mns-common 1.3.2.6__py3-none-any.whl → 1.3.2.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mns-common might be problematic. Click here for more details.

@@ -2,39 +2,50 @@ import sys
2
2
  import os
3
3
 
4
4
  file_path = os.path.abspath(__file__)
5
- end = file_path.index('mns') + 14
5
+ end = file_path.index('mns') + 16
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
8
8
 
9
9
  import requests
10
-
11
- """
12
- 东方财富网 数据接口 获取单个股票行情数据
13
- http://quote.eastmoney.com/sz002497.html
14
- """
15
-
10
+ import json
16
11
  import pandas as pd
12
+ from concurrent.futures import ThreadPoolExecutor
13
+ import datetime
17
14
  from loguru import logger
18
- import json
19
15
 
16
+ # 最大返回条数
17
+ max_number = 5700
18
+ # 最小返回条数
19
+ min_number = 5600
20
+ # 分页条数
21
+ page_number = 200
22
+
23
+
24
+ def get_stock_page_data(pn, fields, fs):
25
+ """
26
+ 获取单页股票数据
27
+ """
28
+ # 获取当前日期和时间
29
+ current_time = datetime.datetime.now()
30
+
31
+ # 将当前时间转换为时间戳(以毫秒为单位)
32
+ current_timestamp_ms = int(current_time.timestamp() * 1000)
20
33
 
21
- def all_stock_ticker_data_new(fields, fs) -> pd.DataFrame:
22
34
  url = "https://13.push2.eastmoney.com/api/qt/clist/get"
23
- # url = "https://push2.eastmoney.com/api/qt/clist/get?cb=jQuery112303212778189608789_1645434416300&fid=f62&po=1&pz=6000&pn=1&np=1&fltt=2&invt=2&ut=b2884a393a59ad64002292a3e90d46a5&fs=m%3A0%2Bt%3A6%2Bf%3A!2%2Cm%3A0%2Bt%3A13%2Bf%3A!2%2Cm%3A0%2Bt%3A80%2Bf%3A!2%2Cm%3A1%2Bt%3A2%2Bf%3A!2%2Cm%3A1%2Bt%3A23%2Bf%3A!2%2Cm%3A0%2Bt%3A7%2Bf%3A!2%2Cm%3A1%2Bt%3A3%2Bf%3A!2&fields=f12%2Cf14%2Cf2%2Cf3%2Cf62%2Cf184%2Cf66%2Cf69%2Cf72%2Cf75%2Cf78%2Cf81%2Cf84%2Cf87%2Cf204%2Cf205%2Cf124%2Cf1%2Cf13"
24
35
  params = {
25
- "cb": "jQuery1124046660442520420653_1660036672477",
26
- "pn": "1",
27
- "pz": "10000",
36
+ "cb": "jQuery1124046660442520420653_" + str(current_timestamp_ms),
37
+ "pn": str(pn),
38
+ "pz": "10000", # 每页最大200条
28
39
  "po": "1",
29
40
  "np": "3",
30
- "ut": " bd1d9ddb04089700cf9c27f6f7426281",
41
+ "ut": "bd1d9ddb04089700cf9c27f6f7426281",
31
42
  "fltt": "2",
32
43
  "invt": "2",
33
44
  "wbp2u": "|0|0|0|web",
34
45
  "fid": "f3",
35
46
  "fs": fs,
36
47
  "fields": fields,
37
- "_": 1660036672518
48
+ "_": current_timestamp_ms
38
49
  }
39
50
  try:
40
51
  r = requests.get(url, params)
@@ -45,33 +56,59 @@ def all_stock_ticker_data_new(fields, fs) -> pd.DataFrame:
45
56
  data_json = json.loads(data_json)
46
57
  if data_json is None:
47
58
  return pd.DataFrame()
48
- return pd.DataFrame(data_json)
59
+ else:
60
+ return pd.DataFrame(data_json)
49
61
  except Exception as e:
50
- logger.error("获取股票列表,实时行情异常:{}", e)
51
- return None
62
+ logger.error(f"获取第{pn}页股票列表异常: {e}")
63
+ return pd.DataFrame()
64
+
52
65
 
66
+ def all_stock_ticker_data_new(fields, fs) -> pd.DataFrame:
67
+ """
68
+ 使用多线程获取所有股票数据
69
+ """
53
70
 
54
- # f212 卖1
55
- # f211 1
56
- # f31 买1价格
57
- # "f32" : 卖1价格
71
+ per_page = page_number
72
+ total_pages = (max_number + per_page - 1) // per_page # 向上取整
73
+
74
+ # 创建线程池
75
+ with ThreadPoolExecutor(max_workers=10) as executor:
76
+ # 提交任务,获取每页数据
77
+ futures = [executor.submit(get_stock_page_data, pn, fields, fs)
78
+ for pn in range(1, total_pages + 1)]
79
+
80
+ # 收集结果
81
+ results = []
82
+ for future in futures:
83
+ result = future.result()
84
+ if not result.empty:
85
+ results.append(result)
86
+
87
+ # 合并所有页面的数据
88
+ if results:
89
+ return pd.concat(results, ignore_index=True)
90
+ else:
91
+ return pd.DataFrame()
58
92
 
59
93
 
60
- # 获取所有股票实时行情数据 f33,委比
61
94
  def get_real_time_quotes_all_stocks():
62
- # todo old version
63
- # stock_ticker_data = all_stock_ticker_data(
64
- # "f352,f2,f3,f5,f6,f8,f10,f11,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
65
- # "f33,f34,f35,f62,f66,f69,f72,f100,f184",
66
- # "m:0+t:6+f:!2,m:0+t:13+f:!2,m:0+t:80+f:!2,m:1+t:2+f:!2,m:1+t:23+f:!2,m:0+t:7+f:!2,m:1+t:3+f:!2")
67
-
68
- # todo new version
69
- stock_ticker_data = all_stock_ticker_data_new(
70
- "f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
71
- "f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212",
72
- "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048")
73
-
74
- temp_df = stock_ticker_data.rename(columns={
95
+ fields = "f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212",
96
+ fs = "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048"
97
+ # 获取第一页数据
98
+ page_one_df = get_stock_page_data(1, fields, fs)
99
+ # 数据接口正常返回5600以上的数量
100
+ if page_one_df.shape[0] > min_number:
101
+ page_one_df = rename_real_time_quotes_df(page_one_df)
102
+ return page_one_df
103
+ else:
104
+ page_df = all_stock_ticker_data_new(fields, fs)
105
+ page_df = rename_real_time_quotes_df(page_df)
106
+ return page_df
107
+
108
+
109
+ # 获取所有股票实时行情数据 f33,委比
110
+ def rename_real_time_quotes_df(temp_df):
111
+ temp_df = temp_df.rename(columns={
75
112
  "f2": "now_price",
76
113
  "f3": "chg",
77
114
  "f5": "volume",
@@ -105,6 +142,7 @@ def get_real_time_quotes_all_stocks():
105
142
  "f211": "buy_1_num",
106
143
  "f212": "sell_1_num"
107
144
  })
145
+
108
146
  temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
109
147
  temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
110
148
  temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
@@ -172,7 +210,10 @@ def get_real_time_quotes_all_stocks():
172
210
  return temp_df
173
211
 
174
212
 
175
- if __name__ == '__main__':
176
- df = get_real_time_quotes_all_stocks()
177
- df = df.loc[df['wei_bi'] == 100]
178
- print(df)
213
+ # 示例调用
214
+ if __name__ == "__main__":
215
+ while True:
216
+ df = get_real_time_quotes_all_stocks()
217
+ print(df)
218
+ zt_df = df.loc[df['wei_bi'] == 100]
219
+ logger.info("涨停数据,{}", zt_df)
@@ -5,157 +5,216 @@ file_path = os.path.abspath(__file__)
5
5
  end = file_path.index('mns') + 16
6
6
  project_path = file_path[0:end]
7
7
  sys.path.append(project_path)
8
+ from concurrent.futures import ThreadPoolExecutor
8
9
  import pandas as pd
10
+ from loguru import logger
9
11
  import requests
10
12
  import json
13
+ import time
14
+
15
+ # 最大返回条数
16
+ max_number = 4600
17
+ # 最小返回条数
18
+ min_number = 4400
19
+ # 分页条数
20
+ page_number = 200
11
21
 
12
22
  fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
13
23
  "f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212")
14
24
 
15
25
 
16
- def hk_real_time_quotes(cookie):
17
- headers = {
18
- 'Cookie': cookie
19
- }
20
-
21
- url_new = ('https://61.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112409497467688484127_1715915661673'
22
- '&pn=1'
23
- '&pz=50000'
24
- '&po=1'
25
- '&np=3'
26
- '&ut=bd1d9ddb04089700cf9c27f6f7426281'
27
- '&fltt=2'
28
- '&invt=2'
29
- '&wbp2u=4253366368931142|0|1|0|web'
30
- '&fid=f3'
31
- '&fs=m:116+t:3,m:116+t:4,m:116+t:1,m:116+t:2'
32
- '&fields=' + fields +
33
- '&_=1715915661690')
34
-
35
- r = requests.get(url_new, headers=headers)
36
- result = r.content.decode("utf-8")
37
-
38
- startIndex = result.index('"diff"')
39
- endIndex = result.index('}]}')
40
-
41
- result = result[startIndex + 7:endIndex + 2]
42
-
43
- data_json = json.loads(result)
44
-
45
- temp_df = pd.DataFrame(data_json)
46
-
47
- temp_df = temp_df.rename(columns={
48
-
49
- "f12": "symbol",
50
- "f14": "name",
51
- "f3": "chg",
52
- "f2": "now_price",
53
- "f5": "volume",
54
- "f6": "amount",
55
- "f8": "exchange",
56
- "f10": "quantity_ratio",
57
- "f22": "up_speed",
58
- "f11": "up_speed_05",
59
-
60
- "f15": "high",
61
- "f16": "low",
62
- "f17": "open",
63
- "f18": "yesterday_price",
64
- "f20": "total_mv",
65
- "f21": "flow_mv",
66
- "f26": "list_date",
67
- "f33": "wei_bi",
68
- "f34": "outer_disk",
69
- "f35": "inner_disk",
70
- "f62": "today_main_net_inflow",
71
- "f66": "super_large_order_net_inflow",
72
- "f69": "super_large_order_net_inflow_ratio",
73
- "f72": "large_order_net_inflow",
74
- # "f78": "medium_order_net_inflow",
75
- # "f84": "small_order_net_inflow",
76
- "f100": "industry",
77
- # "f103": "concept",
78
- "f184": "today_main_net_inflow_ratio",
79
- "f352": "average_price",
80
- "f211": "buy_1_num",
81
- "f212": "sell_1_num"
82
- })
83
- temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
84
- temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
85
- temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
86
- temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
87
- temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
88
- temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
89
- temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
90
- temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
91
- temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
92
- temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
93
- temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
94
- temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
95
- temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
96
- temp_df.loc[temp_df['high'] == '-', 'high'] = 0
97
- temp_df.loc[temp_df['low'] == '-', 'low'] = 0
98
- temp_df.loc[temp_df['open'] == '-', 'open'] = 0
99
- temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
100
- temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
101
- temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
102
- temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
103
- temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
104
- temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
105
- temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
106
- temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
107
- temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
108
- # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
109
- # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
110
-
111
- temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
112
- temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
113
- temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
114
- temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
115
- temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
116
- temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
117
- temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
118
- temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
119
- temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
120
- temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
121
- temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
122
- temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
123
- temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
124
- temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
125
- temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
126
- temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
127
- temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
128
- temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
129
- temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
130
- errors="coerce")
131
- temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
132
- errors="coerce")
133
- temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
134
- errors="coerce")
135
- # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
136
- # errors="coerce")
137
- # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
138
-
139
- # 大单比例
140
- temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100, 2)
141
-
142
- # 外盘是内盘倍数
143
- temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
144
- # 只有外盘没有内盘
145
- temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
146
- temp_df['disk_diff_amount'] = round(
147
- (temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
148
- "average_price"],
149
- 2)
150
- return temp_df
26
+ def hk_real_time_quotes_page_df(cookie, pn):
27
+ try:
28
+ headers = {
29
+ 'Cookie': cookie
30
+ }
31
+
32
+ current_timestamp = str(int(round(time.time() * 1000, 0)))
33
+
34
+ url_new = ('https://61.push2.eastmoney.com/api/qt/clist/get?cb=jQuery112409497467688484127_' + str(
35
+ current_timestamp) +
36
+ '&pn=' + str(pn) +
37
+ '&pz=50000'
38
+ '&po=1'
39
+ '&np=3'
40
+ '&ut=bd1d9ddb04089700cf9c27f6f7426281'
41
+ '&fltt=2'
42
+ '&invt=2'
43
+ '&wbp2u=4253366368931142|0|1|0|web'
44
+ '&fid=f3'
45
+ '&fs=m:116+t:3,m:116+t:4,m:116+t:1,m:116+t:2'
46
+ '&fields=' + fields +
47
+ '&_=' + str(current_timestamp))
48
+
49
+ r = requests.get(url_new, headers=headers)
50
+ result = r.content.decode("utf-8")
51
+
52
+ startIndex = result.index('"diff"')
53
+ endIndex = result.index('}]}')
54
+
55
+ result = result[startIndex + 7:endIndex + 2]
56
+
57
+ data_json = json.loads(result)
58
+
59
+ temp_df = pd.DataFrame(data_json)
60
+
61
+ temp_df = temp_df.rename(columns={
62
+
63
+ "f12": "symbol",
64
+ "f14": "name",
65
+ "f3": "chg",
66
+ "f2": "now_price",
67
+ "f5": "volume",
68
+ "f6": "amount",
69
+ "f8": "exchange",
70
+ "f10": "quantity_ratio",
71
+ "f22": "up_speed",
72
+ "f11": "up_speed_05",
73
+
74
+ "f15": "high",
75
+ "f16": "low",
76
+ "f17": "open",
77
+ "f18": "yesterday_price",
78
+ "f20": "total_mv",
79
+ "f21": "flow_mv",
80
+ "f26": "list_date",
81
+ "f33": "wei_bi",
82
+ "f34": "outer_disk",
83
+ "f35": "inner_disk",
84
+ "f62": "today_main_net_inflow",
85
+ "f66": "super_large_order_net_inflow",
86
+ "f69": "super_large_order_net_inflow_ratio",
87
+ "f72": "large_order_net_inflow",
88
+ # "f78": "medium_order_net_inflow",
89
+ # "f84": "small_order_net_inflow",
90
+ "f100": "industry",
91
+ # "f103": "concept",
92
+ "f184": "today_main_net_inflow_ratio",
93
+ "f352": "average_price",
94
+ "f211": "buy_1_num",
95
+ "f212": "sell_1_num"
96
+ })
97
+ temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
98
+ temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
99
+ temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
100
+ temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
101
+ temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
102
+ temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
103
+ temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
104
+ temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
105
+ temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
106
+ temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
107
+ temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
108
+ temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
109
+ temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
110
+ temp_df.loc[temp_df['high'] == '-', 'high'] = 0
111
+ temp_df.loc[temp_df['low'] == '-', 'low'] = 0
112
+ temp_df.loc[temp_df['open'] == '-', 'open'] = 0
113
+ temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
114
+ temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
115
+ temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
116
+ temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
117
+ temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
118
+ temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
119
+ temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
120
+ temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
121
+ temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
122
+ # temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
123
+ # temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
124
+
125
+ temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
126
+ temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
127
+ temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
128
+ temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
129
+ temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
130
+ temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
131
+ temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
132
+ temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
133
+ temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
134
+ temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
135
+ temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
136
+ temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
137
+ temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
138
+ temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
139
+ temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
140
+ temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
141
+ temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
142
+ temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
143
+ temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
144
+ errors="coerce")
145
+ temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
146
+ errors="coerce")
147
+ temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
148
+ errors="coerce")
149
+ # temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
150
+ # errors="coerce")
151
+ # temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
152
+
153
+ # 大单比例
154
+ temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100,
155
+ 2)
156
+
157
+ # 外盘是内盘倍数
158
+ temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
159
+ # 只有外盘没有内盘
160
+ temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
161
+ temp_df['disk_diff_amount'] = round(
162
+ (temp_df['outer_disk'] - temp_df['inner_disk']) * temp_df[
163
+ "average_price"],
164
+ 2)
165
+ return temp_df
166
+ except Exception as e:
167
+ logger.error("获取ETF列表,实时行情异常:{}", e)
168
+ return pd.DataFrame()
169
+
170
+
171
+ def thread_pool_executor(cookie):
172
+ """
173
+ 使用多线程获取所有ETF数据
174
+ """
175
+ # 计算总页数,假设总共有1000条数据,每页200条
176
+
177
+ per_page = page_number
178
+ total_pages = (max_number + per_page - 1) // per_page # 向上取整
179
+
180
+ # 创建线程池
181
+ with ThreadPoolExecutor(max_workers=3) as executor:
182
+ # 提交任务,获取每页数据
183
+ futures = [executor.submit(hk_real_time_quotes_page_df, cookie, pn)
184
+ for pn in range(1, total_pages + 1)]
185
+
186
+ # 收集结果
187
+ results = []
188
+ for future in futures:
189
+ result = future.result()
190
+ if not result.empty:
191
+ results.append(result)
192
+
193
+ # 合并所有页面的数据
194
+ if results:
195
+ return pd.concat(results, ignore_index=True)
196
+ else:
197
+ return pd.DataFrame()
198
+
199
+
200
+ def get_hk_real_time_quotes(cookie):
201
+ # 获取第一页数据
202
+ page_one_df = hk_real_time_quotes_page_df(cookie, 1)
203
+ # 数据接口正常返回5600以上的数量
204
+ if page_one_df.shape[0] > min_number:
205
+ return page_one_df
206
+ else:
207
+ page_df = thread_pool_executor(cookie)
208
+ return page_df
151
209
 
152
210
 
153
211
  if __name__ == '__main__':
154
- cookie = 'qgqp_b_id=1e0d79428176ed54bef8434efdc0e8c3; mtp=1; ct=QVRY_s8Tiag1WfK2tSW2n03qpsX-PD8aH_rIjKVooawX8K33UVnpIofK088lD1lguWlE_OEIpQwn3PJWFPhHvSvyvYr4Zka3l4vxtZfH1Uikjtyy9z1H4Swo0rQzMKXncVzBXiOo5TjE-Dy9fcoG3ZF7UVdQ35jp_cFwzOlpK5Y; ut=FobyicMgeV51lVMr4ZJXvn-72bp0oeSOvtzifFY_U7kBFtR6og4Usd-VtBM5XBBvHq0lvd9xXkvpIqWro9EDKmv6cbKOQGyawUSMcKVP57isZCaM7lWQ6jWXajvTfvV4mIR-W_MZNK8VY0lL9W4qNMniJ6PBn_gkJsSAJCadmsyI9cxmjx--gR4m54pdF_nie_y4iWHys83cmWR2R7Bt1KKqB25OmkfCQTJJqIf7QsqangVGMUHwMC39Z9QhrfCFHKVNrlqS503O6b9GitQnXtvUdJhCmomu; pi=4253366368931142%3Bp4253366368931142%3B%E8%82%A1%E5%8F%8B9x56I87727%3BYNigLZRW%2FzMdGgVDOJbwReDWnTPHl51dB0gQLiwaCf1XY98mlJYx6eJbsoYr5Nie%2BX1L%2BzaMsec99KkX%2BT29Ds1arfST7sIBXxjUQ3dp11IPUnXy64PaBFRTHzMRWnCFJvvhc%2FAI41rXSGXolC8YMxI%2BvyPS%2BuErwgOVjC5vvsIiKeO7TLyKkhqqQJPX%2F7RWC5Sf3QLh%3Bdwjn4Xho10%2FKjqOgTWs%2FJF4%2FkdKzeuBwM8sz9aLvJovejAkCAyGMyGYA6AE67Xk2Ki7x8zdfBifF2DG%2Fvf2%2BXAYN8ZVISSEWTIXh32Z5MxEacK4JBTkqyiD93e1vFBOFQ82BqaiVmntUq0V6FrTUHGeh1gG5Sg%3D%3D; uidal=4253366368931142%e8%82%a1%e5%8f%8b9x56I87727; sid=170711377; vtpst=|; quote_lt=1; websitepoptg_api_time=1715777390466; emshistory=%5B%22%E8%BD%AC%E5%80%BA%E6%A0%87%22%2C%22%E8%BD%AC%E5%80%BA%E6%A0%87%E7%9A%84%22%5D; st_si=00364513876913; st_asi=delete; HAList=ty-116-00700-%u817E%u8BAF%u63A7%u80A1%2Cty-1-688695-%u4E2D%u521B%u80A1%u4EFD%2Cty-1-600849-%u4E0A%u836F%u8F6C%u6362%2Cty-1-603361-%u6D59%u6C5F%u56FD%u7965%2Cty-1-603555-ST%u8D35%u4EBA%2Cty-0-000627-%u5929%u8302%u96C6%u56E2%2Cty-0-002470-%u91D1%u6B63%u5927%2Cty-0-832876-%u6167%u4E3A%u667A%u80FD%2Cty-0-300059-%u4E1C%u65B9%u8D22%u5BCC%2Cty-107-CWB-%u53EF%u8F6C%u503AETF-SPDR; st_pvi=26930719093675; st_sp=2024-04-28%2017%3A27%3A05; st_inirUrl=https%3A%2F%2Fcn.bing.com%2F; st_sn=23; st_psi=20240517111108288-113200301321-2767127768'
155
- df_hk_df = hk_real_time_quotes(cookie)
156
- df_hk_df = df_hk_df[[
157
- "symbol",
158
- "name",
159
- "chg", "amount"
160
- ]]
161
- print(df_hk_df)
212
+ cookie_test = 'qgqp_b_id=1e0d79428176ed54bef8434efdc0e8c3; mtp=1; ct=QVRY_s8Tiag1WfK2tSW2n03qpsX-PD8aH_rIjKVooawX8K33UVnpIofK088lD1lguWlE_OEIpQwn3PJWFPhHvSvyvYr4Zka3l4vxtZfH1Uikjtyy9z1H4Swo0rQzMKXncVzBXiOo5TjE-Dy9fcoG3ZF7UVdQ35jp_cFwzOlpK5Y; ut=FobyicMgeV51lVMr4ZJXvn-72bp0oeSOvtzifFY_U7kBFtR6og4Usd-VtBM5XBBvHq0lvd9xXkvpIqWro9EDKmv6cbKOQGyawUSMcKVP57isZCaM7lWQ6jWXajvTfvV4mIR-W_MZNK8VY0lL9W4qNMniJ6PBn_gkJsSAJCadmsyI9cxmjx--gR4m54pdF_nie_y4iWHys83cmWR2R7Bt1KKqB25OmkfCQTJJqIf7QsqangVGMUHwMC39Z9QhrfCFHKVNrlqS503O6b9GitQnXtvUdJhCmomu; pi=4253366368931142%3Bp4253366368931142%3B%E8%82%A1%E5%8F%8B9x56I87727%3BYNigLZRW%2FzMdGgVDOJbwReDWnTPHl51dB0gQLiwaCf1XY98mlJYx6eJbsoYr5Nie%2BX1L%2BzaMsec99KkX%2BT29Ds1arfST7sIBXxjUQ3dp11IPUnXy64PaBFRTHzMRWnCFJvvhc%2FAI41rXSGXolC8YMxI%2BvyPS%2BuErwgOVjC5vvsIiKeO7TLyKkhqqQJPX%2F7RWC5Sf3QLh%3Bdwjn4Xho10%2FKjqOgTWs%2FJF4%2FkdKzeuBwM8sz9aLvJovejAkCAyGMyGYA6AE67Xk2Ki7x8zdfBifF2DG%2Fvf2%2BXAYN8ZVISSEWTIXh32Z5MxEacK4JBTkqyiD93e1vFBOFQ82BqaiVmntUq0V6FrTUHGeh1gG5Sg%3D%3D; uidal=4253366368931142%e8%82%a1%e5%8f%8b9x56I87727; sid=170711377; vtpst=|; quote_lt=1; websitepoptg_api_time=1715777390466; emshistory=%5B%22%E8%BD%AC%E5%80%BA%E6%A0%87%22%2C%22%E8%BD%AC%E5%80%BA%E6%A0%87%E7%9A%84%22%5D; st_si=00364513876913; st_asi=delete; HAList=ty-116-00700-%u817E%u8BAF%u63A7%u80A1%2Cty-1-688695-%u4E2D%u521B%u80A1%u4EFD%2Cty-1-600849-%u4E0A%u836F%u8F6C%u6362%2Cty-1-603361-%u6D59%u6C5F%u56FD%u7965%2Cty-1-603555-ST%u8D35%u4EBA%2Cty-0-000627-%u5929%u8302%u96C6%u56E2%2Cty-0-002470-%u91D1%u6B63%u5927%2Cty-0-832876-%u6167%u4E3A%u667A%u80FD%2Cty-0-300059-%u4E1C%u65B9%u8D22%u5BCC%2Cty-107-CWB-%u53EF%u8F6C%u503AETF-SPDR; st_pvi=26930719093675; st_sp=2024-04-28%2017%3A27%3A05; st_inirUrl=https%3A%2F%2Fcn.bing.com%2F; st_sn=23; st_psi=20240517111108288-113200301321-2767127768'
213
+ while True:
214
+ df_hk_df = get_hk_real_time_quotes(cookie_test)
215
+ df_hk_df = df_hk_df[[
216
+ "symbol",
217
+ "name",
218
+ "chg", "amount"
219
+ ]]
220
+ logger.info('test')