fields, proxies)
|
|
164
|
+
page_df = rename_real_time_quotes_df(page_df)
|
|
165
|
+
page_df.drop_duplicates('symbol', keep='last', inplace=True)
|
|
166
|
+
return page_df
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
def rename_real_time_quotes_df(temp_df):
|
|
170
|
+
temp_df = temp_df.rename(columns={
|
|
171
|
+
"f2": "now_price",
|
|
172
|
+
"f3": "chg",
|
|
173
|
+
"f5": "volume",
|
|
174
|
+
"f6": "amount",
|
|
175
|
+
"f8": "exchange",
|
|
176
|
+
"f10": "quantity_ratio",
|
|
177
|
+
"f22": "up_speed",
|
|
178
|
+
"f11": "up_speed_05",
|
|
179
|
+
"f12": "symbol",
|
|
180
|
+
"f14": "name",
|
|
181
|
+
"f15": "high",
|
|
182
|
+
"f16": "low",
|
|
183
|
+
"f17": "open",
|
|
184
|
+
"f18": "yesterday_price",
|
|
185
|
+
"f20": "total_mv",
|
|
186
|
+
"f21": "flow_mv",
|
|
187
|
+
"f26": "list_date",
|
|
188
|
+
"f33": "wei_bi",
|
|
189
|
+
"f34": "outer_disk",
|
|
190
|
+
"f35": "inner_disk",
|
|
191
|
+
"f62": "today_main_net_inflow",
|
|
192
|
+
"f66": "super_large_order_net_inflow",
|
|
193
|
+
"f69": "super_large_order_net_inflow_ratio",
|
|
194
|
+
"f72": "large_order_net_inflow",
|
|
195
|
+
# "f78": "medium_order_net_inflow",
|
|
196
|
+
# "f84": "small_order_net_inflow",
|
|
197
|
+
# "f103": "concept",
|
|
198
|
+
"f184": "today_main_net_inflow_ratio",
|
|
199
|
+
"f352": "average_price",
|
|
200
|
+
"f211": "buy_1_num",
|
|
201
|
+
"f212": "sell_1_num",
|
|
202
|
+
"f232": "stock_symbol",
|
|
203
|
+
"f234": "stock_name",
|
|
204
|
+
"f233": "market"
|
|
205
|
+
})
|
|
206
|
+
temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
|
|
207
|
+
temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
|
|
208
|
+
temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
|
|
209
|
+
temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
|
|
210
|
+
temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
|
|
211
|
+
temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
|
|
212
|
+
temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
|
|
213
|
+
temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
|
|
214
|
+
temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
|
|
215
|
+
temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
|
|
216
|
+
temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
|
|
217
|
+
temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
|
|
218
|
+
temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
|
|
219
|
+
temp_df.loc[temp_df['high'] == '-', 'high'] = 0
|
|
220
|
+
temp_df.loc[temp_df['low'] == '-', 'low'] = 0
|
|
221
|
+
temp_df.loc[temp_df['open'] == '-', 'open'] = 0
|
|
222
|
+
temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
|
|
223
|
+
temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
|
|
224
|
+
temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
|
|
225
|
+
temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
|
|
226
|
+
temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
|
|
227
|
+
temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
|
|
228
|
+
temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
|
|
229
|
+
temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
|
|
230
|
+
temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
|
|
231
|
+
temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
|
|
232
|
+
temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
|
|
233
|
+
temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
|
|
234
|
+
temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
|
|
235
|
+
temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
|
|
236
|
+
temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
|
|
237
|
+
temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
|
|
238
|
+
temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
|
|
239
|
+
temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
|
|
240
|
+
temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
|
|
241
|
+
temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
|
|
242
|
+
temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
|
|
243
|
+
temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
|
|
244
|
+
temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
|
|
245
|
+
temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
|
|
246
|
+
temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
|
|
247
|
+
temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
|
|
248
|
+
temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
|
|
249
|
+
temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
|
|
250
|
+
errors="coerce")
|
|
251
|
+
temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
|
|
252
|
+
errors="coerce")
|
|
253
|
+
temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
|
|
254
|
+
errors="coerce")
|
|
255
|
+
# 大单比例
|
|
256
|
+
temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100, 2)
|
|
257
|
+
|
|
258
|
+
# 外盘是内盘倍数
|
|
259
|
+
temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
|
|
260
|
+
# 只有外盘没有内盘
|
|
261
|
+
temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
|
|
262
|
+
|
|
263
|
+
temp_df['now_price'] = round(temp_df['now_price'] / 1000, 3)
|
|
264
|
+
temp_df['chg'] = round(temp_df['chg'] / 100, 2)
|
|
265
|
+
temp_df['exchange'] = round(temp_df['exchange'] / 100, 2)
|
|
266
|
+
temp_df['quantity_ratio'] = round(temp_df['quantity_ratio'] / 100, 2)
|
|
267
|
+
|
|
268
|
+
temp_df['up_speed'] = round(temp_df['up_speed'] / 100, 2)
|
|
269
|
+
temp_df['up_speed_05'] = round(temp_df['up_speed_05'] / 100, 2)
|
|
270
|
+
|
|
271
|
+
temp_df['high'] = round(temp_df['high'] / 1000, 2)
|
|
272
|
+
temp_df['low'] = round(temp_df['low'] / 1000, 2)
|
|
273
|
+
|
|
274
|
+
temp_df['open'] = round(temp_df['open'] / 1000, 2)
|
|
275
|
+
temp_df['yesterday_price'] = round(temp_df['yesterday_price'] / 1000, 2)
|
|
276
|
+
temp_df['wei_bi'] = round(temp_df['wei_bi'] / 100, 2)
|
|
277
|
+
temp_df['super_large_order_net_inflow_ratio'] = round(temp_df['super_large_order_net_inflow_ratio'] / 100, 2)
|
|
278
|
+
temp_df['today_main_net_inflow_ratio'] = round(temp_df['today_main_net_inflow_ratio'] / 100, 2)
|
|
279
|
+
temp_df['average_price'] = round(temp_df['average_price'] / 1000, 2)
|
|
280
|
+
|
|
281
|
+
temp_df.loc[:, 'reference_main_inflow'] = round(
|
|
282
|
+
(temp_df['flow_mv'] * (1 / 1000)), 2)
|
|
283
|
+
|
|
284
|
+
temp_df.loc[:, 'main_inflow_multiple'] = round(
|
|
285
|
+
(temp_df['today_main_net_inflow'] / temp_df['reference_main_inflow']), 2)
|
|
286
|
+
|
|
287
|
+
temp_df.loc[:, 'super_main_inflow_multiple'] = round(
|
|
288
|
+
(temp_df['super_large_order_net_inflow'] / temp_df['reference_main_inflow']), 2)
|
|
289
|
+
temp_df['large_inflow_multiple'] = round(
|
|
290
|
+
(temp_df['large_order_net_inflow'] / temp_df['reference_main_inflow']), 2)
|
|
291
|
+
|
|
292
|
+
# 债权是10
|
|
293
|
+
temp_df['disk_diff_amount'] = round(
|
|
294
|
+
(temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
|
|
295
|
+
"average_price"] * 10,
|
|
296
|
+
2)
|
|
297
|
+
|
|
298
|
+
temp_df['disk_diff_amount_exchange'] = round(
|
|
299
|
+
(temp_df['disk_diff_amount'] / temp_df['reference_main_inflow']), 2)
|
|
300
|
+
temp_df.loc[:, 'sum_main_inflow_disk'] = temp_df['main_inflow_multiple'] + \
|
|
301
|
+
temp_df['disk_diff_amount_exchange']
|
|
302
|
+
temp_df.replace([np.inf, -np.inf], 0, inplace=True)
|
|
303
|
+
temp_df = temp_df.fillna(0)
|
|
304
|
+
return temp_df
|
|
305
|
+
|
|
306
|
+
|
|
307
|
+
# 可转债信息
|
|
308
|
+
def get_kzz_bond_info():
|
|
309
|
+
try:
|
|
310
|
+
bond_zh_cov_info_ths_df = ak.bond_zh_cov_info_ths()
|
|
311
|
+
bond_zh_cov_info_ths_df = bond_zh_cov_info_ths_df.rename(columns={
|
|
312
|
+
"债券代码": "symbol",
|
|
313
|
+
"债券简称": "name",
|
|
314
|
+
"申购日期": "apply_date",
|
|
315
|
+
"申购代码": "apply_code",
|
|
316
|
+
"原股东配售码": "config_code",
|
|
317
|
+
"每股获配额": "per_share_limit",
|
|
318
|
+
"计划发行量": "planned_circulation",
|
|
319
|
+
"实际发行量": "actual_circulation",
|
|
320
|
+
"中签公布日": "winning_date",
|
|
321
|
+
"中签号": "winning_number",
|
|
322
|
+
"上市日期": "list_date",
|
|
323
|
+
"正股代码": "stock_code",
|
|
324
|
+
"正股简称": "stock_name",
|
|
325
|
+
"转股价格": "conversion_price",
|
|
326
|
+
"到期时间": "due_date",
|
|
327
|
+
"中签率": "lot_winning_rate"
|
|
328
|
+
})
|
|
329
|
+
return bond_zh_cov_info_ths_df
|
|
330
|
+
except BaseException as e:
|
|
331
|
+
logger.error("获取可转债信息异常:{}", e)
|
|
332
|
+
|
|
333
|
+
|
|
334
|
+
def repeated_acquisition_ask_etf_async(time_out, max_number, num_threads, pages_per_thread):
|
|
335
|
+
per_page = page_number
|
|
336
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
337
|
+
result_df = pd.DataFrame()
|
|
338
|
+
|
|
339
|
+
# 创建线程锁以确保线程安全
|
|
340
|
+
df_lock = Lock()
|
|
341
|
+
|
|
342
|
+
# 计算每个线程处理的页数范围
|
|
343
|
+
def process_page_range(start_page, end_page, thread_id):
|
|
344
|
+
nonlocal result_df
|
|
345
|
+
local_df = pd.DataFrame()
|
|
346
|
+
current_page = start_page
|
|
347
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
348
|
+
|
|
349
|
+
while current_page <= end_page and current_page <= total_pages:
|
|
350
|
+
proxies = {"https": proxy_ip, "http": proxy_ip}
|
|
351
|
+
try:
|
|
352
|
+
page_df = get_debt_page_data(current_page, proxies, page_number, time_out)
|
|
353
|
+
if data_frame_util.is_not_empty(page_df):
|
|
354
|
+
local_df = pd.concat([local_df, page_df])
|
|
355
|
+
logger.info("线程{}获取页面数据成功: {}", thread_id, current_page)
|
|
356
|
+
current_page += 1
|
|
357
|
+
else:
|
|
358
|
+
time.sleep(0.2)
|
|
359
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
360
|
+
logger.info("线程{}获取页面数据失败: {}", thread_id, current_page)
|
|
361
|
+
except BaseException as e:
|
|
362
|
+
time.sleep(1)
|
|
363
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
364
|
+
logger.error("线程{}处理页面{}时发生错误: {}", thread_id, current_page, e)
|
|
365
|
+
|
|
366
|
+
with df_lock:
|
|
367
|
+
result_df = pd.concat([result_df, local_df])
|
|
368
|
+
return len(local_df)
|
|
369
|
+
|
|
370
|
+
# 计算每个线程的页面范围
|
|
371
|
+
page_ranges = []
|
|
372
|
+
for i in range(num_threads):
|
|
373
|
+
start_page = i * pages_per_thread + 1
|
|
374
|
+
end_page = (i + 1) * pages_per_thread
|
|
375
|
+
if start_page > total_pages:
|
|
376
|
+
break
|
|
377
|
+
page_ranges.append((start_page, end_page, i + 1))
|
|
378
|
+
|
|
379
|
+
# 使用线程池执行任务
|
|
380
|
+
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
381
|
+
# 提交所有任务
|
|
382
|
+
futures = [
|
|
383
|
+
executor.submit(process_page_range, start, end, tid)
|
|
384
|
+
for start, end, tid in page_ranges
|
|
385
|
+
]
|
|
386
|
+
|
|
387
|
+
# 等待所有任务完成并获取结果
|
|
388
|
+
results = []
|
|
389
|
+
for future in concurrent.futures.as_completed(futures):
|
|
390
|
+
try:
|
|
391
|
+
result = future.result()
|
|
392
|
+
results.append(result)
|
|
393
|
+
except Exception as e:
|
|
394
|
+
logger.error("线程执行出错: {}", e)
|
|
395
|
+
|
|
396
|
+
return rename_real_time_quotes_df(result_df)
|
|
397
|
+
|
|
398
|
+
|
|
399
|
+
def get_kzz_real_time_quotes(time_out, pages_per_thread):
|
|
400
|
+
try_numer = 3
|
|
401
|
+
while try_numer > 0:
|
|
402
|
+
proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
|
|
403
|
+
proxies = {"https": proxy_ip,
|
|
404
|
+
"http": proxy_ip}
|
|
405
|
+
|
|
406
|
+
max_number = get_kzz_count(1, proxies, 20, time_out)
|
|
407
|
+
if max_number > 0:
|
|
408
|
+
break
|
|
409
|
+
try_numer = try_numer - 1
|
|
410
|
+
if max_number == 0:
|
|
411
|
+
return pd.DataFrame()
|
|
412
|
+
|
|
413
|
+
total_pages = (max_number + page_number - 1) // page_number # 向上取整
|
|
414
|
+
|
|
415
|
+
num_threads = int((total_pages / pages_per_thread) + 1)
|
|
416
|
+
return repeated_acquisition_ask_etf_async(time_out, max_number, num_threads, pages_per_thread)
|
|
417
|
+
|
|
418
|
+
|
|
419
|
+
if __name__ == '__main__':
|
|
420
|
+
test_df = get_kzz_real_time_quotes(30, 6)
|
|
421
|
+
print(test_df)
|
|
422
|
+
|