mns-common 1.3.2.5__py3-none-any.whl → 1.3.2.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mns-common might be problematic. Click here for more details.
- mns_common/api/em/east_money_debt_api.py +61 -9
- mns_common/api/em/east_money_etf_api.py +212 -161
- mns_common/api/em/east_money_stock_api.py +81 -40
- mns_common/api/em/east_money_stock_hk_api.py +202 -143
- mns_common/api/em/east_money_stock_us_api.py +219 -0
- mns_common/api/em/east_money_stock_v2_api.py +106 -161
- mns_common/constant/db_name_constant.py +5 -1
- mns_common/constant/east_money_stock_api.py +156 -0
- {mns_common-1.3.2.5.dist-info → mns_common-1.3.2.7.dist-info}/METADATA +1 -1
- {mns_common-1.3.2.5.dist-info → mns_common-1.3.2.7.dist-info}/RECORD +12 -10
- {mns_common-1.3.2.5.dist-info → mns_common-1.3.2.7.dist-info}/WHEEL +0 -0
- {mns_common-1.3.2.5.dist-info → mns_common-1.3.2.7.dist-info}/top_level.txt +0 -0
|
@@ -8,7 +8,7 @@ file_path = os.path.abspath(__file__)
|
|
|
8
8
|
end = file_path.index('mns') + 14
|
|
9
9
|
project_path = file_path[0:end]
|
|
10
10
|
sys.path.append(project_path)
|
|
11
|
-
|
|
11
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
12
12
|
import pandas as pd
|
|
13
13
|
from loguru import logger
|
|
14
14
|
import json
|
|
@@ -17,6 +17,13 @@ import time
|
|
|
17
17
|
import akshare as ak
|
|
18
18
|
import numpy as np
|
|
19
19
|
|
|
20
|
+
# 最大返回条数
|
|
21
|
+
max_number = 600
|
|
22
|
+
# 最小返回条数
|
|
23
|
+
min_number = 500
|
|
24
|
+
# 分页条数
|
|
25
|
+
page_number = 200
|
|
26
|
+
|
|
20
27
|
|
|
21
28
|
# fields_02 = "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18,f19,f20,f21,f22,f23,f24,f25,f26,f27,f28,f29,f30,f31,f32,f33,f34,f35,f36,f37,f38,f39,f40,f41,f42,f43,f44,f45,f46,f47,f48,f49,f50,f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f62,f63,f64,f65,f66,f67,f68,f69,f70,f71,f72,f73,f74,f75,f76,f77,f78,f79,f80,f81,f82,f83,f84,f85,f86,f87,f88,f89,f90,f91,f92,f93,f94,f95,f96,f97,f98,f99,f100,f101,f102,f103,f104,f105,f106,f107,f108" \
|
|
22
29
|
# ",f109,f110,f111,f112,f113,f114,f115,f116,f117,f118,f119,f120,f121,f122,f123,f124,f125,f126,f127,f128,f129,f130,f131,f132,f133,f134,f135,f136,f137,f138,f139,f140,f141,f142,f143,f144,f145,f146,f147,f148,f149,f150,f151,f152,f153,f154,f155,f156,f157,f158,f159,f160,f161,f162,f163,f164,f165,f166,f167,f168,f169,f170,f171,f172,f173,f174,f175,f176,f177,f178,f179,f180,f181,f182,f183,f184,f185,f186,f187,f188,f189,f190,f191,f192,f193,f194,f195,f196,f197,f198,f199,f200" \
|
|
@@ -29,13 +36,13 @@ import numpy as np
|
|
|
29
36
|
# =8a086bfc3570bdde64a6a1c585cccb35&fltt=1&invt=1&fs=m:0+e:11,m:1+e:11,m:1+e:11+s:4194304,
|
|
30
37
|
# m:0+e:11+s:8388608&dpt=zqsc.zpg&fields=f1,f2,f3,f4,f5,f6,f8,f10,f12,f13,f14,f18,f22,f152,
|
|
31
38
|
# f237&wbp2u=|0|0|0|wap&fid=f3&po=1&pz=2000&_=1718163189870
|
|
32
|
-
def
|
|
39
|
+
def get_debt_page_data(fields, pn) -> pd.DataFrame:
|
|
33
40
|
current_timestamp = str(int(round(time.time() * 1000, 0)))
|
|
34
41
|
url = "https://push2.eastmoney.com/api/qt/clist/get"
|
|
35
42
|
|
|
36
43
|
params = {
|
|
37
44
|
"cb": "jQuery34103608466964799838_" + current_timestamp,
|
|
38
|
-
"pn":
|
|
45
|
+
"pn": str(pn),
|
|
39
46
|
"np": 3,
|
|
40
47
|
"ut": "8a086bfc3570bdde64a6a1c585cccb35",
|
|
41
48
|
"fltt": 1,
|
|
@@ -58,16 +65,58 @@ def all_debt_ticker_data(fields) -> pd.DataFrame:
|
|
|
58
65
|
data_json = json.loads(data_json)
|
|
59
66
|
if data_json is None:
|
|
60
67
|
return pd.DataFrame()
|
|
61
|
-
|
|
68
|
+
else:
|
|
69
|
+
return pd.DataFrame(data_json)
|
|
62
70
|
except Exception as e:
|
|
63
|
-
logger.error("
|
|
64
|
-
return
|
|
71
|
+
logger.error("获取可转债列表,实时行情异常:{}", e)
|
|
72
|
+
return pd.DataFrame()
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
def all_debt_ticker_data(fields) -> pd.DataFrame:
|
|
76
|
+
"""
|
|
77
|
+
使用多线程获取所有债券数据
|
|
78
|
+
"""
|
|
79
|
+
# 计算总页数,假设总共有1000条数据,每页200条
|
|
80
|
+
|
|
81
|
+
per_page = page_number
|
|
82
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
83
|
+
|
|
84
|
+
# 创建线程池
|
|
85
|
+
with ThreadPoolExecutor(max_workers=3) as executor:
|
|
86
|
+
# 提交任务,获取每页数据
|
|
87
|
+
futures = [executor.submit(get_debt_page_data, fields, pn)
|
|
88
|
+
for pn in range(1, total_pages + 1)]
|
|
89
|
+
|
|
90
|
+
# 收集结果
|
|
91
|
+
results = []
|
|
92
|
+
for future in futures:
|
|
93
|
+
result = future.result()
|
|
94
|
+
if not result.empty:
|
|
95
|
+
results.append(result)
|
|
96
|
+
|
|
97
|
+
# 合并所有页面的数据
|
|
98
|
+
if results:
|
|
99
|
+
return pd.concat(results, ignore_index=True)
|
|
100
|
+
else:
|
|
101
|
+
return pd.DataFrame()
|
|
65
102
|
|
|
66
103
|
|
|
67
104
|
def get_debt_real_time_quotes():
|
|
68
105
|
fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,f33,f34,f35,f62,f66,f69,f72,f184,"
|
|
69
106
|
"f211,f212,f232,f233,f234")
|
|
70
|
-
|
|
107
|
+
# 获取第一页数据
|
|
108
|
+
page_one_df = get_debt_page_data(fields, 1)
|
|
109
|
+
# 数据接口正常返回5600以上的数量
|
|
110
|
+
if page_one_df.shape[0] > min_number:
|
|
111
|
+
page_one_df = rename_real_time_quotes_df(page_one_df)
|
|
112
|
+
return page_one_df
|
|
113
|
+
else:
|
|
114
|
+
page_df = all_debt_ticker_data(fields)
|
|
115
|
+
page_df = rename_real_time_quotes_df(page_df)
|
|
116
|
+
return page_df
|
|
117
|
+
|
|
118
|
+
|
|
119
|
+
def rename_real_time_quotes_df(temp_df):
|
|
71
120
|
temp_df = temp_df.rename(columns={
|
|
72
121
|
"f2": "now_price",
|
|
73
122
|
"f3": "chg",
|
|
@@ -233,5 +282,8 @@ def get_kzz_bond_info():
|
|
|
233
282
|
|
|
234
283
|
|
|
235
284
|
if __name__ == '__main__':
|
|
236
|
-
|
|
237
|
-
|
|
285
|
+
info_df = get_kzz_bond_info()
|
|
286
|
+
print(info_df)
|
|
287
|
+
while True:
|
|
288
|
+
df = get_debt_real_time_quotes()
|
|
289
|
+
logger.info(df)
|
|
@@ -6,21 +6,32 @@ end = file_path.index('mns') + 16
|
|
|
6
6
|
project_path = file_path[0:end]
|
|
7
7
|
sys.path.append(project_path)
|
|
8
8
|
|
|
9
|
+
from concurrent.futures import ThreadPoolExecutor
|
|
9
10
|
import pandas as pd
|
|
11
|
+
from loguru import logger
|
|
10
12
|
import requests
|
|
13
|
+
import time
|
|
11
14
|
import numpy as np
|
|
12
15
|
|
|
16
|
+
# 最大返回条数
|
|
17
|
+
max_number = 1200
|
|
18
|
+
# 最小返回条数
|
|
19
|
+
min_number = 1000
|
|
20
|
+
# 分页条数
|
|
21
|
+
page_number = 200
|
|
13
22
|
|
|
14
|
-
|
|
23
|
+
|
|
24
|
+
def get_fund_etf_page_df(pn) -> pd.DataFrame:
|
|
15
25
|
"""
|
|
16
26
|
东方财富-ETF 实时行情
|
|
17
27
|
https://quote.eastmoney.com/center/gridlist.html#fund_etf
|
|
18
28
|
:return: ETF 实时行情
|
|
19
29
|
:rtype: pandas.DataFrame
|
|
20
30
|
"""
|
|
31
|
+
current_timestamp = str(int(round(time.time() * 1000, 0)))
|
|
21
32
|
url = "https://88.push2.eastmoney.com/api/qt/clist/get"
|
|
22
33
|
params = {
|
|
23
|
-
"pn":
|
|
34
|
+
"pn": str(pn),
|
|
24
35
|
"pz": "5000",
|
|
25
36
|
"po": "1",
|
|
26
37
|
"np": "3",
|
|
@@ -38,165 +49,197 @@ def fund_etf_spot_em() -> pd.DataFrame:
|
|
|
38
49
|
"f72,f75,f78,f81,f84,f87,f115,f124,f128,"
|
|
39
50
|
"f136,f152,f184,f297,f402,f441"
|
|
40
51
|
),
|
|
41
|
-
"_":
|
|
52
|
+
"_": str(current_timestamp),
|
|
42
53
|
}
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
[
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
54
|
+
try:
|
|
55
|
+
r = requests.get(url, timeout=15, params=params)
|
|
56
|
+
data_json = r.json()
|
|
57
|
+
temp_df = pd.DataFrame(data_json["data"]["diff"])
|
|
58
|
+
temp_df.rename(
|
|
59
|
+
columns={
|
|
60
|
+
"f26": "上市时间",
|
|
61
|
+
"f12": "代码",
|
|
62
|
+
"f14": "名称",
|
|
63
|
+
"f2": "最新价",
|
|
64
|
+
"f4": "涨跌额",
|
|
65
|
+
"f3": "涨跌幅",
|
|
66
|
+
"f5": "成交量",
|
|
67
|
+
"f6": "成交额",
|
|
68
|
+
"f7": "振幅",
|
|
69
|
+
"f17": "开盘价",
|
|
70
|
+
"f15": "最高价",
|
|
71
|
+
"f16": "最低价",
|
|
72
|
+
"f18": "昨收",
|
|
73
|
+
"f8": "换手率",
|
|
74
|
+
"f10": "量比",
|
|
75
|
+
"f30": "现手",
|
|
76
|
+
"f31": "买一",
|
|
77
|
+
"f32": "卖一",
|
|
78
|
+
"f33": "委比",
|
|
79
|
+
"f34": "外盘",
|
|
80
|
+
"f35": "内盘",
|
|
81
|
+
"f62": "主力净流入-净额",
|
|
82
|
+
"f184": "主力净流入-净占比",
|
|
83
|
+
"f66": "超大单净流入-净额",
|
|
84
|
+
"f69": "超大单净流入-净占比",
|
|
85
|
+
"f72": "大单净流入-净额",
|
|
86
|
+
"f75": "大单净流入-净占比",
|
|
87
|
+
"f78": "中单净流入-净额",
|
|
88
|
+
"f81": "中单净流入-净占比",
|
|
89
|
+
"f84": "小单净流入-净额",
|
|
90
|
+
"f87": "小单净流入-净占比",
|
|
91
|
+
"f38": "最新份额",
|
|
92
|
+
"f21": "流通市值",
|
|
93
|
+
"f20": "总市值",
|
|
94
|
+
"f402": "基金折价率",
|
|
95
|
+
"f441": "IOPV实时估值",
|
|
96
|
+
"f297": "数据日期",
|
|
97
|
+
"f124": "更新时间",
|
|
98
|
+
"f13": "market"
|
|
99
|
+
},
|
|
100
|
+
inplace=True,
|
|
101
|
+
)
|
|
102
|
+
temp_df = temp_df[
|
|
103
|
+
[
|
|
104
|
+
"代码",
|
|
105
|
+
"名称",
|
|
106
|
+
"最新价",
|
|
107
|
+
"IOPV实时估值",
|
|
108
|
+
"基金折价率",
|
|
109
|
+
"涨跌额",
|
|
110
|
+
"涨跌幅",
|
|
111
|
+
"成交量",
|
|
112
|
+
"成交额",
|
|
113
|
+
"开盘价",
|
|
114
|
+
"最高价",
|
|
115
|
+
"最低价",
|
|
116
|
+
"昨收",
|
|
117
|
+
"振幅",
|
|
118
|
+
"换手率",
|
|
119
|
+
"量比",
|
|
120
|
+
"委比",
|
|
121
|
+
"外盘",
|
|
122
|
+
"内盘",
|
|
123
|
+
"主力净流入-净额",
|
|
124
|
+
"主力净流入-净占比",
|
|
125
|
+
"超大单净流入-净额",
|
|
126
|
+
"超大单净流入-净占比",
|
|
127
|
+
"大单净流入-净额",
|
|
128
|
+
"大单净流入-净占比",
|
|
129
|
+
"中单净流入-净额",
|
|
130
|
+
"中单净流入-净占比",
|
|
131
|
+
"小单净流入-净额",
|
|
132
|
+
"小单净流入-净占比",
|
|
133
|
+
"现手",
|
|
134
|
+
"买一",
|
|
135
|
+
"卖一",
|
|
136
|
+
"最新份额",
|
|
137
|
+
"流通市值",
|
|
138
|
+
"总市值",
|
|
139
|
+
"数据日期",
|
|
140
|
+
"更新时间",
|
|
141
|
+
"market",
|
|
142
|
+
"上市时间"
|
|
143
|
+
]
|
|
131
144
|
]
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
|
|
160
|
-
|
|
161
|
-
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
|
|
178
|
-
|
|
179
|
-
|
|
180
|
-
|
|
181
|
-
|
|
182
|
-
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
)
|
|
145
|
+
temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce")
|
|
146
|
+
temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce")
|
|
147
|
+
temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce")
|
|
148
|
+
temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce")
|
|
149
|
+
temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce")
|
|
150
|
+
temp_df["开盘价"] = pd.to_numeric(temp_df["开盘价"], errors="coerce")
|
|
151
|
+
temp_df["最高价"] = pd.to_numeric(temp_df["最高价"], errors="coerce")
|
|
152
|
+
temp_df["最低价"] = pd.to_numeric(temp_df["最低价"], errors="coerce")
|
|
153
|
+
temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce")
|
|
154
|
+
temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce")
|
|
155
|
+
temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce")
|
|
156
|
+
temp_df["委比"] = pd.to_numeric(temp_df["委比"], errors="coerce")
|
|
157
|
+
temp_df["外盘"] = pd.to_numeric(temp_df["外盘"], errors="coerce")
|
|
158
|
+
temp_df["内盘"] = pd.to_numeric(temp_df["内盘"], errors="coerce")
|
|
159
|
+
temp_df["流通市值"] = pd.to_numeric(temp_df["流通市值"], errors="coerce")
|
|
160
|
+
temp_df["总市值"] = pd.to_numeric(temp_df["总市值"], errors="coerce")
|
|
161
|
+
temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce")
|
|
162
|
+
temp_df["现手"] = pd.to_numeric(temp_df["现手"], errors="coerce")
|
|
163
|
+
temp_df["买一"] = pd.to_numeric(temp_df["买一"], errors="coerce")
|
|
164
|
+
temp_df["卖一"] = pd.to_numeric(temp_df["卖一"], errors="coerce")
|
|
165
|
+
temp_df["最新份额"] = pd.to_numeric(temp_df["最新份额"], errors="coerce")
|
|
166
|
+
temp_df["IOPV实时估值"] = pd.to_numeric(temp_df["IOPV实时估值"], errors="coerce")
|
|
167
|
+
temp_df["基金折价率"] = pd.to_numeric(temp_df["基金折价率"], errors="coerce")
|
|
168
|
+
temp_df["主力净流入-净额"] = pd.to_numeric(
|
|
169
|
+
temp_df["主力净流入-净额"], errors="coerce"
|
|
170
|
+
)
|
|
171
|
+
temp_df["主力净流入-净占比"] = pd.to_numeric(
|
|
172
|
+
temp_df["主力净流入-净占比"], errors="coerce"
|
|
173
|
+
)
|
|
174
|
+
temp_df["超大单净流入-净额"] = pd.to_numeric(
|
|
175
|
+
temp_df["超大单净流入-净额"], errors="coerce"
|
|
176
|
+
)
|
|
177
|
+
temp_df["超大单净流入-净占比"] = pd.to_numeric(
|
|
178
|
+
temp_df["超大单净流入-净占比"], errors="coerce"
|
|
179
|
+
)
|
|
180
|
+
temp_df["大单净流入-净额"] = pd.to_numeric(
|
|
181
|
+
temp_df["大单净流入-净额"], errors="coerce"
|
|
182
|
+
)
|
|
183
|
+
temp_df["大单净流入-净占比"] = pd.to_numeric(
|
|
184
|
+
temp_df["大单净流入-净占比"], errors="coerce"
|
|
185
|
+
)
|
|
186
|
+
temp_df["中单净流入-净额"] = pd.to_numeric(
|
|
187
|
+
temp_df["中单净流入-净额"], errors="coerce"
|
|
188
|
+
)
|
|
189
|
+
temp_df["中单净流入-净占比"] = pd.to_numeric(
|
|
190
|
+
temp_df["中单净流入-净占比"], errors="coerce"
|
|
191
|
+
)
|
|
192
|
+
temp_df["小单净流入-净额"] = pd.to_numeric(
|
|
193
|
+
temp_df["小单净流入-净额"], errors="coerce"
|
|
194
|
+
)
|
|
195
|
+
temp_df["小单净流入-净占比"] = pd.to_numeric(
|
|
196
|
+
temp_df["小单净流入-净占比"], errors="coerce"
|
|
197
|
+
)
|
|
198
|
+
temp_df["数据日期"] = pd.to_datetime(
|
|
199
|
+
temp_df["数据日期"], format="%Y%m%d", errors="coerce"
|
|
200
|
+
)
|
|
201
|
+
temp_df["更新时间"] = (
|
|
202
|
+
pd.to_datetime(temp_df["更新时间"], unit="s", errors="coerce")
|
|
203
|
+
.dt.tz_localize("UTC")
|
|
204
|
+
.dt.tz_convert("Asia/Shanghai")
|
|
205
|
+
)
|
|
194
206
|
|
|
195
|
-
|
|
207
|
+
return temp_df
|
|
208
|
+
except Exception as e:
|
|
209
|
+
logger.error("获取ETF列表,实时行情异常:{}", e)
|
|
210
|
+
return pd.DataFrame()
|
|
196
211
|
|
|
197
212
|
|
|
198
|
-
def
|
|
199
|
-
|
|
213
|
+
def thread_pool_executor():
|
|
214
|
+
"""
|
|
215
|
+
使用多线程获取所有ETF数据
|
|
216
|
+
"""
|
|
217
|
+
# 计算总页数,假设总共有1000条数据,每页200条
|
|
218
|
+
|
|
219
|
+
per_page = page_number
|
|
220
|
+
total_pages = (max_number + per_page - 1) // per_page # 向上取整
|
|
221
|
+
|
|
222
|
+
# 创建线程池
|
|
223
|
+
with ThreadPoolExecutor(max_workers=3) as executor:
|
|
224
|
+
# 提交任务,获取每页数据
|
|
225
|
+
futures = [executor.submit(get_fund_etf_page_df, pn)
|
|
226
|
+
for pn in range(1, total_pages + 1)]
|
|
227
|
+
|
|
228
|
+
# 收集结果
|
|
229
|
+
results = []
|
|
230
|
+
for future in futures:
|
|
231
|
+
result = future.result()
|
|
232
|
+
if not result.empty:
|
|
233
|
+
results.append(result)
|
|
234
|
+
|
|
235
|
+
# 合并所有页面的数据
|
|
236
|
+
if results:
|
|
237
|
+
return pd.concat(results, ignore_index=True)
|
|
238
|
+
else:
|
|
239
|
+
return pd.DataFrame()
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
def rename_etf(fund_etf_spot_em_df):
|
|
200
243
|
fund_etf_spot_em_df = fund_etf_spot_em_df.rename(columns={
|
|
201
244
|
"上市时间": "list_date",
|
|
202
245
|
"最新价": "now_price",
|
|
@@ -298,13 +341,21 @@ def get_etf_real_time_quotes():
|
|
|
298
341
|
return fund_etf_spot_em_df
|
|
299
342
|
|
|
300
343
|
|
|
344
|
+
def get_etf_real_time_quotes():
|
|
345
|
+
# 获取第一页数据
|
|
346
|
+
page_one_df = get_fund_etf_page_df(1)
|
|
347
|
+
# 数据接口正常返回5600以上的数量
|
|
348
|
+
if page_one_df.shape[0] > min_number:
|
|
349
|
+
page_one_df = rename_etf(page_one_df)
|
|
350
|
+
return page_one_df
|
|
351
|
+
else:
|
|
352
|
+
page_df = thread_pool_executor()
|
|
353
|
+
page_df = rename_etf(page_df)
|
|
354
|
+
return page_df
|
|
355
|
+
|
|
356
|
+
|
|
301
357
|
if __name__ == '__main__':
|
|
302
358
|
fund_etf_df = get_etf_real_time_quotes()
|
|
303
359
|
fund_etf_df = fund_etf_df.sort_values(by=['amount'], ascending=False)
|
|
304
360
|
fund_etf_df = fund_etf_df.fillna(0)
|
|
305
361
|
print(fund_etf_df)
|
|
306
|
-
|
|
307
|
-
import akshare as ak
|
|
308
|
-
|
|
309
|
-
fund_lof_spot_em_df = ak.fund_lof_spot_em()
|
|
310
|
-
print(fund_lof_spot_em_df)
|