mns-common 1.4.1.8__py3-none-any.whl → 1.5.7.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. mns_common/api/akshare/__init__.py +0 -1
  2. mns_common/api/akshare/k_line_api.py +19 -2
  3. mns_common/api/akshare/stock_bid_ask_api.py +10 -3
  4. mns_common/api/akshare/stock_zb_pool.py +2 -0
  5. mns_common/api/akshare/stock_zt_pool_api.py +1 -1
  6. mns_common/api/em/gd/east_money_stock_gdfx_free_top_10_api.py +62 -7
  7. mns_common/api/em/real_time/__init__.py +1 -1
  8. mns_common/api/em/real_time/east_money_debt_api.py +140 -70
  9. mns_common/api/em/real_time/east_money_etf_api.py +138 -27
  10. mns_common/api/em/real_time/east_money_stock_a_api.py +24 -28
  11. mns_common/api/em/real_time/east_money_stock_a_v2_api.py +97 -53
  12. mns_common/api/em/real_time/east_money_stock_common_api.py +174 -0
  13. mns_common/api/em/real_time/east_money_stock_hk_api.py +223 -272
  14. mns_common/api/em/real_time/east_money_stock_hk_gtt_api.py +260 -0
  15. mns_common/api/em/real_time/east_money_stock_multi_thread_api_v3.py +154 -0
  16. mns_common/api/em/real_time/east_money_stock_us_api.py +146 -82
  17. mns_common/api/em/real_time/real_time_quotes_repeat_api.py +195 -0
  18. mns_common/api/k_line/stock_k_line_data_api.py +11 -1
  19. mns_common/api/kpl/common/kpl_common_api.py +35 -0
  20. mns_common/api/proxies/liu_guan_proxy_api.py +55 -5
  21. mns_common/api/ths/company/company_product_area_industry_index_query.py +46 -0
  22. mns_common/api/ths/company/ths_company_info_api.py +2 -1
  23. mns_common/api/ths/company/ths_company_info_web.py +159 -0
  24. mns_common/api/ths/concept/app/ths_concept_index_app.py +3 -1
  25. mns_common/api/ths/wen_cai/ths_wen_cai_api.py +1 -1
  26. mns_common/api/ths/zt/ths_stock_zt_pool_api.py +20 -1
  27. mns_common/api/ths/zt/ths_stock_zt_pool_v2_api.py +105 -29
  28. mns_common/api/xueqiu/xue_qiu_k_line_api.py +2 -2
  29. mns_common/component/common_service_fun_api.py +26 -6
  30. mns_common/component/data/data_init_api.py +13 -8
  31. mns_common/component/deal/deal_service_api.py +70 -8
  32. mns_common/component/deal/deal_service_v2_api.py +167 -0
  33. mns_common/component/em/em_stock_info_api.py +9 -3
  34. mns_common/component/main_line/main_line_zt_reason_service.py +237 -0
  35. mns_common/component/proxies/proxy_common_api.py +141 -45
  36. mns_common/component/us/us_stock_etf_info_api.py +125 -0
  37. mns_common/constant/db_name_constant.py +40 -16
  38. mns_common/constant/extra_income_db_name.py +79 -19
  39. mns_common/constant/strategy_classify.py +17 -2
  40. mns_common/db/MongodbUtil.py +3 -0
  41. mns_common/db/MongodbUtilLocal.py +3 -0
  42. {mns_common-1.4.1.8.dist-info → mns_common-1.5.7.2.dist-info}/METADATA +1 -1
  43. {mns_common-1.4.1.8.dist-info → mns_common-1.5.7.2.dist-info}/RECORD +47 -41
  44. mns_common/api/ths/concept/web/ths_company_info_web.py +0 -163
  45. mns_common/component/qmt/qmt_buy_service.py +0 -172
  46. mns_common/component/task/real_time_data_sync_check.py +0 -110
  47. /mns_common/component/{qmt → main_line}/__init__.py +0 -0
  48. /mns_common/component/{task → us}/__init__.py +0 -0
  49. {mns_common-1.4.1.8.dist-info → mns_common-1.5.7.2.dist-info}/WHEEL +0 -0
  50. {mns_common-1.4.1.8.dist-info → mns_common-1.5.7.2.dist-info}/top_level.txt +0 -0
@@ -5,36 +5,68 @@ file_path = os.path.abspath(__file__)
5
5
  end = file_path.index('mns') + 16
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
8
- from concurrent.futures import ThreadPoolExecutor
9
8
  import pandas as pd
10
9
  from loguru import logger
11
10
  import requests
12
- import json
13
11
  import time
12
+ import mns_common.component.proxies.proxy_common_api as proxy_common_api
13
+ from concurrent.futures import ThreadPoolExecutor
14
+ import json
15
+ import mns_common.component.cookie.cookie_info_service as cookie_info_service
14
16
 
15
- # 最大返回条数
16
- max_number = 4500
17
- # 最小返回条数
18
- min_number = 4400
19
17
  # 分页条数
20
18
  page_number = 100
21
19
 
22
20
  fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
23
- "f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212")
21
+ "f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212,f103,f383")
24
22
 
25
23
 
26
- def hk_real_time_quotes_page_df(cookie, pn, proxies):
24
+ def get_hk_stock_count(pn, proxies, page_size, cookie, time_out):
27
25
  try:
28
26
  headers = {
29
27
  'Cookie': cookie
30
28
  }
31
-
32
29
  current_timestamp = str(int(round(time.time() * 1000, 0)))
33
30
 
31
+ url_new = ('https://push2.eastmoney.com/api/qt/clist/get?cb=jQuery371026074131356896413_' + str(
32
+ current_timestamp) +
33
+ '&np=1'
34
+ '&fltt=1'
35
+ '&invt=2'
36
+ '&fs=m:128+t:3,m:128+t:4,m:128+t:1,m:128+t:2'
37
+ '&fields=' + fields +
38
+ '&fid=f12'
39
+ '&pn=' + str(pn) +
40
+ '&pz=' + str(page_size) +
41
+ '&po=1'
42
+ '&dect=1'
43
+ '&ut=fa5fd1943c7b386f172d6893dbfba10b'
44
+ '&wbp2u=4253366368931142|0|1|0|web'
45
+ '&_' + str(current_timestamp))
46
+
47
+ if proxies is None:
48
+ r = requests.get(url_new, headers=headers, timeout=time_out)
49
+ else:
50
+ r = requests.get(url_new, headers=headers, proxies=proxies, timeout=time_out)
51
+ result = r.content.decode("utf-8")
52
+ begin_index_total = result.index('"total":')
53
+ end_index_total = result.index('"diff"')
54
+ return int(result[begin_index_total + 8:end_index_total - 1])
55
+ except Exception as e:
56
+ logger.error("获取港股股票列表,实时行情异常:{}", e)
57
+ return 0
58
+
59
+
60
+ def get_hk_real_time_quotes_page_df(pn, proxies, page_size, cookie, time_out):
61
+ try:
62
+ headers = {
63
+ 'Cookie': cookie
64
+ }
65
+ current_timestamp = str(int(round(time.time() * 1000, 0)))
34
66
  url_new = ('https://61.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112409497467688484127_' + str(
35
67
  current_timestamp) +
36
68
  '&pn=' + str(pn) +
37
- '&pz=50000'
69
+ '&pz=' + str(page_size) +
38
70
  '&po=1'
39
71
  '&np=3'
40
72
  '&ut=bd1d9ddb04089700cf9c27f6f7426281'
@@ -47,291 +79,210 @@ def hk_real_time_quotes_page_df(cookie, pn, proxies):
47
79
  '&_=' + str(current_timestamp))
48
80
 
49
81
  if proxies is None:
50
- r = requests.get(url_new, headers=headers)
82
+ r = requests.get(url_new, headers=headers, timeout=time_out)
51
83
  else:
52
- r = requests.get(url_new, headers=headers, proxies=proxies)
84
+ r = requests.get(url_new, headers=headers, proxies=proxies, timeout=time_out)
53
85
  result = r.content.decode("utf-8")
54
-
55
- if pn == 1:
56
- try:
57
- begin_index_total = result.index('"total":')
58
-
59
- end_index_total = result.index('"diff"')
60
- global max_number
61
- max_number = int(result[begin_index_total + 8:end_index_total - 1])
62
- except Exception as e:
63
- logger.error(f"获取第{pn}页港股列表异常: {e}")
64
- return pd.DataFrame()
65
-
66
86
  startIndex = result.index('"diff"')
67
87
  endIndex = result.index('}]}')
68
-
69
88
  result = result[startIndex + 7:endIndex + 2]
70
-
71
89
  data_json = json.loads(result)
72
-
73
90
  temp_df = pd.DataFrame(data_json)
74
-
75
- temp_df = temp_df.rename(columns={
76
-
77
- "f12": "symbol",
78
- "f14": "name",
79
- "f3": "chg",
80
- "f2": "now_price",
81
- "f5": "volume",
82
- "f6": "amount",
83
- "f8": "exchange",
84
- "f10": "quantity_ratio",
85
- "f22": "up_speed",
86
- "f11": "up_speed_05",
87
-
88
- "f15": "high",
89
- "f16": "low",
90
- "f17": "open",
91
- "f18": "yesterday_price",
92
- "f20": "total_mv",
93
- "f21": "flow_mv",
94
- "f26": "list_date",
95
- "f33": "wei_bi",
96
- "f34": "outer_disk",
97
- "f35": "inner_disk",
98
- "f62": "today_main_net_inflow",
99
- "f66": "super_large_order_net_inflow",
100
- "f69": "super_large_order_net_inflow_ratio",
101
- "f72": "large_order_net_inflow",
102
- # "f78": "medium_order_net_inflow",
103
- # "f84": "small_order_net_inflow",
104
- "f100": "industry",
105
- # "f103": "concept",
106
- "f184": "today_main_net_inflow_ratio",
107
- "f352": "average_price",
108
- "f211": "buy_1_num",
109
- "f212": "sell_1_num"
110
- })
111
- temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
112
- temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
113
- temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
114
- temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
115
- temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
116
- temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
117
- temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
118
- temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
119
- temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
120
- temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
121
- temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
122
- temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
123
- temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
124
- temp_df.loc[temp_df['high'] == '-', 'high'] = 0
125
- temp_df.loc[temp_df['low'] == '-', 'low'] = 0
126
- temp_df.loc[temp_df['open'] == '-', 'open'] = 0
127
- temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
128
- temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
129
- temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
130
- temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
131
- temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
132
- temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
133
- temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
134
- temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
135
- temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
136
- # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
137
- # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
138
-
139
- temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
140
- temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
141
- temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
142
- temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
143
- temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
144
- temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
145
- temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
146
- temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
147
- temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
148
- temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
149
- temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
150
- temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
151
- temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
152
- temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
153
- temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
154
- temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
155
- temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
156
- temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
157
- temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
158
- errors="coerce")
159
- temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
160
- errors="coerce")
161
- temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
162
- errors="coerce")
163
- # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
164
- # errors="coerce")
165
- # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
166
-
167
- # 大单比例
168
- temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
169
- 2)
170
-
171
- # 外盘是内盘倍数
172
- temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
173
- # 只有外盘没有内盘
174
- temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
175
- temp_df['disk_diff_amount'] = round(
176
- (temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
177
- "average_price"],
178
- 2)
179
91
  return temp_df
180
92
  except Exception as e:
181
93
  logger.error("获取港股列表,实时行情异常:{}", e)
182
94
  return pd.DataFrame()
183
95
 
184
96
 
185
- def thread_pool_executor(cookie, proxies):
97
+ # 改名
98
+ def rename_hk_field(temp_df):
99
+ temp_df = temp_df.rename(columns={
100
+ "f12": "symbol",
101
+ "f14": "name",
102
+ "f3": "chg",
103
+ "f2": "now_price",
104
+ "f5": "volume",
105
+ "f6": "amount",
106
+ "f8": "exchange",
107
+ "f10": "quantity_ratio",
108
+ "f22": "up_speed",
109
+ "f11": "up_speed_05",
110
+ "f15": "high",
111
+ "f16": "low",
112
+ "f17": "open",
113
+ "f18": "yesterday_price",
114
+ "f20": "total_mv",
115
+ "f21": "flow_mv",
116
+ "f26": "list_date",
117
+ "f33": "wei_bi",
118
+ "f34": "outer_disk",
119
+ "f35": "inner_disk",
120
+ "f62": "today_main_net_inflow",
121
+ "f66": "super_large_order_net_inflow",
122
+ "f69": "super_large_order_net_inflow_ratio",
123
+ "f72": "large_order_net_inflow",
124
+ # "f78": "medium_order_net_inflow",
125
+ # "f84": "small_order_net_inflow",
126
+ "f100": "industry",
127
+ "f103": "concept_name_str",
128
+ "f383": "concept_code_str",
129
+ "f184": "today_main_net_inflow_ratio",
130
+ "f352": "average_price",
131
+ "f211": "buy_1_num",
132
+ "f212": "sell_1_num"
133
+ })
134
+ temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
135
+ temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
136
+ temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
137
+ temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
138
+ temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
139
+ temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
140
+ temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
141
+ temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
142
+ temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
143
+ temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
144
+ temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
145
+ temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
146
+ temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
147
+ temp_df.loc[temp_df['high'] == '-', 'high'] = 0
148
+ temp_df.loc[temp_df['low'] == '-', 'low'] = 0
149
+ temp_df.loc[temp_df['open'] == '-', 'open'] = 0
150
+ temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
151
+ temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
152
+ temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
153
+ temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
154
+ temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
155
+ temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
156
+ temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
157
+ temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
158
+ temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
159
+ # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
160
+ # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
161
+
162
+ temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
163
+ temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
164
+ temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
165
+ temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
166
+ temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
167
+ temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
168
+ temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
169
+ temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
170
+ temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
171
+ temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
172
+ temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
173
+ temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
174
+ temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
175
+ temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
176
+ temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
177
+ temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
178
+ temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
179
+ temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
180
+ temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
181
+ errors="coerce")
182
+ temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
183
+ errors="coerce")
184
+ temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
185
+ errors="coerce")
186
+ # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
187
+ # errors="coerce")
188
+ # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
189
+
190
+ # 大单比例
191
+ temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
192
+ 2)
193
+
194
+ # 外盘是内盘倍数
195
+ temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
196
+ # 只有外盘没有内盘
197
+ temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
198
+ temp_df['disk_diff_amount'] = round(
199
+ (temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
200
+ "average_price"],
201
+ 2)
202
+ return temp_df
203
+
204
+
205
+ def all_hk_stock_ticker_data_new(initial_proxies, time_out, em_cookie, max_number) -> pd.DataFrame:
206
+ """
207
+ 使用多线程获取所有股票数据,失败页面会使用新IP重试,最多使用10个IP
186
208
  """
187
- 使用多线程获取所有ETF数据
188
- """
189
- # 计算总页数,假设总共有1000条数据,每页200条
190
-
191
209
  per_page = page_number
192
210
  total_pages = (max_number + per_page - 1) // per_page # 向上取整
193
-
194
- # 创建线程池
195
- with ThreadPoolExecutor(max_workers=3) as executor:
196
- # 提交任务,获取每页数据
197
- futures = [executor.submit(hk_real_time_quotes_page_df, cookie, pn, proxies)
198
- for pn in range(1, total_pages + 1)]
199
-
200
- # 收集结果
201
- results = []
202
- for future in futures:
203
- result = future.result()
204
- if not result.empty:
205
- results.append(result)
206
-
207
- # 合并所有页面的数据
211
+ all_pages = set(range(1, total_pages + 1)) # 所有需要获取的页码
212
+ success_pages = set() # 成功获取的页码
213
+ results = [] # 存储成功获取的数据
214
+ used_ip_count = 1 # 已使用IP计数器(初始IP算第一个)
215
+ MAX_IP_LIMIT = 10 # IP使用上限
216
+
217
+ # 循环处理直到所有页面成功或达到IP上限
218
+ while (all_pages - success_pages) and (used_ip_count < MAX_IP_LIMIT):
219
+ # 获取当前需要处理的失败页码
220
+ current_failed_pages = all_pages - success_pages
221
+ if used_ip_count > 1:
222
+ logger.info("当前需要处理的失败页码: {}, 已使用IP数量: {}/{}", current_failed_pages, used_ip_count,
223
+ MAX_IP_LIMIT)
224
+
225
+ # 首次使用初始代理,后续获取新代理
226
+ if len(success_pages) == 0:
227
+ proxies = initial_proxies
228
+ else:
229
+ # 每次重试前获取新代理并计数
230
+ # logger.info("获取新代理IP处理失败页面")
231
+ new_proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
232
+ proxies = {"https": new_proxy_ip}
233
+ # logger.info("新代理IP: {}, 已使用IP数量: {}/{}", new_proxy_ip, used_ip_count + 1, MAX_IP_LIMIT)
234
+ used_ip_count += 1 # 增加IP计数器
235
+
236
+ # 创建线程池处理当前失败的页码
237
+ with ThreadPoolExecutor(max_workers=10) as executor:
238
+ futures = {
239
+ executor.submit(get_hk_real_time_quotes_page_df, pn, proxies,
240
+ per_page, em_cookie, time_out): pn
241
+ for pn in current_failed_pages
242
+ }
243
+
244
+ # 收集结果并记录成功页码
245
+ for future, pn in futures.items():
246
+ try:
247
+ result = future.result()
248
+ if not result.empty:
249
+ results.append(result)
250
+ success_pages.add(pn)
251
+ # else:
252
+ # logger.warning("页码 {} 未返回有效数据", pn)
253
+ except Exception as e:
254
+ continue
255
+ # logger.error("页码 {} 处理异常: {}", pn, str(e))
256
+
257
+ # 检查是否达到IP上限
258
+ if used_ip_count >= MAX_IP_LIMIT and (all_pages - success_pages):
259
+ remaining_pages = all_pages - success_pages
260
+ logger.warning("已达到最大IP使用限制({}个),剩余未获取页码: {}, 返回现有数据", MAX_IP_LIMIT, remaining_pages)
261
+
262
+ # 合并所有成功获取的数据
208
263
  if results:
209
264
  return pd.concat(results, ignore_index=True)
210
265
  else:
211
266
  return pd.DataFrame()
212
267
 
213
268
 
214
- def get_hk_real_time_quotes(cookie, proxies):
215
- # 获取第一页数据
216
- page_one_df = hk_real_time_quotes_page_df(cookie, 1, proxies)
217
- # 数据接口正常返回5600以上的数量
218
- if page_one_df.shape[0] > min_number:
219
- page_one_df.drop_duplicates('symbol', keep='last', inplace=True)
220
- return page_one_df
221
- else:
222
- page_df = thread_pool_executor(cookie, proxies)
223
- page_df.drop_duplicates('symbol', keep='last', inplace=True)
224
- return page_df
269
+ def get_hk_real_time_quotes(time_out, em_cookie):
270
+ try_numer = 3
271
+ while try_numer > 0:
272
+ proxy_ip = proxy_common_api.generate_proxy_ip_api(1)
273
+ initial_proxies = {"https": proxy_ip,
274
+ "http": proxy_ip}
225
275
 
226
-
227
- # 获取港股通名单 todo 被封以后替换
228
- def stock_hk_ggt_components_em(proxies) -> pd.DataFrame:
229
- pn = 1
230
-
231
- """
232
- 东方财富网-行情中心-港股市场-港股通成份股
233
- https://quote.eastmoney.com/center/gridlist.html#hk_components
234
- :return: 港股通成份股
235
- :rtype: pandas.DataFrame
236
- """
237
- result_df = pd.DataFrame()
238
- while True:
239
- url = "https://33.push2.eastmoney.com/api/qt/clist/get"
240
- params = {
241
- "pn": str(pn),
242
- "pz": "5000",
243
- "po": "1",
244
- "np": "2",
245
- "ut": "bd1d9ddb04089700cf9c27f6f7426281",
246
- "fltt": "2",
247
- "fid": "f3",
248
- "fs": "b:DLMK0146,b:DLMK0144",
249
- "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f23,f24,"
250
- "f25,f26,f22,f33,f11,f62,f128,f136,f115,f152",
251
- "_": "1639974456250",
252
- }
253
- try:
254
- if proxies is None:
255
- r = requests.get(url, params=params)
256
- else:
257
- r = requests.get(url, params=params, proxies=proxies)
258
-
259
- data_json = r.json()
260
- temp_df = pd.DataFrame(data_json["data"]["diff"]).T
261
- temp_df.reset_index(inplace=True)
262
- temp_df["index"] = temp_df.index + 1
263
-
264
- temp_df.columns = [
265
- "序号",
266
- "-",
267
- "最新价",
268
- "涨跌幅",
269
- "涨跌额",
270
- "成交量",
271
- "成交额",
272
- "-",
273
- "-",
274
- "-",
275
- "-",
276
- "-",
277
- "代码",
278
- "-",
279
- "名称",
280
- "最高",
281
- "最低",
282
- "今开",
283
- "昨收",
284
- "-",
285
- "-",
286
- "-",
287
- "-",
288
- "-",
289
- "-",
290
- "-",
291
- "-",
292
- "-",
293
- "-",
294
- "-",
295
- "-",
296
- "-",
297
- "-",
298
- "-",
299
- "-",
300
- ]
301
- temp_df = temp_df[
302
- [
303
- "序号",
304
- "代码",
305
- "名称",
306
- "最新价",
307
- "涨跌额",
308
- "涨跌幅",
309
- "今开",
310
- "最高",
311
- "最低",
312
- "昨收",
313
- "成交量",
314
- "成交额",
315
- ]
316
- ]
317
- result_df = pd.concat([result_df, temp_df])
318
- if temp_df.shape[0] < page_number:
319
- break
320
- pn = pn + 1
321
- except Exception as e:
322
- logger.error("获取港股通列表:{}", e)
323
- return result_df
276
+ max_number = get_hk_stock_count(1, initial_proxies, 20, em_cookie, time_out)
277
+ if max_number > 0:
278
+ break
279
+ try_numer = try_numer - 1
280
+ if max_number == 0:
281
+ return pd.DataFrame()
282
+ all_hk_stock_ticker_data_new_df = all_hk_stock_ticker_data_new(initial_proxies, time_out, em_cookie, max_number)
283
+ return rename_hk_field(all_hk_stock_ticker_data_new_df)
324
284
 
325
285
 
326
286
  if __name__ == '__main__':
327
-
328
- result_df = stock_hk_ggt_components_em()
329
- cookie_test = 'qgqp_b_id=1e0d79428176ed54bef8434efdc0e8c3; mtp=1; ct=QVRY_s8Tiag1WfK2tSW2n03qpsX-PD8aH_rIjKVooawX8K33UVnpIofK088lD1lguWlE_OEIpQwn3PJWFPhHvSvyvYr4Zka3l4vxtZfH1Uikjtyy9z1H4Swo0rQzMKXncVzBXiOo5TjE-Dy9fcoG3ZF7UVdQ35jp_cFwzOlpK5Y; ut=FobyicMgeV51lVMr4ZJXvn-72bp0oeSOvtzifFY_U7kBFtR6og4Usd-VtBM5XBBvHq0lvd9xXkvpIqWro9EDKmv6cbKOQGyawUSMcKVP57isZCaM7lWQ6jWXajvTfvV4mIR-W_MZNK8VY0lL9W4qNMniJ6PBn_gkJsSAJCadmsyI9cxmjx--gR4m54pdF_nie_y4iWHys83cmWR2R7Bt1KKqB25OmkfCQTJJqIf7QsqangVGMUHwMC39Z9QhrfCFHKVNrlqS503O6b9GitQnXtvUdJhCmomu; pi=4253366368931142%3Bp4253366368931142%3B%E8%82%A1%E5%8F%8B9x56I87727%3BYNigLZRW%2FzMdGgVDOJbwReDWnTPHl51dB0gQLiwaCf1XY98mlJYx6eJbsoYr5Nie%2BX1L%2BzaMsec99KkX%2BT29Ds1arfST7sIBXxjUQ3dp11IPUnXy64PaBFRTHzMRWnCFJvvhc%2FAI41rXSGXolC8YMxI%2BvyPS%2BuErwgOVjC5vvsIiKeO7TLyKkhqqQJPX%2F7RWC5Sf3QLh%3Bdwjn4Xho10%2FKjqOgTWs%2FJF4%2FkdKzeuBwM8sz9aLvJovejAkCAyGMyGYA6AE67Xk2Ki7x8zdfBifF2DG%2Fvf2%2BXAYN8ZVISSEWTIXh32Z5MxEacK4JBTkqyiD93e1vFBOFQ82BqaiVmntUq0V6FrTUHGeh1gG5Sg%3D%3D; uidal=4253366368931142%e8%82%a1%e5%8f%8b9x56I87727; sid=170711377; vtpst=|; quote_lt=1; websitepoptg_api_time=1715777390466; emshistory=%5B%22%E8%BD%AC%E5%80%BA%E6%A0%87%22%2C%22%E8%BD%AC%E5%80%BA%E6%A0%87%E7%9A%84%22%5D; st_si=00364513876913; st_asi=delete; HAList=ty-116-00700-%u817E%u8BAF%u63A7%u80A1%2Cty-1-688695-%u4E2D%u521B%u80A1%u4EFD%2Cty-1-600849-%u4E0A%u836F%u8F6C%u6362%2Cty-1-603361-%u6D59%u6C5F%u56FD%u7965%2Cty-1-603555-ST%u8D35%u4EBA%2Cty-0-000627-%u5929%u8302%u96C6%u56E2%2Cty-0-002470-%u91D1%u6B63%u5927%2Cty-0-832876-%u6167%u4E3A%u667A%u80FD%2Cty-0-300059-%u4E1C%u65B9%u8D22%u5BCC%2Cty-107-CWB-%u53EF%u8F6C%u503AETF-SPDR; st_pvi=26930719093675; st_sp=2024-04-28%2017%3A27%3A05; st_inirUrl=https%3A%2F%2Fcn.bing.com%2F; st_sn=23; st_psi=20240517111108288-113200301321-2767127768'
330
- while True:
331
- df_hk_df = get_hk_real_time_quotes(cookie_test, None)
332
- df_hk_df = df_hk_df[[
333
- "symbol",
334
- "name",
335
- "chg", "amount"
336
- ]]
337
- logger.info('test')
287
+ em_cookie_test = cookie_info_service.get_em_cookie()
288
+ get_hk_real_time_quotes(30, em_cookie_test)