mns-common 1.3.5.9__py3-none-any.whl → 1.3.6.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mns-common might be problematic. Click here for more details.
- mns_common/api/em/east_money_stock_api_v3.py +231 -0
- mns_common/api/proxies/__init__.py +7 -0
- mns_common/api/proxies/liu_guan_proxy_api.py +65 -0
- mns_common/api/xueqiu/xue_qiu_k_line_api.py +1 -19
- {mns_common-1.3.5.9.dist-info → mns_common-1.3.6.2.dist-info}/METADATA +1 -1
- {mns_common-1.3.5.9.dist-info → mns_common-1.3.6.2.dist-info}/RECORD +8 -5
- {mns_common-1.3.5.9.dist-info → mns_common-1.3.6.2.dist-info}/WHEEL +0 -0
- {mns_common-1.3.5.9.dist-info → mns_common-1.3.6.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,231 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
file_path = os.path.abspath(__file__)
|
|
5
|
+
end = file_path.index('mns') + 16
|
|
6
|
+
project_path = file_path[0:end]
|
|
7
|
+
sys.path.append(project_path)
|
|
8
|
+
|
|
9
|
+
import requests
|
|
10
|
+
import json
|
|
11
|
+
import pandas as pd
|
|
12
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
13
|
+
import datetime
|
|
14
|
+
from loguru import logger
|
|
15
|
+
|
|
16
|
+
# 最大返回条数
|
|
17
|
+
max_number = 5800
|
|
18
|
+
# 最小返回条数
|
|
19
|
+
min_number = 5600
|
|
20
|
+
# 分页条数
|
|
21
|
+
page_number = 100
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def get_stock_page_data(pn, fields, fs, proxies):
|
|
25
|
+
"""
|
|
26
|
+
获取单页股票数据
|
|
27
|
+
"""
|
|
28
|
+
# 获取当前日期和时间
|
|
29
|
+
current_time = datetime.datetime.now()
|
|
30
|
+
|
|
31
|
+
# 将当前时间转换为时间戳(以毫秒为单位)
|
|
32
|
+
current_timestamp_ms = int(current_time.timestamp() * 1000)
|
|
33
|
+
|
|
34
|
+
url = "https://13.push2.eastmoney.com/api/qt/clist/get"
|
|
35
|
+
params = {
|
|
36
|
+
"cb": "jQuery1124046660442520420653_" + str(current_timestamp_ms),
|
|
37
|
+
"pn": str(pn),
|
|
38
|
+
"pz": "10000", # 每页最大200条
|
|
39
|
+
"po": "0",
|
|
40
|
+
"np": "3",
|
|
41
|
+
"ut": "bd1d9ddb04089700cf9c27f6f7426281",
|
|
42
|
+
"fltt": "2",
|
|
43
|
+
"invt": "2",
|
|
44
|
+
"wbp2u": "|0|0|0|web",
|
|
45
|
+
"fid": "f12",
|
|
46
|
+
"fs": fs,
|
|
47
|
+
"fields": fields,
|
|
48
|
+
"_": current_timestamp_ms
|
|
49
|
+
}
|
|
50
|
+
try:
|
|
51
|
+
r = requests.get(url, params, proxies=proxies)
|
|
52
|
+
data_text = r.text
|
|
53
|
+
if pn == 1:
|
|
54
|
+
try:
|
|
55
|
+
begin_index_total = data_text.index('"total":')
|
|
56
|
+
|
|
57
|
+
end_index_total = data_text.index('"diff"')
|
|
58
|
+
global max_number
|
|
59
|
+
max_number = int(data_text[begin_index_total + 8:end_index_total - 1])
|
|
60
|
+
except Exception as e:
|
|
61
|
+
logger.error(f"获取第{pn}页股票列表异常: {e}")
|
|
62
|
+
return pd.DataFrame()
|
|
63
|
+
|
|
64
|
+
begin_index = data_text.index('[')
|
|
65
|
+
end_index = data_text.index(']')
|
|
66
|
+
data_json = data_text[begin_index:end_index + 1]
|
|
67
|
+
data_json = json.loads(data_json)
|
|
68
|
+
if data_json is None:
|
|
69
|
+
return pd.DataFrame()
|
|
70
|
+
else:
|
|
71
|
+
return pd.DataFrame(data_json)
|
|
72
|
+
except Exception as e:
|
|
73
|
+
logger.error(f"获取第{pn}页股票列表异常: {e}")
|
|
74
|
+
return pd.DataFrame()
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def all_stock_ticker_data_new(fields, fs, proxies) -> pd.DataFrame:
|
|
78
|
+
"""
|
|
79
|
+
使用多线程获取所有股票数据
|
|
80
|
+
"""
|
|
81
|
+
|
|
82
|
+
per_page = page_number
|
|
83
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
84
|
+
|
|
85
|
+
# 创建线程池
|
|
86
|
+
with ThreadPoolExecutor(max_workers=10) as executor:
|
|
87
|
+
# 提交任务,获取每页数据
|
|
88
|
+
futures = [executor.submit(get_stock_page_data, pn, fields, fs, proxies)
|
|
89
|
+
for pn in range(1, total_pages + 1)]
|
|
90
|
+
|
|
91
|
+
# 收集结果
|
|
92
|
+
results = []
|
|
93
|
+
for future in futures:
|
|
94
|
+
result = future.result()
|
|
95
|
+
if not result.empty:
|
|
96
|
+
results.append(result)
|
|
97
|
+
|
|
98
|
+
# 合并所有页面的数据
|
|
99
|
+
if results:
|
|
100
|
+
return pd.concat(results, ignore_index=True)
|
|
101
|
+
else:
|
|
102
|
+
return pd.DataFrame()
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def get_real_time_quotes_all_stocks(proxies):
|
|
106
|
+
fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,"
|
|
107
|
+
"f18,f20,f21,f26,f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212"),
|
|
108
|
+
fs = "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048"
|
|
109
|
+
# 获取第一页数据
|
|
110
|
+
page_one_df = get_stock_page_data(1, fields, fs, proxies)
|
|
111
|
+
# 数据接口正常返回5600以上的数量
|
|
112
|
+
if page_one_df.shape[0] > min_number:
|
|
113
|
+
page_one_df = rename_real_time_quotes_df(page_one_df)
|
|
114
|
+
page_one_df.drop_duplicates('symbol', keep='last', inplace=True)
|
|
115
|
+
return page_one_df
|
|
116
|
+
else:
|
|
117
|
+
page_df = all_stock_ticker_data_new(fields, fs, proxies)
|
|
118
|
+
page_df = rename_real_time_quotes_df(page_df)
|
|
119
|
+
page_df.drop_duplicates('symbol', keep='last', inplace=True)
|
|
120
|
+
return page_df
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
# 获取所有股票实时行情数据 f33,委比
|
|
124
|
+
def rename_real_time_quotes_df(temp_df):
|
|
125
|
+
temp_df = temp_df.rename(columns={
|
|
126
|
+
"f2": "now_price",
|
|
127
|
+
"f3": "chg",
|
|
128
|
+
"f5": "volume",
|
|
129
|
+
"f6": "amount",
|
|
130
|
+
"f8": "exchange",
|
|
131
|
+
"f10": "quantity_ratio",
|
|
132
|
+
"f22": "up_speed",
|
|
133
|
+
"f11": "up_speed_05",
|
|
134
|
+
"f12": "symbol",
|
|
135
|
+
"f14": "name",
|
|
136
|
+
"f15": "high",
|
|
137
|
+
"f16": "low",
|
|
138
|
+
"f17": "open",
|
|
139
|
+
"f18": "yesterday_price",
|
|
140
|
+
"f20": "total_mv",
|
|
141
|
+
"f21": "flow_mv",
|
|
142
|
+
"f26": "list_date",
|
|
143
|
+
"f33": "wei_bi",
|
|
144
|
+
"f34": "outer_disk",
|
|
145
|
+
"f35": "inner_disk",
|
|
146
|
+
"f62": "today_main_net_inflow",
|
|
147
|
+
"f66": "super_large_order_net_inflow",
|
|
148
|
+
"f69": "super_large_order_net_inflow_ratio",
|
|
149
|
+
"f72": "large_order_net_inflow",
|
|
150
|
+
# "f78": "medium_order_net_inflow",
|
|
151
|
+
# "f84": "small_order_net_inflow",
|
|
152
|
+
"f100": "industry",
|
|
153
|
+
# "f103": "concept",
|
|
154
|
+
"f184": "today_main_net_inflow_ratio",
|
|
155
|
+
"f352": "average_price",
|
|
156
|
+
"f211": "buy_1_num",
|
|
157
|
+
"f212": "sell_1_num"
|
|
158
|
+
})
|
|
159
|
+
|
|
160
|
+
temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
|
|
161
|
+
temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
|
|
162
|
+
temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
|
|
163
|
+
temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
|
|
164
|
+
temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
|
|
165
|
+
temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
|
|
166
|
+
temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
|
|
167
|
+
temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
|
|
168
|
+
temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
|
|
169
|
+
temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
|
|
170
|
+
temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
|
|
171
|
+
temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
|
|
172
|
+
temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
|
|
173
|
+
temp_df.loc[temp_df['high'] == '-', 'high'] = 0
|
|
174
|
+
temp_df.loc[temp_df['low'] == '-', 'low'] = 0
|
|
175
|
+
temp_df.loc[temp_df['open'] == '-', 'open'] = 0
|
|
176
|
+
temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
|
|
177
|
+
temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
|
|
178
|
+
temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
|
|
179
|
+
temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
|
|
180
|
+
temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
|
|
181
|
+
temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
|
|
182
|
+
temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
|
|
183
|
+
temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
|
|
184
|
+
temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
|
|
185
|
+
# temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
|
|
186
|
+
# temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
|
|
187
|
+
|
|
188
|
+
temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
|
|
189
|
+
temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
|
|
190
|
+
temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
|
|
191
|
+
temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
|
|
192
|
+
temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
|
|
193
|
+
temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
|
|
194
|
+
temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
|
|
195
|
+
temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
|
|
196
|
+
temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
|
|
197
|
+
temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
|
|
198
|
+
temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
|
|
199
|
+
temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
|
|
200
|
+
temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
|
|
201
|
+
temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
|
|
202
|
+
temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
|
|
203
|
+
temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
|
|
204
|
+
temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
|
|
205
|
+
temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
|
|
206
|
+
temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
|
|
207
|
+
errors="coerce")
|
|
208
|
+
temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
|
|
209
|
+
errors="coerce")
|
|
210
|
+
temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
|
|
211
|
+
errors="coerce")
|
|
212
|
+
# temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
|
|
213
|
+
# errors="coerce")
|
|
214
|
+
# temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
|
|
215
|
+
|
|
216
|
+
# 大单比例
|
|
217
|
+
temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100, 2)
|
|
218
|
+
|
|
219
|
+
# 外盘是内盘倍数
|
|
220
|
+
temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
|
|
221
|
+
# 只有外盘没有内盘
|
|
222
|
+
temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
|
|
223
|
+
temp_df = temp_df.sort_values(by=['chg'], ascending=False)
|
|
224
|
+
return temp_df
|
|
225
|
+
|
|
226
|
+
|
|
227
|
+
# 示例调用
|
|
228
|
+
if __name__ == "__main__":
|
|
229
|
+
while True:
|
|
230
|
+
df = get_real_time_quotes_all_stocks()
|
|
231
|
+
logger.info("涨停数据,{}", 1)
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
file_path = os.path.abspath(__file__)
|
|
5
|
+
end = file_path.index('mns') + 16
|
|
6
|
+
project_path = file_path[0:end]
|
|
7
|
+
sys.path.append(project_path)
|
|
8
|
+
from loguru import logger
|
|
9
|
+
import requests
|
|
10
|
+
import time
|
|
11
|
+
import hashlib
|
|
12
|
+
import json
|
|
13
|
+
|
|
14
|
+
# 提取订单
|
|
15
|
+
"""
|
|
16
|
+
orderId:提取订单号
|
|
17
|
+
secret:用户密钥
|
|
18
|
+
num:提取IP个数
|
|
19
|
+
pid:省份
|
|
20
|
+
cid:城市
|
|
21
|
+
type:请求类型,1=http/https,2=socks5
|
|
22
|
+
unbindTime:使用时长,秒/s为单位
|
|
23
|
+
noDuplicate:去重,0=不去重,1=去重
|
|
24
|
+
lineSeparator:分隔符
|
|
25
|
+
singleIp:切换,0=切换,1=不切换
|
|
26
|
+
"""
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def get_proxy_api(order_id, secret, unbind_time):
|
|
30
|
+
num = "1"
|
|
31
|
+
pid = "-1"
|
|
32
|
+
cid = ""
|
|
33
|
+
noDuplicate = "0"
|
|
34
|
+
lineSeparator = "0"
|
|
35
|
+
singleIp = "0"
|
|
36
|
+
time_str = str(int(time.time())) # 时间戳
|
|
37
|
+
|
|
38
|
+
# 计算sign
|
|
39
|
+
txt = "orderId=" + order_id + "&" + "secret=" + secret + "&" + "time=" + time_str
|
|
40
|
+
sign = hashlib.md5(txt.encode()).hexdigest()
|
|
41
|
+
# 访问URL获取IP
|
|
42
|
+
url = (
|
|
43
|
+
"http://api.hailiangip.com:8422/api/getIp?type=1" + "&num=" + num + "&pid=" + pid
|
|
44
|
+
+ "&unbindTime=" + unbind_time + "&cid=" + cid
|
|
45
|
+
+ "&orderId=" + order_id + "&time=" + time_str + "&sign=" + sign + "&dataType=0"
|
|
46
|
+
+ "&lineSeparator=" + lineSeparator + "&noDuplicate=" + noDuplicate + "&singleIp=" + singleIp)
|
|
47
|
+
my_response = requests.get(url).content
|
|
48
|
+
js_res = json.loads(my_response)
|
|
49
|
+
for dic in js_res["data"]:
|
|
50
|
+
try:
|
|
51
|
+
ip = dic["ip"]
|
|
52
|
+
port = dic["port"]
|
|
53
|
+
ip_port = ip + ":" + str(port)
|
|
54
|
+
return ip_port
|
|
55
|
+
except BaseException as e:
|
|
56
|
+
logger.error("获取ip地址异常:{}", e)
|
|
57
|
+
return None
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
if __name__ == '__main__':
|
|
61
|
+
order_id = ''
|
|
62
|
+
secret = ''
|
|
63
|
+
unbind_time = str(60 * 10)
|
|
64
|
+
ip = get_proxy_api(order_id, secret, unbind_time)
|
|
65
|
+
print(ip)
|
|
@@ -40,25 +40,7 @@ def get_xue_qiu_k_line(symbol, period):
|
|
|
40
40
|
"sec-fetch-mode": "cors",
|
|
41
41
|
"sec-fetch-site": "same-site",
|
|
42
42
|
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36",
|
|
43
|
-
"cookie": "xq_a_token=
|
|
44
|
-
" xqat=cc9943aa6d41f0ae420f49b428f2f90a472b070a; "
|
|
45
|
-
"xq_r_token=20869bd02083b2ef75d4d4b7654f827f00fdcd22;"
|
|
46
|
-
" xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTc0NDc2NTA3MCwiY3RtIjoxNzQyNDg4OD"
|
|
47
|
-
"kyNDc1LCJjaWQiOiJkOWQwbjRBWnVwIn0.Ep9IIWPMwb85xYIJ_pmYTDmUmcySD4t5nv4LpYSqdLJzNzqgvzGFx6vowXm-ZtyePuppJxd2YjJDREHu7OkvZk"
|
|
48
|
-
"qHRGMGQOhuCDzyMQjpND2yTgyOTNkn2hNs0e5p4FihaSeRmLu8vQDU17No3LjM3y4-0caZ-8LNJnOm0Wet1uOD7h9ASf7sLRQCjGyB-Pd4D2r-213umj7c6TD"
|
|
49
|
-
"V5ud3rfTsUlCG7DwWMAdIZGkew5CX2WRXOz-G2Duf3d4GMRggiaLHVsP6PSTzOGUQBF1zAg5hprkxK3J_dV1SdiuaAZxJDp3FCFQ5vG0JkcOs9CLB5z-92kQ2-"
|
|
50
|
-
"YEhAkd3PCpGKQ; cookiesu=251742488951389; u=251742488951389; is_overseas=0; Hm_lvt_1db88642e346389874251b5a1eded6e3=1742488952; "
|
|
51
|
-
"Hm_lpvt_1db88642e346389874251b5a1eded6e3=1742488952; HMACCOUNT=A216813C8A2D1B76; device_id=e7bd664c2ad4091241066c3a2ddbd736; "
|
|
52
|
-
"ssxmod_itna=eqIxgDB7q+0=ei7qqAKG7D8D9DQqqiIqGHDyxW9P0CGDLxn4GQDUiHxttBmPvc7EkqE5gD0yG3wDA5Dnzx7YDt=SpND0mTAc3qACQIwPw+Ocyrm2tfA"
|
|
53
|
-
"br4MWHlPP5jokUkpQw5xB3DExGkeeu77xiirx0rD0eDPxDYDGbWD7PDoxDrF8YDjl7pOUgwoz4DKx0kDY5Dw1RADiPD7ZBDkOcwXSvmFxDzFZLaqle42Di3N+EsEzRfDi5"
|
|
54
|
-
"x79cwD7v3DlaPFsdD0119FgoIiya2PpBEv40OD0ILF4BfuYoA8872wprrZQ4F2G0YjEDQ0DO03e7qSh5tY7t0sOGe2GDNQKc3xeY5ldw7xDipwGg2QIhxjhrCtccU5ZUB="
|
|
55
|
-
"+VcwwiGxCeBGPyew=jp=lDqQ4ZAqzBqPj0=jh1Fxq7De903iYLYD; ssxmod_itna2=eqIxgDB7q+0=ei7qqAKG7D8D9DQqqiIqGHDyxW9P0CGDLxn4GQDUiHxttBmPvc7E"
|
|
56
|
-
"kqE5wDDcA73imLDD7Djbb5NZaEoD/zpofwEa9m=Fn7T5jOiFKWsbAb9Qi=utFFLry0Ii9=+TINLqBPqzemrFP/ehSZRDixpiEh5WeA5WXGvaHoKw+rEINZbPjOApkpEQG8cm="
|
|
57
|
-
"rHCN=0DUoI+HxcF6Zohnh3hUEcTYQykDVyXyfHsX9eFZAlAHxdWq/5qZ=Eh0KCAV2xA2/yKFtivK+DzQb0sajPwql5xkzLh966v0g6MzzUlc4SFYAv3YKBjP7rhhOdqmKEa"
|
|
58
|
-
"j6C6PKp+Pq2QEP6heBX7BU7iG=GGLA6IrDjYvHCDh1tr93XpUr9X9rPjYUvWxPI0RBwHUpC+fs6xsg07+ifjd9gU26do2K0lLwRhhPfppAKj5+gow2IN3KLQ0K1P/mY9BKKYAt"
|
|
59
|
-
"2Qx/34rb5evohIrUI=DKe1djnDvrDnjwcBbgK2lzA3eQVix=46cxf77D9GKug6PLBL0Fi67Htrl2K5CP9PQDHb1Yjx0ttRKjCU7hE3GIs2Y88AdxfF+Iuc2=IenBfqW52ngad82Y"
|
|
60
|
-
"8KvKqn5xEiODXgYCKgGxyOjl4+v9bvIm120i2pN6o6dBRZqxpvsA4S9YP2TPjS+1/4ZnVeYQ+4=UCevs5P3Qf2x6w8s=U7dD=cvG1skhxiD8Kjl32RGPC=4FDHIrQQoKGnixsWzp"
|
|
61
|
-
"Fb7F=PlrD/3=0F6DNx2hDnr4RDW7WGYSiPQFihqY15iS7GAr44w1+x/3wnYQ4=rN/wOitjqZ0N0FRpxlw/7PGeZADD"
|
|
43
|
+
"cookie": "cookiesu=401743509129481; device_id=e7bd664c2ad4091241066c3a2ddbd736; remember=1; xq_is_login=1; u=9627701445; xq_a_token=4d1dc50464f7995ed9da20125e94fc77df0605d4; xqat=4d1dc50464f7995ed9da20125e94fc77df0605d4; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOjk2Mjc3MDE0NDUsImlzcyI6InVjIiwiZXhwIjoxNzQ2NjM0MzExLCJjdG0iOjE3NDQwNDIzMTE3OTIsImNpZCI6ImQ5ZDBuNEFadXAifQ.ehhu6ZGP8bXmIO4rB_UDPgCg7P996ExBcXkeuVRMTmswc_ZIRntQ04sv0nRoW7r6dBU10BIEFQmA3bvZO7kYuDKBVrCR86KBzDC5_3X6dTtHgb-Yr405r5ts-aQo0eYlDp4DMigJsfp6deH-058sKQlIIQajTjK4OI-0RZBNVPx6jhQcNHAJCpHNmUc613EnYTMOs9DUADOY63KIbf9VOz6fQyNd5bnyAkU0ubsoVMWu5_cFx14UUgq5BipMzG9zsjbWcXjqp2VsGQ42sJ9x-L_uqLaWdpcz5K8JqNTkvV6ADbsG3yOlzp4kdS-1WBVEYjj4vZv7UWe8eB6Aaf4Uyg; xq_r_token=cfb922056d8dd2e5212255f2fb0958cd6d98b416; Hm_lvt_1db88642e346389874251b5a1eded6e3=1744115609,1744116531,1744123698,1744128314; HMACCOUNT=1CFFE969351DFC92; is_overseas=0; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1744131160; ssxmod_itna=QqAx0DRGiQdbei7ditG8DI6KGRQrD2jDl4BttiGgDYq7=GFiDCOizO1CxBKA6Kd3Dj22AxWRxGXPmDA5Dnzx7YDt=SPxDB7YHi1KjnG+beSAj7e4qOaUehb3qQGnYFmEat0USSVYmkeDHxi8DB9DYG9FDenWDCeDQxirDD4DAQPDFxibDimI34DdTIOvstOwCDGrDlKDRx07CC3DWxDFTU0HKQgj48ExDGvxqk04rhP4DmRmC37LCl3Dn=Dv=QoD9p4DsOh9M4DCky6x+Roc=mQb=USfDCKDjoLIe/fQFbfv3IQ8e7vskhDjQ4dGvPGP3CGxeeViDRWQ1ei4Aqn7xdGPdQmqKmVjptt4DDcDo2Ky4xF0KHvM+ymIHZKhDrDxwOzFDbGYbYx7QGH9OUiTtBho5iq4+Pnri9Yie+ewo+DYPeD; ssxmod_itna2=QqAx0DRGiQdbei7ditG8DI6KGRQrD2jDl4BttiGgDYq7=GFiDCOizO1CxBKA6Kd3Dj22AxWKxDfCecxD5qDFrv4A=iDGX5is6Y7iAYQig8n7YGzGl9xrojBSddLV8xkjxkone8iq0Ejc4Mp9dBZRzPA9deDpPqmaGYSyOCPcDFDghi=DFWRBDNbo1/a9OqenaQKqsemSFI9SHF/AfvOhsQKP4=c8UGgBad0AE/2Owk9MOs/71ihBwzgQRHPZROZgINUiWdQZxbp1frOOL8c=AO6yjHaiGk+O7XUoF4UcHo+0HaKzTSG9yWDxwEiihkhxtkizH4ttfkd3xGrGSB3MrTqB=pOkhwdx+CYmb8l+0xxKbbYWsYfa88ajgN3l=Crtd8T0eijCG=AGk8+LnWqWt6O+wL3ZOoto5rr5xQksExto71TEISWtk+jE3P0WF7NW0DNS+7pD8pL8dEx2sGRb=riia3v=kopew0Du6UYY5l0=HjdFi5zEUn1DwBUdiDD"
|
|
62
44
|
}
|
|
63
45
|
try:
|
|
64
46
|
response = requests.get(
|
|
@@ -11,6 +11,7 @@ mns_common/api/em/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0
|
|
|
11
11
|
mns_common/api/em/east_money_debt_api.py,sha256=yhUghw5Fp61SjBiQJyPnkLXjMOw3-SD8_cDICc7xels,14589
|
|
12
12
|
mns_common/api/em/east_money_etf_api.py,sha256=PtVBNArQ5sMjzBVCW-WBnAuqSp8qB4E1HbZ1-TuZpMY,14273
|
|
13
13
|
mns_common/api/em/east_money_stock_api.py,sha256=NkV8jmdYOrOpQd00KsMBNoAkPZuWGtw0N1Rryg21RZ0,9892
|
|
14
|
+
mns_common/api/em/east_money_stock_api_v3.py,sha256=0BnVUGCiOPcoQyclAXYxIHVwOerNKfITRWQFkeZ1uO8,9873
|
|
14
15
|
mns_common/api/em/east_money_stock_gdfx_free_top_10_api.py,sha256=jVy3fNdrkLq3ri7yUwXWt0ItB8LCHzt9CPz91Fj8sPA,9198
|
|
15
16
|
mns_common/api/em/east_money_stock_hk_api.py,sha256=C75TfZzRnNVaz_ILEPHcxhgJqV7f4rFrlWjgMWLRu7c,14788
|
|
16
17
|
mns_common/api/em/east_money_stock_quotes_sync_api.py,sha256=-me8o6n9XzE3gruKNXHlhvJiVByA6aoXBeORFCnqllc,7568
|
|
@@ -40,6 +41,8 @@ mns_common/api/kpl/symbol/kpl_symbol_common_field_constant.py,sha256=EijxWFjOb18
|
|
|
40
41
|
mns_common/api/kpl/symbol/symbol_his_quotes_api.py,sha256=r3n7U2F7MZUDZFQgnx-JI4sb8MiRTIwVeh21iehbFwE,4210
|
|
41
42
|
mns_common/api/msg/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
42
43
|
mns_common/api/msg/push_msg_api.py,sha256=z8jDqFWygfxnCFFfQp4K-llgg27nRLv7Mx72lOddBH0,1390
|
|
44
|
+
mns_common/api/proxies/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
45
|
+
mns_common/api/proxies/liu_guan_proxy_api.py,sha256=CRiR-nwlSiq-vflg87FQYMewB_g6z-P5OUawsfSa7LY,1923
|
|
43
46
|
mns_common/api/qmt/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
44
47
|
mns_common/api/qmt/qmt_minunte_tick_data.py,sha256=uwSw_AkA9RaD3pXPKzxqi4TKEkpglmFUwtYl9r5E6G8,3019
|
|
45
48
|
mns_common/api/ths/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
@@ -67,7 +70,7 @@ mns_common/api/ths/zt/ths_stock_zt_pool_v2_api.py,sha256=ohkeXyUSvxie2YqFPxqy9eL
|
|
|
67
70
|
mns_common/api/us/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
68
71
|
mns_common/api/us/ths_us_company_info_api.py,sha256=qQjv4F-ovQ2uuu-FlBAnxjvVA7qj9y_x5WZtUoyoEW4,241
|
|
69
72
|
mns_common/api/xueqiu/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
70
|
-
mns_common/api/xueqiu/xue_qiu_k_line_api.py,sha256=
|
|
73
|
+
mns_common/api/xueqiu/xue_qiu_k_line_api.py,sha256=kKdL2L7888zoL4CI0F0LPT6PRZNB1fAYk5tt6GxqD8Y,4204
|
|
71
74
|
mns_common/component/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
72
75
|
mns_common/component/common_service_fun_api.py,sha256=H7HZ-6uxup5unWe2JazNw_EBMLj2As82FC0QqPvao7c,5536
|
|
73
76
|
mns_common/component/cache/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
@@ -141,7 +144,7 @@ mns_common/utils/date_handle_util.py,sha256=XS-MyA8_7k35LOCFAYOHgVcVkMft_Kc4Wa9U
|
|
|
141
144
|
mns_common/utils/db_util.py,sha256=hSmfNAN4vEeEaUva6_cicZEhb2jSnib-Gvk2reke1vc,2590
|
|
142
145
|
mns_common/utils/file_util.py,sha256=egWu6PenGPRp_ixrNTHKarT4dAnOT6FETR82EHUZJnQ,1042
|
|
143
146
|
mns_common/utils/ip_util.py,sha256=UTcYfz_uytB__6nlBf7T-izuI7hi4XdB6ET0sJgEel4,969
|
|
144
|
-
mns_common-1.3.
|
|
145
|
-
mns_common-1.3.
|
|
146
|
-
mns_common-1.3.
|
|
147
|
-
mns_common-1.3.
|
|
147
|
+
mns_common-1.3.6.2.dist-info/METADATA,sha256=isD-pzLbNngY8VY0GNIW4Ul7ZkNX7STUGVdYor5vIWQ,61
|
|
148
|
+
mns_common-1.3.6.2.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
|
|
149
|
+
mns_common-1.3.6.2.dist-info/top_level.txt,sha256=ZC58kAR-8Hvc6U2xhYNBNLAh3mb6sZazbdj5nZpvEkQ,11
|
|
150
|
+
mns_common-1.3.6.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|