mns-common 1.3.7.2__py3-none-any.whl → 1.3.7.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mns-common might be problematic. Click here for more details.

@@ -12,6 +12,7 @@ import pandas as pd
12
12
  from concurrent.futures import ThreadPoolExecutor
13
13
  import datetime
14
14
  from loguru import logger
15
+ import mns_common.utils.data_frame_util as data_frame_util
15
16
 
16
17
  # 最大返回条数
17
18
  max_number = 5800
@@ -160,72 +161,75 @@ def rename_real_time_quotes_df(temp_df):
160
161
  "f211": "buy_1_num",
161
162
  "f212": "sell_1_num"
162
163
  })
163
-
164
- temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
165
- temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
166
- temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
167
- temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
168
- temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
169
- temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
170
- temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
171
- temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
172
- temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
173
- temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
174
- temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
175
- temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
176
- temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
177
- temp_df.loc[temp_df['high'] == '-', 'high'] = 0
178
- temp_df.loc[temp_df['low'] == '-', 'low'] = 0
179
- temp_df.loc[temp_df['open'] == '-', 'open'] = 0
180
- temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
181
- temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
182
- temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
183
- temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
184
- temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
185
- temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
186
- temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
187
- temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
188
- temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
189
- # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
190
- # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
191
-
192
- temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
193
- temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
194
- temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
195
- temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
196
- temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
197
- temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
198
- temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
199
- temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
200
- temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
201
- temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
202
- temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
203
- temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
204
- temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
205
- temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
206
- temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
207
- temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
208
- temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
209
- temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
210
- temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
211
- errors="coerce")
212
- temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
213
- errors="coerce")
214
- temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
215
- errors="coerce")
216
- # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
217
- # errors="coerce")
218
- # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
219
-
220
- # 大单比例
221
- temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100, 2)
222
-
223
- # 外盘是内盘倍数
224
- temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
225
- # 只有外盘没有内盘
226
- temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
227
- temp_df = temp_df.sort_values(by=['chg'], ascending=False)
228
- return temp_df
164
+ if data_frame_util.is_empty(temp_df):
165
+ return pd.DataFrame()
166
+ else:
167
+ temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
168
+ temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
169
+ temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
170
+ temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
171
+ temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
172
+ temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
173
+ temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
174
+ temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
175
+ temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
176
+ temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
177
+ temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
178
+ temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
179
+ temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
180
+ temp_df.loc[temp_df['high'] == '-', 'high'] = 0
181
+ temp_df.loc[temp_df['low'] == '-', 'low'] = 0
182
+ temp_df.loc[temp_df['open'] == '-', 'open'] = 0
183
+ temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
184
+ temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
185
+ temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
186
+ temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
187
+ temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
188
+ temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
189
+ temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
190
+ temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
191
+ temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
192
+ # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
193
+ # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
194
+
195
+ temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
196
+ temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
197
+ temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
198
+ temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
199
+ temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
200
+ temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
201
+ temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
202
+ temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
203
+ temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
204
+ temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
205
+ temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
206
+ temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
207
+ temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
208
+ temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
209
+ temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
210
+ temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
211
+ temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
212
+ temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
213
+ temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
214
+ errors="coerce")
215
+ temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
216
+ errors="coerce")
217
+ temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
218
+ errors="coerce")
219
+ # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
220
+ # errors="coerce")
221
+ # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
222
+
223
+ # 大单比例
224
+ temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
225
+ 2)
226
+
227
+ # 外盘是内盘倍数
228
+ temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
229
+ # 只有外盘没有内盘
230
+ temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
231
+ temp_df = temp_df.sort_values(by=['chg'], ascending=False)
232
+ return temp_df
229
233
 
230
234
 
231
235
  # 北向/南向资金状况 北向已经停止
@@ -183,3 +183,6 @@ THS_STOCK_INDUSTRY_DETAIL = 'ths_stock_industry_detail'
183
183
 
184
184
  # 年k线前复权
185
185
  STOCK_QFQ_YEAR = 'stock_qfq_year'
186
+
187
+ # 今日主线集合
188
+ TODAY_MAIN_LINE = 'today_main_line'
@@ -1,4 +1,4 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mns-common
3
- Version: 1.3.7.2
3
+ Version: 1.3.7.4
4
4
 
@@ -15,7 +15,7 @@ mns_common/api/em/gd/east_money_stock_gdfx_free_top_10_api.py,sha256=hitzJuMwy5I
15
15
  mns_common/api/em/real_time/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
16
16
  mns_common/api/em/real_time/east_money_debt_api.py,sha256=jMvMZtlrDfExl_4jZ1hepHX8rUoeVLoLSOIhRBjkUGk,14753
17
17
  mns_common/api/em/real_time/east_money_etf_api.py,sha256=tCyH4fNx-KfVRFuNGkgM8d_xkvR0oAfr8T3e7_XrjTM,14414
18
- mns_common/api/em/real_time/east_money_stock_a_api.py,sha256=p3_JDsZ3_I3-s4EqD_a0d2VYdPadJYUXLyV1_H1G5N8,12274
18
+ mns_common/api/em/real_time/east_money_stock_a_api.py,sha256=twwrpwk6bvLuYeZRdF6QUG8w8J1EWHIgEJF1yvj1CDw,12722
19
19
  mns_common/api/em/real_time/east_money_stock_a_v2_api.py,sha256=PXArsNK7IDQB1PoMMs97J6H5EtBgnZPEdUGhqk1VV4A,14505
20
20
  mns_common/api/em/real_time/east_money_stock_hk_api.py,sha256=TEUx20NxUqdfujwT4pVb_hYJN5LCosFdkoQJr4ftZWU,15018
21
21
  mns_common/api/em/real_time/east_money_stock_us_api.py,sha256=CYrhbNC-vvbwy43hhByVuA2IeJU_yzwZoxq3aCz1uY0,11597
@@ -131,7 +131,7 @@ mns_common/component/zt/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3Hi
131
131
  mns_common/component/zt/zt_common_service_api.py,sha256=6pHRLLJjKcLLBA-xXkAU8SE6DZ5dgVFBRVjJmhkL0II,11945
132
132
  mns_common/constant/__init__.py,sha256=xu36nA6MJTauswUWPfKIKH0E-lpOAHTw2TL5QI_6TeY,165
133
133
  mns_common/constant/black_list_classify_enum.py,sha256=I8U_DcltzYvlWjgn-TFLImgVgPuO0lxMnEJAQJBljdo,3995
134
- mns_common/constant/db_name_constant.py,sha256=vJugMto2gk9DoLpBDwq9X6ZpymfbhcSwjrS7uqEtKDU,4562
134
+ mns_common/constant/db_name_constant.py,sha256=Lw1QSN_N1NZMTPUbl5B8HW9zFiyJUkPWHxCZtFyrP-E,4623
135
135
  mns_common/constant/east_money_stock_api.py,sha256=mW0b8sEgkf8WJtars2frOQYzsWgjIl4FDYEwcCcCSZY,7557
136
136
  mns_common/constant/extra_income_db_name.py,sha256=AsIO1CtcVRq9k7TKtjFA1KzuL_jvAw2hA_Uq44wQL7o,1198
137
137
  mns_common/constant/price_enum.py,sha256=nhcPxk0AFdQAp8IsNr5EP9xURLqqJuSl6ljIzTp7Wyo,1093
@@ -150,7 +150,7 @@ mns_common/utils/date_handle_util.py,sha256=XS-MyA8_7k35LOCFAYOHgVcVkMft_Kc4Wa9U
150
150
  mns_common/utils/db_util.py,sha256=hSmfNAN4vEeEaUva6_cicZEhb2jSnib-Gvk2reke1vc,2590
151
151
  mns_common/utils/file_util.py,sha256=egWu6PenGPRp_ixrNTHKarT4dAnOT6FETR82EHUZJnQ,1042
152
152
  mns_common/utils/ip_util.py,sha256=UTcYfz_uytB__6nlBf7T-izuI7hi4XdB6ET0sJgEel4,969
153
- mns_common-1.3.7.2.dist-info/METADATA,sha256=FJZZSLSXJW2sMxMUkukJH5dZdOl3JHaIrsUrInUQzHs,61
154
- mns_common-1.3.7.2.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
155
- mns_common-1.3.7.2.dist-info/top_level.txt,sha256=ZC58kAR-8Hvc6U2xhYNBNLAh3mb6sZazbdj5nZpvEkQ,11
156
- mns_common-1.3.7.2.dist-info/RECORD,,
153
+ mns_common-1.3.7.4.dist-info/METADATA,sha256=hFuzVmWbd1-cvAVPH0XZQM4afL9To0CG3Xp0n8sAiD4,61
154
+ mns_common-1.3.7.4.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
155
+ mns_common-1.3.7.4.dist-info/top_level.txt,sha256=ZC58kAR-8Hvc6U2xhYNBNLAh3mb6sZazbdj5nZpvEkQ,11
156
+ mns_common-1.3.7.4.dist-info/RECORD,,