mns-common 1.5.1.7__py3-none-any.whl → 1.5.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mns-common might be problematic. Click here for more details.

@@ -1,337 +0,0 @@
1
- import os
2
- import sys
3
-
4
- file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 16
6
- project_path = file_path[0:end]
7
- sys.path.append(project_path)
8
- from concurrent.futures import ThreadPoolExecutor
9
- import pandas as pd
10
- from loguru import logger
11
- import requests
12
- import json
13
- import time
14
-
15
- # 最大返回条数
16
- max_number = 4500
17
- # 最小返回条数
18
- min_number = 4400
19
- # 分页条数
20
- page_number = 100
21
-
22
- fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
23
- "f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212")
24
-
25
-
26
- def hk_real_time_quotes_page_df(cookie, pn, proxies):
27
- try:
28
- headers = {
29
- 'Cookie': cookie
30
- }
31
-
32
- current_timestamp = str(int(round(time.time() * 1000, 0)))
33
-
34
- url_new = ('https://61.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112409497467688484127_' + str(
35
- current_timestamp) +
36
- '&pn=' + str(pn) +
37
- '&pz=50000'
38
- '&po=1'
39
- '&np=3'
40
- '&ut=bd1d9ddb04089700cf9c27f6f7426281'
41
- '&fltt=2'
42
- '&invt=2'
43
- '&wbp2u=4253366368931142|0|1|0|web'
44
- '&fid=f12'
45
- '&fs=m:116+t:3,m:116+t:4,m:116+t:1,m:116+t:2'
46
- '&fields=' + fields +
47
- '&_=' + str(current_timestamp))
48
-
49
- if proxies is None:
50
- r = requests.get(url_new, headers=headers)
51
- else:
52
- r = requests.get(url_new, headers=headers, proxies=proxies)
53
- result = r.content.decode("utf-8")
54
-
55
- if pn == 1:
56
- try:
57
- begin_index_total = result.index('"total":')
58
-
59
- end_index_total = result.index('"diff"')
60
- global max_number
61
- max_number = int(result[begin_index_total + 8:end_index_total - 1])
62
- except Exception as e:
63
- logger.error(f"获取第{pn}页港股列表异常: {e}")
64
- return pd.DataFrame()
65
-
66
- startIndex = result.index('"diff"')
67
- endIndex = result.index('}]}')
68
-
69
- result = result[startIndex + 7:endIndex + 2]
70
-
71
- data_json = json.loads(result)
72
-
73
- temp_df = pd.DataFrame(data_json)
74
-
75
- temp_df = temp_df.rename(columns={
76
-
77
- "f12": "symbol",
78
- "f14": "name",
79
- "f3": "chg",
80
- "f2": "now_price",
81
- "f5": "volume",
82
- "f6": "amount",
83
- "f8": "exchange",
84
- "f10": "quantity_ratio",
85
- "f22": "up_speed",
86
- "f11": "up_speed_05",
87
-
88
- "f15": "high",
89
- "f16": "low",
90
- "f17": "open",
91
- "f18": "yesterday_price",
92
- "f20": "total_mv",
93
- "f21": "flow_mv",
94
- "f26": "list_date",
95
- "f33": "wei_bi",
96
- "f34": "outer_disk",
97
- "f35": "inner_disk",
98
- "f62": "today_main_net_inflow",
99
- "f66": "super_large_order_net_inflow",
100
- "f69": "super_large_order_net_inflow_ratio",
101
- "f72": "large_order_net_inflow",
102
- # "f78": "medium_order_net_inflow",
103
- # "f84": "small_order_net_inflow",
104
- "f100": "industry",
105
- # "f103": "concept",
106
- "f184": "today_main_net_inflow_ratio",
107
- "f352": "average_price",
108
- "f211": "buy_1_num",
109
- "f212": "sell_1_num"
110
- })
111
- temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
112
- temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
113
- temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
114
- temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
115
- temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
116
- temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
117
- temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
118
- temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
119
- temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
120
- temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
121
- temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
122
- temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
123
- temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
124
- temp_df.loc[temp_df['high'] == '-', 'high'] = 0
125
- temp_df.loc[temp_df['low'] == '-', 'low'] = 0
126
- temp_df.loc[temp_df['open'] == '-', 'open'] = 0
127
- temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
128
- temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
129
- temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
130
- temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
131
- temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
132
- temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
133
- temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
134
- temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
135
- temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
136
- # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
137
- # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
138
-
139
- temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
140
- temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
141
- temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
142
- temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
143
- temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
144
- temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
145
- temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
146
- temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
147
- temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
148
- temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
149
- temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
150
- temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
151
- temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
152
- temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
153
- temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
154
- temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
155
- temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
156
- temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
157
- temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
158
- errors="coerce")
159
- temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
160
- errors="coerce")
161
- temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
162
- errors="coerce")
163
- # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
164
- # errors="coerce")
165
- # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
166
-
167
- # 大单比例
168
- temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
169
- 2)
170
-
171
- # 外盘是内盘倍数
172
- temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
173
- # 只有外盘没有内盘
174
- temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
175
- temp_df['disk_diff_amount'] = round(
176
- (temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
177
- "average_price"],
178
- 2)
179
- return temp_df
180
- except Exception as e:
181
- logger.error("获取港股列表,实时行情异常:{}", e)
182
- return pd.DataFrame()
183
-
184
-
185
- def thread_pool_executor(cookie, proxies):
186
- """
187
- 使用多线程获取所有ETF数据
188
- """
189
- # 计算总页数,假设总共有1000条数据,每页200条
190
-
191
- per_page = page_number
192
- total_pages = (max_number + per_page - 1) // per_page # 向上取整
193
-
194
- # 创建线程池
195
- with ThreadPoolExecutor(max_workers=3) as executor:
196
- # 提交任务,获取每页数据
197
- futures = [executor.submit(hk_real_time_quotes_page_df, cookie, pn, proxies)
198
- for pn in range(1, total_pages + 1)]
199
-
200
- # 收集结果
201
- results = []
202
- for future in futures:
203
- result = future.result()
204
- if not result.empty:
205
- results.append(result)
206
-
207
- # 合并所有页面的数据
208
- if results:
209
- return pd.concat(results, ignore_index=True)
210
- else:
211
- return pd.DataFrame()
212
-
213
-
214
- def get_hk_real_time_quotes(cookie, proxies):
215
- # 获取第一页数据
216
- page_one_df = hk_real_time_quotes_page_df(cookie, 1, proxies)
217
- # 数据接口正常返回5600以上的数量
218
- if page_one_df.shape[0] > min_number:
219
- page_one_df.drop_duplicates('symbol', keep='last', inplace=True)
220
- return page_one_df
221
- else:
222
- page_df = thread_pool_executor(cookie, proxies)
223
- page_df.drop_duplicates('symbol', keep='last', inplace=True)
224
- return page_df
225
-
226
-
227
- # 获取港股通名单 todo 被封以后替换
228
- def stock_hk_ggt_components_em(proxies) -> pd.DataFrame:
229
- pn = 1
230
-
231
- """
232
- 东方财富网-行情中心-港股市场-港股通成份股
233
- https://quote.eastmoney.com/center/gridlist.html#hk_components
234
- :return: 港股通成份股
235
- :rtype: pandas.DataFrame
236
- """
237
- result_df = pd.DataFrame()
238
- while True:
239
- url = "https://33.push2.eastmoney.com/api/qt/clist/get"
240
- params = {
241
- "pn": str(pn),
242
- "pz": "5000",
243
- "po": "1",
244
- "np": "2",
245
- "ut": "bd1d9ddb04089700cf9c27f6f7426281",
246
- "fltt": "2",
247
- "fid": "f3",
248
- "fs": "b:DLMK0146,b:DLMK0144",
249
- "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,"
250
- "f25,f26,f22,f33,f11,f62,f128,f136,f115,f152",
251
- "_": "1639974456250",
252
- }
253
- try:
254
- if proxies is None:
255
- r = requests.get(url, params=params)
256
- else:
257
- r = requests.get(url, params=params, proxies=proxies)
258
-
259
- data_json = r.json()
260
- temp_df = pd.DataFrame(data_json["data"]["diff"]).T
261
- temp_df.reset_index(inplace=True)
262
- temp_df["index"] = temp_df.index + 1
263
-
264
- temp_df.columns = [
265
- "序号",
266
- "-",
267
- "最新价",
268
- "涨跌幅",
269
- "涨跌额",
270
- "成交量",
271
- "成交额",
272
- "-",
273
- "-",
274
- "-",
275
- "-",
276
- "-",
277
- "代码",
278
- "-",
279
- "名称",
280
- "最高",
281
- "最低",
282
- "今开",
283
- "昨收",
284
- "-",
285
- "-",
286
- "-",
287
- "-",
288
- "-",
289
- "-",
290
- "-",
291
- "-",
292
- "-",
293
- "-",
294
- "-",
295
- "-",
296
- "-",
297
- "-",
298
- "-",
299
- "-",
300
- ]
301
- temp_df = temp_df[
302
- [
303
- "序号",
304
- "代码",
305
- "名称",
306
- "最新价",
307
- "涨跌额",
308
- "涨跌幅",
309
- "今开",
310
- "最高",
311
- "最低",
312
- "昨收",
313
- "成交量",
314
- "成交额",
315
- ]
316
- ]
317
- result_df = pd.concat([result_df, temp_df])
318
- if temp_df.shape[0] < page_number:
319
- break
320
- pn = pn + 1
321
- except Exception as e:
322
- logger.error("获取港股通列表:{}", e)
323
- return result_df
324
-
325
-
326
- if __name__ == '__main__':
327
-
328
- result_df = stock_hk_ggt_components_em()
329
- cookie_test = 'qgqp_b_id=1e0d79428176ed54bef8434efdc0e8c3; mtp=1; ct=QVRY_s8Tiag1WfK2tSW2n03qpsX-PD8aH_rIjKVooawX8K33UVnpIofK088lD1lguWlE_OEIpQwn3PJWFPhHvSvyvYr4Zka3l4vxtZfH1Uikjtyy9z1H4Swo0rQzMKXncVzBXiOo5TjE-Dy9fcoG3ZF7UVdQ35jp_cFwzOlpK5Y; ut=FobyicMgeV51lVMr4ZJXvn-72bp0oeSOvtzifFY_U7kBFtR6og4Usd-VtBM5XBBvHq0lvd9xXkvpIqWro9EDKmv6cbKOQGyawUSMcKVP57isZCaM7lWQ6jWXajvTfvV4mIR-W_MZNK8VY0lL9W4qNMniJ6PBn_gkJsSAJCadmsyI9cxmjx--gR4m54pdF_nie_y4iWHys83cmWR2R7Bt1KKqB25OmkfCQTJJqIf7QsqangVGMUHwMC39Z9QhrfCFHKVNrlqS503O6b9GitQnXtvUdJhCmomu; pi=4253366368931142%3Bp4253366368931142%3B%E8%82%A1%E5%8F%8B9x56I87727%3BYNigLZRW%2FzMdGgVDOJbwReDWnTPHl51dB0gQLiwaCf1XY98mlJYx6eJbsoYr5Nie%2BX1L%2BzaMsec99KkX%2BT29Ds1arfST7sIBXxjUQ3dp11IPUnXy64PaBFRTHzMRWnCFJvvhc%2FAI41rXSGXolC8YMxI%2BvyPS%2BuErwgOVjC5vvsIiKeO7TLyKkhqqQJPX%2F7RWC5Sf3QLh%3Bdwjn4Xho10%2FKjqOgTWs%2FJF4%2FkdKzeuBwM8sz9aLvJovejAkCAyGMyGYA6AE67Xk2Ki7x8zdfBifF2DG%2Fvf2%2BXAYN8ZVISSEWTIXh32Z5MxEacK4JBTkqyiD93e1vFBOFQ82BqaiVmntUq0V6FrTUHGeh1gG5Sg%3D%3D; uidal=4253366368931142%e8%82%a1%e5%8f%8b9x56I87727; sid=170711377; vtpst=|; quote_lt=1; websitepoptg_api_time=1715777390466; emshistory=%5B%22%E8%BD%AC%E5%80%BA%E6%A0%87%22%2C%22%E8%BD%AC%E5%80%BA%E6%A0%87%E7%9A%84%22%5D; st_si=00364513876913; st_asi=delete; HAList=ty-116-00700-%u817E%u8BAF%u63A7%u80A1%2Cty-1-688695-%u4E2D%u521B%u80A1%u4EFD%2Cty-1-600849-%u4E0A%u836F%u8F6C%u6362%2Cty-1-603361-%u6D59%u6C5F%u56FD%u7965%2Cty-1-603555-ST%u8D35%u4EBA%2Cty-0-000627-%u5929%u8302%u96C6%u56E2%2Cty-0-002470-%u91D1%u6B63%u5927%2Cty-0-832876-%u6167%u4E3A%u667A%u80FD%2Cty-0-300059-%u4E1C%u65B9%u8D22%u5BCC%2Cty-107-CWB-%u53EF%u8F6C%u503AETF-SPDR; st_pvi=26930719093675; st_sp=2024-04-28%2017%3A27%3A05; st_inirUrl=https%3A%2F%2Fcn.bing.com%2F; st_sn=23; st_psi=20240517111108288-113200301321-2767127768'
330
- while True:
331
- df_hk_df = get_hk_real_time_quotes(cookie_test, None)
332
- df_hk_df = df_hk_df[[
333
- "symbol",
334
- "name",
335
- "chg", "amount"
336
- ]]
337
- logger.info('test')
@@ -1,234 +0,0 @@
1
- import sys
2
- import os
3
-
4
- file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 16
6
- project_path = file_path[0:end]
7
- sys.path.append(project_path)
8
- from concurrent.futures import ThreadPoolExecutor
9
- import pandas as pd
10
- from loguru import logger
11
- import requests
12
- import time
13
-
14
- # 最大返回条数
15
- max_number = 12000
16
- # 最小返回条数
17
- min_number = 11000
18
- # 分页条数
19
- page_number = 100
20
-
21
- fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f13,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
22
- "f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212")
23
-
24
-
25
- def us_real_time_quotes_page_df(cookie, pn, proxies):
26
- try:
27
- headers = {
28
- 'Cookie': cookie
29
- }
30
-
31
- current_timestamp = str(int(round(time.time() * 1000, 0)))
32
-
33
- url = "https://72.push2.eastmoney.com/api/qt/clist/get"
34
- params = {
35
- "pn": str(pn),
36
- "pz": "50000",
37
- "po": "1",
38
- "np": "2",
39
- "ut": "bd1d9ddb04089700cf9c27f6f7426281",
40
- "fltt": "2",
41
- "invt": "2",
42
- "fid": "f12",
43
- "fs": "m:105,m:106,m:107",
44
- "fields": fields,
45
- "_": str(current_timestamp),
46
- }
47
- if proxies is None:
48
- r = requests.get(url, params=params, headers=headers)
49
- else:
50
- r = requests.get(url, params=params, headers=headers, proxies=proxies)
51
- data_json = r.json()
52
- if pn == 1:
53
- try:
54
- global max_number
55
- max_number = int(data_json['data']['total'])
56
- except Exception as e:
57
- logger.error(f"获取第{pn}页美股列表异常: {e}")
58
- return pd.DataFrame()
59
-
60
- if not data_json["data"]["diff"]:
61
- return pd.DataFrame()
62
- temp_df = pd.DataFrame(data_json["data"]["diff"]).T
63
-
64
- return temp_df
65
- except Exception as e:
66
- logger.error("获取美股实时行情异常:{}", e)
67
- return pd.DataFrame()
68
-
69
-
70
- def thread_pool_executor(cookie, proxies):
71
- """
72
- 使用多线程获取所有美股数据
73
- """
74
- # 计算总页数,假设总共有1000条数据,每页200条
75
-
76
- per_page = page_number
77
- total_pages = (max_number + per_page - 1) // per_page # 向上取整
78
-
79
- # 创建线程池
80
- with ThreadPoolExecutor(max_workers=3) as executor:
81
- # 提交任务,获取每页数据
82
- futures = [executor.submit(us_real_time_quotes_page_df, cookie, pn, proxies)
83
- for pn in range(1, total_pages + 1)]
84
-
85
- # 收集结果
86
- results = []
87
- for future in futures:
88
- result = future.result()
89
- if not result.empty:
90
- results.append(result)
91
-
92
- # 合并所有页面的数据
93
- if results:
94
- return pd.concat(results, ignore_index=True)
95
- else:
96
- return pd.DataFrame()
97
-
98
-
99
- def get_us_stock_real_time_quotes(cookie, proxies):
100
- # 获取第一页数据
101
- page_one_df = us_real_time_quotes_page_df(cookie, 1, proxies)
102
- # 数据接口正常返回5600以上的数量
103
- if page_one_df.shape[0] > min_number:
104
- page_one_df = rename_us_stock(page_one_df)
105
- page_one_df.drop_duplicates('symbol', keep='last', inplace=True)
106
- return page_one_df
107
- else:
108
- page_df = thread_pool_executor(cookie, proxies)
109
- page_df = rename_us_stock(page_df)
110
- page_df.drop_duplicates('symbol', keep='last', inplace=True)
111
- return page_df
112
-
113
-
114
- def rename_us_stock(temp_df):
115
- temp_df = temp_df.rename(columns={
116
-
117
- "f12": "symbol",
118
- "f14": "name",
119
- "f3": "chg",
120
- "f2": "now_price",
121
- "f5": "volume",
122
- "f6": "amount",
123
- "f8": "exchange",
124
- "f10": "quantity_ratio",
125
- "f22": "up_speed",
126
- "f11": "up_speed_05",
127
- "f13": "simple_symbol",
128
- "f15": "high",
129
- "f16": "low",
130
- "f17": "open",
131
- "f18": "yesterday_price",
132
- "f20": "total_mv",
133
- "f21": "flow_mv",
134
- "f26": "list_date",
135
- "f33": "wei_bi",
136
- "f34": "outer_disk",
137
- "f35": "inner_disk",
138
- "f62": "today_main_net_inflow",
139
- "f66": "super_large_order_net_inflow",
140
- "f69": "super_large_order_net_inflow_ratio",
141
- "f72": "large_order_net_inflow",
142
- # "f78": "medium_order_net_inflow",
143
- # "f84": "small_order_net_inflow",
144
- "f100": "industry",
145
- # "f103": "concept",
146
- "f184": "today_main_net_inflow_ratio",
147
- "f352": "average_price",
148
- "f211": "buy_1_num",
149
- "f212": "sell_1_num"
150
- })
151
- temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
152
- temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
153
- temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
154
- temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
155
- temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
156
- temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
157
- temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
158
- temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
159
- temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
160
- temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
161
- temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
162
- temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
163
- temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
164
- temp_df.loc[temp_df['high'] == '-', 'high'] = 0
165
- temp_df.loc[temp_df['low'] == '-', 'low'] = 0
166
- temp_df.loc[temp_df['open'] == '-', 'open'] = 0
167
- temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
168
- temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
169
- temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
170
- temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
171
- temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
172
- temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
173
- temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
174
- temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
175
- temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
176
- # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
177
- # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
178
-
179
- temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
180
- temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
181
- temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
182
- temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
183
- temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
184
- temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
185
- temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
186
- temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
187
- temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
188
- temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
189
- temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
190
- temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
191
- temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
192
- temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
193
- temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
194
- temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
195
- temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
196
- temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
197
- temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
198
- errors="coerce")
199
- temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
200
- errors="coerce")
201
- temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
202
- errors="coerce")
203
- # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
204
- # errors="coerce")
205
- # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
206
-
207
- # 大单比例
208
- temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
209
- 2)
210
-
211
- # 外盘是内盘倍数
212
- temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
213
- # 只有外盘没有内盘
214
- temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
215
- temp_df['disk_diff_amount'] = round(
216
- (temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
217
- "average_price"],
218
- 2)
219
- return temp_df
220
-
221
-
222
- if __name__ == '__main__':
223
- cookie_test = 'qgqp_b_id=1e0d79428176ed54bef8434efdc0e8c3; mtp=1; ct=QVRY_s8Tiag1WfK2tSW2n03qpsX-PD8aH_rIjKVooawX8K33UVnpIofK088lD1lguWlE_OEIpQwn3PJWFPhHvSvyvYr4Zka3l4vxtZfH1Uikjtyy9z1H4Swo0rQzMKXncVzBXiOo5TjE-Dy9fcoG3ZF7UVdQ35jp_cFwzOlpK5Y; ut=FobyicMgeV51lVMr4ZJXvn-72bp0oeSOvtzifFY_U7kBFtR6og4Usd-VtBM5XBBvHq0lvd9xXkvpIqWro9EDKmv6cbKOQGyawUSMcKVP57isZCaM7lWQ6jWXajvTfvV4mIR-W_MZNK8VY0lL9W4qNMniJ6PBn_gkJsSAJCadmsyI9cxmjx--gR4m54pdF_nie_y4iWHys83cmWR2R7Bt1KKqB25OmkfCQTJJqIf7QsqangVGMUHwMC39Z9QhrfCFHKVNrlqS503O6b9GitQnXtvUdJhCmomu; pi=4253366368931142%3Bp4253366368931142%3B%E8%82%A1%E5%8F%8B9x56I87727%3BYNigLZRW%2FzMdGgVDOJbwReDWnTPHl51dB0gQLiwaCf1XY98mlJYx6eJbsoYr5Nie%2BX1L%2BzaMsec99KkX%2BT29Ds1arfST7sIBXxjUQ3dp11IPUnXy64PaBFRTHzMRWnCFJvvhc%2FAI41rXSGXolC8YMxI%2BvyPS%2BuErwgOVjC5vvsIiKeO7TLyKkhqqQJPX%2F7RWC5Sf3QLh%3Bdwjn4Xho10%2FKjqOgTWs%2FJF4%2FkdKzeuBwM8sz9aLvJovejAkCAyGMyGYA6AE67Xk2Ki7x8zdfBifF2DG%2Fvf2%2BXAYN8ZVISSEWTIXh32Z5MxEacK4JBTkqyiD93e1vFBOFQ82BqaiVmntUq0V6FrTUHGeh1gG5Sg%3D%3D; uidal=4253366368931142%e8%82%a1%e5%8f%8b9x56I87727; sid=170711377; vtpst=|; quote_lt=1; websitepoptg_api_time=1715777390466; emshistory=%5B%22%E8%BD%AC%E5%80%BA%E6%A0%87%22%2C%22%E8%BD%AC%E5%80%BA%E6%A0%87%E7%9A%84%22%5D; st_si=00364513876913; st_asi=delete; HAList=ty-116-00700-%u817E%u8BAF%u63A7%u80A1%2Cty-1-688695-%u4E2D%u521B%u80A1%u4EFD%2Cty-1-600849-%u4E0A%u836F%u8F6C%u6362%2Cty-1-603361-%u6D59%u6C5F%u56FD%u7965%2Cty-1-603555-ST%u8D35%u4EBA%2Cty-0-000627-%u5929%u8302%u96C6%u56E2%2Cty-0-002470-%u91D1%u6B63%u5927%2Cty-0-832876-%u6167%u4E3A%u667A%u80FD%2Cty-0-300059-%u4E1C%u65B9%u8D22%u5BCC%2Cty-107-CWB-%u53EF%u8F6C%u503AETF-SPDR; st_pvi=26930719093675; st_sp=2024-04-28%2017%3A27%3A05; st_inirUrl=https%3A%2F%2Fcn.bing.com%2F; st_sn=23; st_psi=20240517111108288-113200301321-2767127768'
224
- while True:
225
- us_df = get_us_stock_real_time_quotes(cookie_test, None)
226
- us_df = us_df.loc[us_df['flow_mv'] != 0]
227
- us_df = us_df.sort_values(by=['amount'], ascending=False)
228
- us_stock_df = us_df[[
229
- "symbol",
230
- "name",
231
- "chg",
232
- "amount"
233
- ]]
234
- logger.info('test')