mns-common 1.3.5.9__py3-none-any.whl → 1.3.6.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mns-common might be problematic. Click here for more details.

@@ -0,0 +1,231 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 16
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+
9
+ import requests
10
+ import json
11
+ import pandas as pd
12
+ from concurrent.futures import ThreadPoolExecutor
13
+ import datetime
14
+ from loguru import logger
15
+
16
+ # 最大返回条数
17
+ max_number = 5800
18
+ # 最小返回条数
19
+ min_number = 5600
20
+ # 分页条数
21
+ page_number = 100
22
+
23
+
24
+ def get_stock_page_data(pn, fields, fs, proxies):
25
+ """
26
+ 获取单页股票数据
27
+ """
28
+ # 获取当前日期和时间
29
+ current_time = datetime.datetime.now()
30
+
31
+ # 将当前时间转换为时间戳(以毫秒为单位)
32
+ current_timestamp_ms = int(current_time.timestamp() * 1000)
33
+
34
+ url = "https://13.push2.eastmoney.com/api/qt/clist/get"
35
+ params = {
36
+ "cb": "jQuery1124046660442520420653_" + str(current_timestamp_ms),
37
+ "pn": str(pn),
38
+ "pz": "10000", # 每页最大200条
39
+ "po": "0",
40
+ "np": "3",
41
+ "ut": "bd1d9ddb04089700cf9c27f6f7426281",
42
+ "fltt": "2",
43
+ "invt": "2",
44
+ "wbp2u": "|0|0|0|web",
45
+ "fid": "f12",
46
+ "fs": fs,
47
+ "fields": fields,
48
+ "_": current_timestamp_ms
49
+ }
50
+ try:
51
+ r = requests.get(url, params, proxies=proxies)
52
+ data_text = r.text
53
+ if pn == 1:
54
+ try:
55
+ begin_index_total = data_text.index('"total":')
56
+
57
+ end_index_total = data_text.index('"diff"')
58
+ global max_number
59
+ max_number = int(data_text[begin_index_total + 8:end_index_total - 1])
60
+ except Exception as e:
61
+ logger.error(f"获取第{pn}页股票列表异常: {e}")
62
+ return pd.DataFrame()
63
+
64
+ begin_index = data_text.index('[')
65
+ end_index = data_text.index(']')
66
+ data_json = data_text[begin_index:end_index + 1]
67
+ data_json = json.loads(data_json)
68
+ if data_json is None:
69
+ return pd.DataFrame()
70
+ else:
71
+ return pd.DataFrame(data_json)
72
+ except Exception as e:
73
+ logger.error(f"获取第{pn}页股票列表异常: {e}")
74
+ return pd.DataFrame()
75
+
76
+
77
+ def all_stock_ticker_data_new(fields, fs, proxies) -> pd.DataFrame:
78
+ """
79
+ 使用多线程获取所有股票数据
80
+ """
81
+
82
+ per_page = page_number
83
+ total_pages = (max_number + per_page - 1) // per_page # 向上取整
84
+
85
+ # 创建线程池
86
+ with ThreadPoolExecutor(max_workers=10) as executor:
87
+ # 提交任务,获取每页数据
88
+ futures = [executor.submit(get_stock_page_data, pn, fields, fs, proxies)
89
+ for pn in range(1, total_pages + 1)]
90
+
91
+ # 收集结果
92
+ results = []
93
+ for future in futures:
94
+ result = future.result()
95
+ if not result.empty:
96
+ results.append(result)
97
+
98
+ # 合并所有页面的数据
99
+ if results:
100
+ return pd.concat(results, ignore_index=True)
101
+ else:
102
+ return pd.DataFrame()
103
+
104
+
105
+ def get_real_time_quotes_all_stocks(proxies):
106
+ fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,"
107
+ "f18,f20,f21,f26,f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212"),
108
+ fs = "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048"
109
+ # 获取第一页数据
110
+ page_one_df = get_stock_page_data(1, fields, fs, proxies)
111
+ # 数据接口正常返回5600以上的数量
112
+ if page_one_df.shape[0] > min_number:
113
+ page_one_df = rename_real_time_quotes_df(page_one_df)
114
+ page_one_df.drop_duplicates('symbol', keep='last', inplace=True)
115
+ return page_one_df
116
+ else:
117
+ page_df = all_stock_ticker_data_new(fields, fs, proxies)
118
+ page_df = rename_real_time_quotes_df(page_df)
119
+ page_df.drop_duplicates('symbol', keep='last', inplace=True)
120
+ return page_df
121
+
122
+
123
+ # 获取所有股票实时行情数据 f33,委比
124
+ def rename_real_time_quotes_df(temp_df):
125
+ temp_df = temp_df.rename(columns={
126
+ "f2": "now_price",
127
+ "f3": "chg",
128
+ "f5": "volume",
129
+ "f6": "amount",
130
+ "f8": "exchange",
131
+ "f10": "quantity_ratio",
132
+ "f22": "up_speed",
133
+ "f11": "up_speed_05",
134
+ "f12": "symbol",
135
+ "f14": "name",
136
+ "f15": "high",
137
+ "f16": "low",
138
+ "f17": "open",
139
+ "f18": "yesterday_price",
140
+ "f20": "total_mv",
141
+ "f21": "flow_mv",
142
+ "f26": "list_date",
143
+ "f33": "wei_bi",
144
+ "f34": "outer_disk",
145
+ "f35": "inner_disk",
146
+ "f62": "today_main_net_inflow",
147
+ "f66": "super_large_order_net_inflow",
148
+ "f69": "super_large_order_net_inflow_ratio",
149
+ "f72": "large_order_net_inflow",
150
+ # "f78": "medium_order_net_inflow",
151
+ # "f84": "small_order_net_inflow",
152
+ "f100": "industry",
153
+ # "f103": "concept",
154
+ "f184": "today_main_net_inflow_ratio",
155
+ "f352": "average_price",
156
+ "f211": "buy_1_num",
157
+ "f212": "sell_1_num"
158
+ })
159
+
160
+ temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
161
+ temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
162
+ temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
163
+ temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
164
+ temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
165
+ temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
166
+ temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
167
+ temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
168
+ temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
169
+ temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
170
+ temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
171
+ temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
172
+ temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
173
+ temp_df.loc[temp_df['high'] == '-', 'high'] = 0
174
+ temp_df.loc[temp_df['low'] == '-', 'low'] = 0
175
+ temp_df.loc[temp_df['open'] == '-', 'open'] = 0
176
+ temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
177
+ temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
178
+ temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
179
+ temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
180
+ temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
181
+ temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
182
+ temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
183
+ temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
184
+ temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
185
+ # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
186
+ # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
187
+
188
+ temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
189
+ temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
190
+ temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
191
+ temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
192
+ temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
193
+ temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
194
+ temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
195
+ temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
196
+ temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
197
+ temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
198
+ temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
199
+ temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
200
+ temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
201
+ temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
202
+ temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
203
+ temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
204
+ temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
205
+ temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
206
+ temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
207
+ errors="coerce")
208
+ temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
209
+ errors="coerce")
210
+ temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
211
+ errors="coerce")
212
+ # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
213
+ # errors="coerce")
214
+ # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
215
+
216
+ # 大单比例
217
+ temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100, 2)
218
+
219
+ # 外盘是内盘倍数
220
+ temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
221
+ # 只有外盘没有内盘
222
+ temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
223
+ temp_df = temp_df.sort_values(by=['chg'], ascending=False)
224
+ return temp_df
225
+
226
+
227
+ # 示例调用
228
+ if __name__ == "__main__":
229
+ while True:
230
+ df = get_real_time_quotes_all_stocks()
231
+ logger.info("涨停数据,{}", 1)
@@ -0,0 +1,7 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 16
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
@@ -0,0 +1,65 @@
1
+ import sys
2
+ import os
3
+
4
+ file_path = os.path.abspath(__file__)
5
+ end = file_path.index('mns') + 16
6
+ project_path = file_path[0:end]
7
+ sys.path.append(project_path)
8
+ from loguru import logger
9
+ import requests
10
+ import time
11
+ import hashlib
12
+ import json
13
+
14
+ # 提取订单
15
+ """
16
+ orderId:提取订单号
17
+ secret:用户密钥
18
+ num:提取IP个数
19
+ pid:省份
20
+ cid:城市
21
+ type:请求类型,1=http/https,2=socks5
22
+ unbindTime:使用时长,秒/s为单位
23
+ noDuplicate:去重,0=不去重,1=去重
24
+ lineSeparator:分隔符
25
+ singleIp:切换,0=切换,1=不切换
26
+ """
27
+
28
+
29
+ def get_proxy_api(order_id, secret, unbind_time):
30
+ num = "1"
31
+ pid = "-1"
32
+ cid = ""
33
+ noDuplicate = "0"
34
+ lineSeparator = "0"
35
+ singleIp = "0"
36
+ time_str = str(int(time.time())) # 时间戳
37
+
38
+ # 计算sign
39
+ txt = "orderId=" + order_id + "&" + "secret=" + secret + "&" + "time=" + time_str
40
+ sign = hashlib.md5(txt.encode()).hexdigest()
41
+ # 访问URL获取IP
42
+ url = (
43
+ "http://api.hailiangip.com:8422/api/getIp?type=1" + "&num=" + num + "&pid=" + pid
44
+ + "&unbindTime=" + unbind_time + "&cid=" + cid
45
+ + "&orderId=" + order_id + "&time=" + time_str + "&sign=" + sign + "&dataType=0"
46
+ + "&lineSeparator=" + lineSeparator + "&noDuplicate=" + noDuplicate + "&singleIp=" + singleIp)
47
+ my_response = requests.get(url).content
48
+ js_res = json.loads(my_response)
49
+ for dic in js_res["data"]:
50
+ try:
51
+ ip = dic["ip"]
52
+ port = dic["port"]
53
+ ip_port = ip + ":" + str(port)
54
+ return ip_port
55
+ except BaseException as e:
56
+ logger.error("获取ip地址异常:{}", e)
57
+ return None
58
+
59
+
60
+ if __name__ == '__main__':
61
+ order_id = ''
62
+ secret = ''
63
+ unbind_time = str(60 * 10)
64
+ ip = get_proxy_api(order_id, secret, unbind_time)
65
+ print(ip)
@@ -40,25 +40,7 @@ def get_xue_qiu_k_line(symbol, period):
40
40
  "sec-fetch-mode": "cors",
41
41
  "sec-fetch-site": "same-site",
42
42
  "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/134.0.0.0 Safari/537.36",
43
- "cookie": "xq_a_token=cc9943aa6d41f0ae420f49b428f2f90a472b070a;"
44
- " xqat=cc9943aa6d41f0ae420f49b428f2f90a472b070a; "
45
- "xq_r_token=20869bd02083b2ef75d4d4b7654f827f00fdcd22;"
46
- " xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTc0NDc2NTA3MCwiY3RtIjoxNzQyNDg4OD"
47
- "kyNDc1LCJjaWQiOiJkOWQwbjRBWnVwIn0.Ep9IIWPMwb85xYIJ_pmYTDmUmcySD4t5nv4LpYSqdLJzNzqgvzGFx6vowXm-ZtyePuppJxd2YjJDREHu7OkvZk"
48
- "qHRGMGQOhuCDzyMQjpND2yTgyOTNkn2hNs0e5p4FihaSeRmLu8vQDU17No3LjM3y4-0caZ-8LNJnOm0Wet1uOD7h9ASf7sLRQCjGyB-Pd4D2r-213umj7c6TD"
49
- "V5ud3rfTsUlCG7DwWMAdIZGkew5CX2WRXOz-G2Duf3d4GMRggiaLHVsP6PSTzOGUQBF1zAg5hprkxK3J_dV1SdiuaAZxJDp3FCFQ5vG0JkcOs9CLB5z-92kQ2-"
50
- "YEhAkd3PCpGKQ; cookiesu=251742488951389; u=251742488951389; is_overseas=0; Hm_lvt_1db88642e346389874251b5a1eded6e3=1742488952; "
51
- "Hm_lpvt_1db88642e346389874251b5a1eded6e3=1742488952; HMACCOUNT=A216813C8A2D1B76; device_id=e7bd664c2ad4091241066c3a2ddbd736; "
52
- "ssxmod_itna=eqIxgDB7q+0=ei7qqAKG7D8D9DQqqiIqGHDyxW9P0CGDLxn4GQDUiHxttBmPvc7EkqE5gD0yG3wDA5Dnzx7YDt=SpND0mTAc3qACQIwPw+Ocyrm2tfA"
53
- "br4MWHlPP5jokUkpQw5xB3DExGkeeu77xiirx0rD0eDPxDYDGbWD7PDoxDrF8YDjl7pOUgwoz4DKx0kDY5Dw1RADiPD7ZBDkOcwXSvmFxDzFZLaqle42Di3N+EsEzRfDi5"
54
- "x79cwD7v3DlaPFsdD0119FgoIiya2PpBEv40OD0ILF4BfuYoA8872wprrZQ4F2G0YjEDQ0DO03e7qSh5tY7t0sOGe2GDNQKc3xeY5ldw7xDipwGg2QIhxjhrCtccU5ZUB="
55
- "+VcwwiGxCeBGPyew=jp=lDqQ4ZAqzBqPj0=jh1Fxq7De903iYLYD; ssxmod_itna2=eqIxgDB7q+0=ei7qqAKG7D8D9DQqqiIqGHDyxW9P0CGDLxn4GQDUiHxttBmPvc7E"
56
- "kqE5wDDcA73imLDD7Djbb5NZaEoD/zpofwEa9m=Fn7T5jOiFKWsbAb9Qi=utFFLry0Ii9=+TINLqBPqzemrFP/ehSZRDixpiEh5WeA5WXGvaHoKw+rEINZbPjOApkpEQG8cm="
57
- "rHCN=0DUoI+HxcF6Zohnh3hUEcTYQykDVyXyfHsX9eFZAlAHxdWq/5qZ=Eh0KCAV2xA2/yKFtivK+DzQb0sajPwql5xkzLh966v0g6MzzUlc4SFYAv3YKBjP7rhhOdqmKEa"
58
- "j6C6PKp+Pq2QEP6heBX7BU7iG=GGLA6IrDjYvHCDh1tr93XpUr9X9rPjYUvWxPI0RBwHUpC+fs6xsg07+ifjd9gU26do2K0lLwRhhPfppAKj5+gow2IN3KLQ0K1P/mY9BKKYAt"
59
- "2Qx/34rb5evohIrUI=DKe1djnDvrDnjwcBbgK2lzA3eQVix=46cxf77D9GKug6PLBL0Fi67Htrl2K5CP9PQDHb1Yjx0ttRKjCU7hE3GIs2Y88AdxfF+Iuc2=IenBfqW52ngad82Y"
60
- "8KvKqn5xEiODXgYCKgGxyOjl4+v9bvIm120i2pN6o6dBRZqxpvsA4S9YP2TPjS+1/4ZnVeYQ+4=UCevs5P3Qf2x6w8s=U7dD=cvG1skhxiD8Kjl32RGPC=4FDHIrQQoKGnixsWzp"
61
- "Fb7F=PlrD/3=0F6DNx2hDnr4RDW7WGYSiPQFihqY15iS7GAr44w1+x/3wnYQ4=rN/wOitjqZ0N0FRpxlw/7PGeZADD"
43
+ "cookie": "cookiesu=401743509129481; device_id=e7bd664c2ad4091241066c3a2ddbd736; remember=1; xq_is_login=1; u=9627701445; xq_a_token=4d1dc50464f7995ed9da20125e94fc77df0605d4; xqat=4d1dc50464f7995ed9da20125e94fc77df0605d4; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOjk2Mjc3MDE0NDUsImlzcyI6InVjIiwiZXhwIjoxNzQ2NjM0MzExLCJjdG0iOjE3NDQwNDIzMTE3OTIsImNpZCI6ImQ5ZDBuNEFadXAifQ.ehhu6ZGP8bXmIO4rB_UDPgCg7P996ExBcXkeuVRMTmswc_ZIRntQ04sv0nRoW7r6dBU10BIEFQmA3bvZO7kYuDKBVrCR86KBzDC5_3X6dTtHgb-Yr405r5ts-aQo0eYlDp4DMigJsfp6deH-058sKQlIIQajTjK4OI-0RZBNVPx6jhQcNHAJCpHNmUc613EnYTMOs9DUADOY63KIbf9VOz6fQyNd5bnyAkU0ubsoVMWu5_cFx14UUgq5BipMzG9zsjbWcXjqp2VsGQ42sJ9x-L_uqLaWdpcz5K8JqNTkvV6ADbsG3yOlzp4kdS-1WBVEYjj4vZv7UWe8eB6Aaf4Uyg; xq_r_token=cfb922056d8dd2e5212255f2fb0958cd6d98b416; Hm_lvt_1db88642e346389874251b5a1eded6e3=1744115609,1744116531,1744123698,1744128314; HMACCOUNT=1CFFE969351DFC92; is_overseas=0; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1744131160; ssxmod_itna=QqAx0DRGiQdbei7ditG8DI6KGRQrD2jDl4BttiGgDYq7=GFiDCOizO1CxBKA6Kd3Dj22AxWRxGXPmDA5Dnzx7YDt=SPxDB7YHi1KjnG+beSAj7e4qOaUehb3qQGnYFmEat0USSVYmkeDHxi8DB9DYG9FDenWDCeDQxirDD4DAQPDFxibDimI34DdTIOvstOwCDGrDlKDRx07CC3DWxDFTU0HKQgj48ExDGvxqk04rhP4DmRmC37LCl3Dn=Dv=QoD9p4DsOh9M4DCky6x+Roc=mQb=USfDCKDjoLIe/fQFbfv3IQ8e7vskhDjQ4dGvPGP3CGxeeViDRWQ1ei4Aqn7xdGPdQmqKmVjptt4DDcDo2Ky4xF0KHvM+ymIHZKhDrDxwOzFDbGYbYx7QGH9OUiTtBho5iq4+Pnri9Yie+ewo+DYPeD; ssxmod_itna2=QqAx0DRGiQdbei7ditG8DI6KGRQrD2jDl4BttiGgDYq7=GFiDCOizO1CxBKA6Kd3Dj22AxWKxDfCecxD5qDFrv4A=iDGX5is6Y7iAYQig8n7YGzGl9xrojBSddLV8xkjxkone8iq0Ejc4Mp9dBZRzPA9deDpPqmaGYSyOCPcDFDghi=DFWRBDNbo1/a9OqenaQKqsemSFI9SHF/AfvOhsQKP4=c8UGgBad0AE/2Owk9MOs/71ihBwzgQRHPZROZgINUiWdQZxbp1frOOL8c=AO6yjHaiGk+O7XUoF4UcHo+0HaKzTSG9yWDxwEiihkhxtkizH4ttfkd3xGrGSB3MrTqB=pOkhwdx+CYmb8l+0xxKbbYWsYfa88ajgN3l=Crtd8T0eijCG=AGk8+LnWqWt6O+wL3ZOoto5rr5xQksExto71TEISWtk+jE3P0WF7NW0DNS+7pD8pL8dEx2sGRb=riia3v=kopew0Du6UYY5l0=HjdFi5zEUn1DwBUdiDD"
62
44
  }
63
45
  try:
64
46
  response = requests.get(
@@ -1,4 +1,4 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mns-common
3
- Version: 1.3.5.9
3
+ Version: 1.3.6.2
4
4
 
@@ -11,6 +11,7 @@ mns_common/api/em/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0
11
11
  mns_common/api/em/east_money_debt_api.py,sha256=yhUghw5Fp61SjBiQJyPnkLXjMOw3-SD8_cDICc7xels,14589
12
12
  mns_common/api/em/east_money_etf_api.py,sha256=PtVBNArQ5sMjzBVCW-WBnAuqSp8qB4E1HbZ1-TuZpMY,14273
13
13
  mns_common/api/em/east_money_stock_api.py,sha256=NkV8jmdYOrOpQd00KsMBNoAkPZuWGtw0N1Rryg21RZ0,9892
14
+ mns_common/api/em/east_money_stock_api_v3.py,sha256=0BnVUGCiOPcoQyclAXYxIHVwOerNKfITRWQFkeZ1uO8,9873
14
15
  mns_common/api/em/east_money_stock_gdfx_free_top_10_api.py,sha256=jVy3fNdrkLq3ri7yUwXWt0ItB8LCHzt9CPz91Fj8sPA,9198
15
16
  mns_common/api/em/east_money_stock_hk_api.py,sha256=C75TfZzRnNVaz_ILEPHcxhgJqV7f4rFrlWjgMWLRu7c,14788
16
17
  mns_common/api/em/east_money_stock_quotes_sync_api.py,sha256=-me8o6n9XzE3gruKNXHlhvJiVByA6aoXBeORFCnqllc,7568
@@ -40,6 +41,8 @@ mns_common/api/kpl/symbol/kpl_symbol_common_field_constant.py,sha256=EijxWFjOb18
40
41
  mns_common/api/kpl/symbol/symbol_his_quotes_api.py,sha256=r3n7U2F7MZUDZFQgnx-JI4sb8MiRTIwVeh21iehbFwE,4210
41
42
  mns_common/api/msg/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
42
43
  mns_common/api/msg/push_msg_api.py,sha256=z8jDqFWygfxnCFFfQp4K-llgg27nRLv7Mx72lOddBH0,1390
44
+ mns_common/api/proxies/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
45
+ mns_common/api/proxies/liu_guan_proxy_api.py,sha256=CRiR-nwlSiq-vflg87FQYMewB_g6z-P5OUawsfSa7LY,1923
43
46
  mns_common/api/qmt/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
44
47
  mns_common/api/qmt/qmt_minunte_tick_data.py,sha256=uwSw_AkA9RaD3pXPKzxqi4TKEkpglmFUwtYl9r5E6G8,3019
45
48
  mns_common/api/ths/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
@@ -67,7 +70,7 @@ mns_common/api/ths/zt/ths_stock_zt_pool_v2_api.py,sha256=ohkeXyUSvxie2YqFPxqy9eL
67
70
  mns_common/api/us/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
68
71
  mns_common/api/us/ths_us_company_info_api.py,sha256=qQjv4F-ovQ2uuu-FlBAnxjvVA7qj9y_x5WZtUoyoEW4,241
69
72
  mns_common/api/xueqiu/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
70
- mns_common/api/xueqiu/xue_qiu_k_line_api.py,sha256=DofKpwUY0RDPV81TcW_-grbUi3W-YRiwiaws-c_g-0o,4843
73
+ mns_common/api/xueqiu/xue_qiu_k_line_api.py,sha256=kKdL2L7888zoL4CI0F0LPT6PRZNB1fAYk5tt6GxqD8Y,4204
71
74
  mns_common/component/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
72
75
  mns_common/component/common_service_fun_api.py,sha256=H7HZ-6uxup5unWe2JazNw_EBMLj2As82FC0QqPvao7c,5536
73
76
  mns_common/component/cache/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
@@ -141,7 +144,7 @@ mns_common/utils/date_handle_util.py,sha256=XS-MyA8_7k35LOCFAYOHgVcVkMft_Kc4Wa9U
141
144
  mns_common/utils/db_util.py,sha256=hSmfNAN4vEeEaUva6_cicZEhb2jSnib-Gvk2reke1vc,2590
142
145
  mns_common/utils/file_util.py,sha256=egWu6PenGPRp_ixrNTHKarT4dAnOT6FETR82EHUZJnQ,1042
143
146
  mns_common/utils/ip_util.py,sha256=UTcYfz_uytB__6nlBf7T-izuI7hi4XdB6ET0sJgEel4,969
144
- mns_common-1.3.5.9.dist-info/METADATA,sha256=o2Pf9nqAOl0fJPRJ06oQtKyo_ETBMs7orHmkhPC9i1U,61
145
- mns_common-1.3.5.9.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
146
- mns_common-1.3.5.9.dist-info/top_level.txt,sha256=ZC58kAR-8Hvc6U2xhYNBNLAh3mb6sZazbdj5nZpvEkQ,11
147
- mns_common-1.3.5.9.dist-info/RECORD,,
147
+ mns_common-1.3.6.2.dist-info/METADATA,sha256=isD-pzLbNngY8VY0GNIW4Ul7ZkNX7STUGVdYor5vIWQ,61
148
+ mns_common-1.3.6.2.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
149
+ mns_common-1.3.6.2.dist-info/top_level.txt,sha256=ZC58kAR-8Hvc6U2xhYNBNLAh3mb6sZazbdj5nZpvEkQ,11
150
+ mns_common-1.3.6.2.dist-info/RECORD,,