mns-common 1.3.7.2__py3-none-any.whl → 1.3.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mns-common might be problematic. Click here for more details.

@@ -12,6 +12,7 @@ import pandas as pd
12
12
  from concurrent.futures import ThreadPoolExecutor
13
13
  import datetime
14
14
  from loguru import logger
15
+ import mns_common.utils.data_frame_util as data_frame_util
15
16
 
16
17
  # 最大返回条数
17
18
  max_number = 5800
@@ -160,72 +161,75 @@ def rename_real_time_quotes_df(temp_df):
160
161
  "f211": "buy_1_num",
161
162
  "f212": "sell_1_num"
162
163
  })
163
-
164
- temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
165
- temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
166
- temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
167
- temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
168
- temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
169
- temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
170
- temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
171
- temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
172
- temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
173
- temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
174
- temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
175
- temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
176
- temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
177
- temp_df.loc[temp_df['high'] == '-', 'high'] = 0
178
- temp_df.loc[temp_df['low'] == '-', 'low'] = 0
179
- temp_df.loc[temp_df['open'] == '-', 'open'] = 0
180
- temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
181
- temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
182
- temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
183
- temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
184
- temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
185
- temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
186
- temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
187
- temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
188
- temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
189
- # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
190
- # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
191
-
192
- temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
193
- temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
194
- temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
195
- temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
196
- temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
197
- temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
198
- temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
199
- temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
200
- temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
201
- temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
202
- temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
203
- temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
204
- temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
205
- temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
206
- temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
207
- temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
208
- temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
209
- temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
210
- temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
211
- errors="coerce")
212
- temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
213
- errors="coerce")
214
- temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
215
- errors="coerce")
216
- # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
217
- # errors="coerce")
218
- # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
219
-
220
- # 大单比例
221
- temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100, 2)
222
-
223
- # 外盘是内盘倍数
224
- temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
225
- # 只有外盘没有内盘
226
- temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
227
- temp_df = temp_df.sort_values(by=['chg'], ascending=False)
228
- return temp_df
164
+ if data_frame_util.is_empty(temp_df):
165
+ return pd.DataFrame()
166
+ else:
167
+ temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
168
+ temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
169
+ temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
170
+ temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
171
+ temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
172
+ temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
173
+ temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
174
+ temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
175
+ temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
176
+ temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
177
+ temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
178
+ temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
179
+ temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
180
+ temp_df.loc[temp_df['high'] == '-', 'high'] = 0
181
+ temp_df.loc[temp_df['low'] == '-', 'low'] = 0
182
+ temp_df.loc[temp_df['open'] == '-', 'open'] = 0
183
+ temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
184
+ temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
185
+ temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
186
+ temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
187
+ temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
188
+ temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
189
+ temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
190
+ temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
191
+ temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
192
+ # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
193
+ # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
194
+
195
+ temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
196
+ temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
197
+ temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
198
+ temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
199
+ temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
200
+ temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
201
+ temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
202
+ temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
203
+ temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
204
+ temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
205
+ temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
206
+ temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
207
+ temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
208
+ temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
209
+ temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
210
+ temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
211
+ temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
212
+ temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
213
+ temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
214
+ errors="coerce")
215
+ temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
216
+ errors="coerce")
217
+ temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
218
+ errors="coerce")
219
+ # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
220
+ # errors="coerce")
221
+ # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
222
+
223
+ # 大单比例
224
+ temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
225
+ 2)
226
+
227
+ # 外盘是内盘倍数
228
+ temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
229
+ # 只有外盘没有内盘
230
+ temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
231
+ temp_df = temp_df.sort_values(by=['chg'], ascending=False)
232
+ return temp_df
229
233
 
230
234
 
231
235
  # 北向/南向资金状况 北向已经停止
@@ -1,4 +1,4 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mns-common
3
- Version: 1.3.7.2
3
+ Version: 1.3.7.3
4
4
 
@@ -15,7 +15,7 @@ mns_common/api/em/gd/east_money_stock_gdfx_free_top_10_api.py,sha256=hitzJuMwy5I
15
15
  mns_common/api/em/real_time/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
16
16
  mns_common/api/em/real_time/east_money_debt_api.py,sha256=jMvMZtlrDfExl_4jZ1hepHX8rUoeVLoLSOIhRBjkUGk,14753
17
17
  mns_common/api/em/real_time/east_money_etf_api.py,sha256=tCyH4fNx-KfVRFuNGkgM8d_xkvR0oAfr8T3e7_XrjTM,14414
18
- mns_common/api/em/real_time/east_money_stock_a_api.py,sha256=p3_JDsZ3_I3-s4EqD_a0d2VYdPadJYUXLyV1_H1G5N8,12274
18
+ mns_common/api/em/real_time/east_money_stock_a_api.py,sha256=twwrpwk6bvLuYeZRdF6QUG8w8J1EWHIgEJF1yvj1CDw,12722
19
19
  mns_common/api/em/real_time/east_money_stock_a_v2_api.py,sha256=PXArsNK7IDQB1PoMMs97J6H5EtBgnZPEdUGhqk1VV4A,14505
20
20
  mns_common/api/em/real_time/east_money_stock_hk_api.py,sha256=TEUx20NxUqdfujwT4pVb_hYJN5LCosFdkoQJr4ftZWU,15018
21
21
  mns_common/api/em/real_time/east_money_stock_us_api.py,sha256=CYrhbNC-vvbwy43hhByVuA2IeJU_yzwZoxq3aCz1uY0,11597
@@ -150,7 +150,7 @@ mns_common/utils/date_handle_util.py,sha256=XS-MyA8_7k35LOCFAYOHgVcVkMft_Kc4Wa9U
150
150
  mns_common/utils/db_util.py,sha256=hSmfNAN4vEeEaUva6_cicZEhb2jSnib-Gvk2reke1vc,2590
151
151
  mns_common/utils/file_util.py,sha256=egWu6PenGPRp_ixrNTHKarT4dAnOT6FETR82EHUZJnQ,1042
152
152
  mns_common/utils/ip_util.py,sha256=UTcYfz_uytB__6nlBf7T-izuI7hi4XdB6ET0sJgEel4,969
153
- mns_common-1.3.7.2.dist-info/METADATA,sha256=FJZZSLSXJW2sMxMUkukJH5dZdOl3JHaIrsUrInUQzHs,61
154
- mns_common-1.3.7.2.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
155
- mns_common-1.3.7.2.dist-info/top_level.txt,sha256=ZC58kAR-8Hvc6U2xhYNBNLAh3mb6sZazbdj5nZpvEkQ,11
156
- mns_common-1.3.7.2.dist-info/RECORD,,
153
+ mns_common-1.3.7.3.dist-info/METADATA,sha256=P9-b8pUy5k4E238ZfIv0EB-JRnHA7rqOqXTwNJAKPUA,61
154
+ mns_common-1.3.7.3.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
155
+ mns_common-1.3.7.3.dist-info/top_level.txt,sha256=ZC58kAR-8Hvc6U2xhYNBNLAh3mb6sZazbdj5nZpvEkQ,11
156
+ mns_common-1.3.7.3.dist-info/RECORD,,