mns-common 1.3.1.7__py3-none-any.whl → 1.3.1.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mns-common might be problematic. Click here for more details.
- mns_common/api/em/east_money_stock_api.py +1 -1
- mns_common/api/em/east_money_stock_api_develop.py +217 -0
- mns_common/api/em/east_money_stock_v2_api.py +1 -1
- mns_common/api/us/__init__.py +7 -0
- mns_common/api/us/ths_us_company_info_api.py +9 -0
- mns_common/component/concept/kpl_concept_common_service_api.py +3 -1
- {mns_common-1.3.1.7.dist-info → mns_common-1.3.1.9.dist-info}/METADATA +1 -1
- {mns_common-1.3.1.7.dist-info → mns_common-1.3.1.9.dist-info}/RECORD +10 -7
- {mns_common-1.3.1.7.dist-info → mns_common-1.3.1.9.dist-info}/WHEEL +0 -0
- {mns_common-1.3.1.7.dist-info → mns_common-1.3.1.9.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,217 @@
|
|
|
1
|
+
import sys
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
file_path = os.path.abspath(__file__)
|
|
5
|
+
end = file_path.index('mns') + 14
|
|
6
|
+
project_path = file_path[0:end]
|
|
7
|
+
sys.path.append(project_path)
|
|
8
|
+
import mns_common.utils.data_frame_util as data_frame_util
|
|
9
|
+
import requests
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
import pandas as pd
|
|
13
|
+
from loguru import logger
|
|
14
|
+
import json
|
|
15
|
+
import threading
|
|
16
|
+
|
|
17
|
+
# 定义一个全局锁,用于保护 result 变量的访问
|
|
18
|
+
result_lock = threading.Lock()
|
|
19
|
+
# 初始化 result 变量为一个空的 Pandas DataFrame
|
|
20
|
+
result = pd.DataFrame()
|
|
21
|
+
|
|
22
|
+
MAX_PAGE_NUMBER = 200
|
|
23
|
+
# A股股票数量 todo暂定
|
|
24
|
+
STOCK_NUMBER = 5600
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def sync_real_time_quotes():
|
|
28
|
+
global result
|
|
29
|
+
result = pd.DataFrame() # 重新初始化 result 变量
|
|
30
|
+
threads = []
|
|
31
|
+
page_number = round(STOCK_NUMBER / MAX_PAGE_NUMBER, 0) + 1
|
|
32
|
+
page_number = int(page_number)
|
|
33
|
+
# 创建多个线程来获取数据
|
|
34
|
+
for page in range(page_number): # 0到100页
|
|
35
|
+
thread = threading.Thread(target=all_stock_ticker_data_new, args=(page,))
|
|
36
|
+
threads.append(thread)
|
|
37
|
+
thread.start()
|
|
38
|
+
|
|
39
|
+
# 等待所有线程完成
|
|
40
|
+
for thread in threads:
|
|
41
|
+
thread.join()
|
|
42
|
+
|
|
43
|
+
return result
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
def all_stock_ticker_data_new(page) -> pd.DataFrame:
|
|
47
|
+
global result
|
|
48
|
+
fields = ("f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,f33,f34,f35,f62,f66,f69,f72,f100,"
|
|
49
|
+
"f184,f211,f212"),
|
|
50
|
+
fs = "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048"
|
|
51
|
+
|
|
52
|
+
url = "https://13.push2.eastmoney.com/api/qt/clist/get"
|
|
53
|
+
# url = "https://push2.eastmoney.com/api/qt/clist/get?cb=jQuery112303212778189608789_1645434416300&fid=f62&po=1&pz=6000&pn=1&np=1&fltt=2&invt=2&ut=b2884a393a59ad64002292a3e90d46a5&fs=m%3A0%2Bt%3A6%2Bf%3A!2%2Cm%3A0%2Bt%3A13%2Bf%3A!2%2Cm%3A0%2Bt%3A80%2Bf%3A!2%2Cm%3A1%2Bt%3A2%2Bf%3A!2%2Cm%3A1%2Bt%3A23%2Bf%3A!2%2Cm%3A0%2Bt%3A7%2Bf%3A!2%2Cm%3A1%2Bt%3A3%2Bf%3A!2&fields=f12%2Cf14%2Cf2%2Cf3%2Cf62%2Cf184%2Cf66%2Cf69%2Cf72%2Cf75%2Cf78%2Cf81%2Cf84%2Cf87%2Cf204%2Cf205%2Cf124%2Cf1%2Cf13"
|
|
54
|
+
params = {
|
|
55
|
+
"cb": "jQuery1124046660442520420653_1660036672477",
|
|
56
|
+
"pn": "1",
|
|
57
|
+
"pz": "10000",
|
|
58
|
+
"po": "1",
|
|
59
|
+
"np": str(page),
|
|
60
|
+
"ut": " bd1d9ddb04089700cf9c27f6f7426281",
|
|
61
|
+
"fltt": "2",
|
|
62
|
+
"invt": "2",
|
|
63
|
+
"wbp2u": "|0|0|0|web",
|
|
64
|
+
"fid": "f3",
|
|
65
|
+
"fs": fs,
|
|
66
|
+
"fields": fields,
|
|
67
|
+
"_": 1660036672518
|
|
68
|
+
}
|
|
69
|
+
try:
|
|
70
|
+
r = requests.get(url, params)
|
|
71
|
+
data_text = r.text
|
|
72
|
+
begin_index = data_text.index('[')
|
|
73
|
+
end_index = data_text.index(']')
|
|
74
|
+
data_json = data_text[begin_index:end_index + 1]
|
|
75
|
+
data_json = json.loads(data_json)
|
|
76
|
+
logger.info("页码:{}",page)
|
|
77
|
+
if data_json is None:
|
|
78
|
+
data_df = pd.DataFrame()
|
|
79
|
+
else:
|
|
80
|
+
data_df = pd.DataFrame(data_json)
|
|
81
|
+
with result_lock:
|
|
82
|
+
# 使用锁来保护 result 变量的访问,将每页的数据添加到结果中
|
|
83
|
+
try:
|
|
84
|
+
if data_frame_util.is_not_empty(data_df):
|
|
85
|
+
result = pd.concat([result, data_df], ignore_index=True)
|
|
86
|
+
except BaseException as e:
|
|
87
|
+
logger.error("同步东财实时数据异常:{}", e)
|
|
88
|
+
return None
|
|
89
|
+
except Exception as e:
|
|
90
|
+
logger.error("获取股票列表,实时行情异常:{},{}", e,page)
|
|
91
|
+
return None
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
# f212 卖1
|
|
95
|
+
# f211 买1
|
|
96
|
+
# f31 买1价格
|
|
97
|
+
# "f32" : 卖1价格
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
# 获取所有股票实时行情数据 f33,委比
|
|
101
|
+
def get_real_time_quotes_all_stocks():
|
|
102
|
+
# todo old version
|
|
103
|
+
# stock_ticker_data = all_stock_ticker_data(
|
|
104
|
+
# "f352,f2,f3,f5,f6,f8,f10,f11,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
|
|
105
|
+
# "f33,f34,f35,f62,f66,f69,f72,f100,f184",
|
|
106
|
+
# "m:0+t:6+f:!2,m:0+t:13+f:!2,m:0+t:80+f:!2,m:1+t:2+f:!2,m:1+t:23+f:!2,m:0+t:7+f:!2,m:1+t:3+f:!2")
|
|
107
|
+
|
|
108
|
+
# todo new version
|
|
109
|
+
stock_ticker_data = all_stock_ticker_data_new(
|
|
110
|
+
"f352,f2,f3,f5,f6,f8,f10,f11,f22,f12,f14,f15,f16,f17,f18,f20,f21,f26,"
|
|
111
|
+
"f33,f34,f35,f62,f66,f69,f72,f100,f184,f211,f212",
|
|
112
|
+
"m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048")
|
|
113
|
+
|
|
114
|
+
temp_df = stock_ticker_data.rename(columns={
|
|
115
|
+
"f2": "now_price",
|
|
116
|
+
"f3": "chg",
|
|
117
|
+
"f5": "volume",
|
|
118
|
+
"f6": "amount",
|
|
119
|
+
"f8": "exchange",
|
|
120
|
+
"f10": "quantity_ratio",
|
|
121
|
+
"f22": "up_speed",
|
|
122
|
+
"f11": "up_speed_05",
|
|
123
|
+
"f12": "symbol",
|
|
124
|
+
"f14": "name",
|
|
125
|
+
"f15": "high",
|
|
126
|
+
"f16": "low",
|
|
127
|
+
"f17": "open",
|
|
128
|
+
"f18": "yesterday_price",
|
|
129
|
+
"f20": "total_mv",
|
|
130
|
+
"f21": "flow_mv",
|
|
131
|
+
"f26": "list_date",
|
|
132
|
+
"f33": "wei_bi",
|
|
133
|
+
"f34": "outer_disk",
|
|
134
|
+
"f35": "inner_disk",
|
|
135
|
+
"f62": "today_main_net_inflow",
|
|
136
|
+
"f66": "super_large_order_net_inflow",
|
|
137
|
+
"f69": "super_large_order_net_inflow_ratio",
|
|
138
|
+
"f72": "large_order_net_inflow",
|
|
139
|
+
# "f78": "medium_order_net_inflow",
|
|
140
|
+
# "f84": "small_order_net_inflow",
|
|
141
|
+
"f100": "industry",
|
|
142
|
+
# "f103": "concept",
|
|
143
|
+
"f184": "today_main_net_inflow_ratio",
|
|
144
|
+
"f352": "average_price",
|
|
145
|
+
"f211": "buy_1_num",
|
|
146
|
+
"f212": "sell_1_num"
|
|
147
|
+
})
|
|
148
|
+
temp_df.loc[temp_df['buy_1_num'] == '-', 'buy_1_num'] = 0
|
|
149
|
+
temp_df.loc[temp_df['sell_1_num'] == '-', 'sell_1_num'] = 0
|
|
150
|
+
temp_df.loc[temp_df['up_speed_05'] == '-', 'up_speed_05'] = 0
|
|
151
|
+
temp_df.loc[temp_df['up_speed'] == '-', 'up_speed'] = 0
|
|
152
|
+
temp_df.loc[temp_df['average_price'] == '-', 'average_price'] = 0
|
|
153
|
+
temp_df.loc[temp_df['wei_bi'] == '-', 'wei_bi'] = 0
|
|
154
|
+
temp_df.loc[temp_df['yesterday_price'] == '-', 'yesterday_price'] = 0
|
|
155
|
+
temp_df.loc[temp_df['now_price'] == '-', 'now_price'] = 0
|
|
156
|
+
temp_df.loc[temp_df['chg'] == '-', 'chg'] = 0
|
|
157
|
+
temp_df.loc[temp_df['volume'] == '-', 'volume'] = 0
|
|
158
|
+
temp_df.loc[temp_df['amount'] == '-', 'amount'] = 0
|
|
159
|
+
temp_df.loc[temp_df['exchange'] == '-', 'exchange'] = 0
|
|
160
|
+
temp_df.loc[temp_df['quantity_ratio'] == '-', 'quantity_ratio'] = 0
|
|
161
|
+
temp_df.loc[temp_df['high'] == '-', 'high'] = 0
|
|
162
|
+
temp_df.loc[temp_df['low'] == '-', 'low'] = 0
|
|
163
|
+
temp_df.loc[temp_df['open'] == '-', 'open'] = 0
|
|
164
|
+
temp_df.loc[temp_df['total_mv'] == '-', 'total_mv'] = 0
|
|
165
|
+
temp_df.loc[temp_df['flow_mv'] == '-', 'flow_mv'] = 0
|
|
166
|
+
temp_df.loc[temp_df['inner_disk'] == '-', 'inner_disk'] = 0
|
|
167
|
+
temp_df.loc[temp_df['outer_disk'] == '-', 'outer_disk'] = 0
|
|
168
|
+
temp_df.loc[temp_df['today_main_net_inflow_ratio'] == '-', 'today_main_net_inflow_ratio'] = 0
|
|
169
|
+
temp_df.loc[temp_df['today_main_net_inflow'] == '-', 'today_main_net_inflow'] = 0
|
|
170
|
+
temp_df.loc[temp_df['super_large_order_net_inflow'] == '-', 'super_large_order_net_inflow'] = 0
|
|
171
|
+
temp_df.loc[temp_df['super_large_order_net_inflow_ratio'] == '-', 'super_large_order_net_inflow_ratio'] = 0
|
|
172
|
+
temp_df.loc[temp_df['large_order_net_inflow'] == '-', 'large_order_net_inflow'] = 0
|
|
173
|
+
# temp_df.loc[temp_df['medium_order_net_inflow'] == '-', 'medium_order_net_inflow'] = 0
|
|
174
|
+
# temp_df.loc[temp_df['small_order_net_inflow'] == '-', 'small_order_net_inflow'] = 0
|
|
175
|
+
|
|
176
|
+
temp_df["list_date"] = pd.to_numeric(temp_df["list_date"], errors="coerce")
|
|
177
|
+
temp_df["wei_bi"] = pd.to_numeric(temp_df["wei_bi"], errors="coerce")
|
|
178
|
+
temp_df["average_price"] = pd.to_numeric(temp_df["average_price"], errors="coerce")
|
|
179
|
+
temp_df["yesterday_price"] = pd.to_numeric(temp_df["yesterday_price"], errors="coerce")
|
|
180
|
+
temp_df["now_price"] = pd.to_numeric(temp_df["now_price"], errors="coerce")
|
|
181
|
+
temp_df["chg"] = pd.to_numeric(temp_df["chg"], errors="coerce")
|
|
182
|
+
temp_df["volume"] = pd.to_numeric(temp_df["volume"], errors="coerce")
|
|
183
|
+
temp_df["amount"] = pd.to_numeric(temp_df["amount"], errors="coerce")
|
|
184
|
+
temp_df["exchange"] = pd.to_numeric(temp_df["exchange"], errors="coerce")
|
|
185
|
+
temp_df["quantity_ratio"] = pd.to_numeric(temp_df["quantity_ratio"], errors="coerce")
|
|
186
|
+
temp_df["high"] = pd.to_numeric(temp_df["high"], errors="coerce")
|
|
187
|
+
temp_df["low"] = pd.to_numeric(temp_df["low"], errors="coerce")
|
|
188
|
+
temp_df["open"] = pd.to_numeric(temp_df["open"], errors="coerce")
|
|
189
|
+
temp_df["total_mv"] = pd.to_numeric(temp_df["total_mv"], errors="coerce")
|
|
190
|
+
temp_df["flow_mv"] = pd.to_numeric(temp_df["flow_mv"], errors="coerce")
|
|
191
|
+
temp_df["outer_disk"] = pd.to_numeric(temp_df["outer_disk"], errors="coerce")
|
|
192
|
+
temp_df["inner_disk"] = pd.to_numeric(temp_df["inner_disk"], errors="coerce")
|
|
193
|
+
temp_df["today_main_net_inflow"] = pd.to_numeric(temp_df["today_main_net_inflow"], errors="coerce")
|
|
194
|
+
temp_df["super_large_order_net_inflow"] = pd.to_numeric(temp_df["super_large_order_net_inflow"],
|
|
195
|
+
errors="coerce")
|
|
196
|
+
temp_df["super_large_order_net_inflow_ratio"] = pd.to_numeric(temp_df["super_large_order_net_inflow_ratio"],
|
|
197
|
+
errors="coerce")
|
|
198
|
+
temp_df["large_order_net_inflow"] = pd.to_numeric(temp_df["large_order_net_inflow"],
|
|
199
|
+
errors="coerce")
|
|
200
|
+
# temp_df["medium_order_net_inflow"] = pd.to_numeric(temp_df["medium_order_net_inflow"],
|
|
201
|
+
# errors="coerce")
|
|
202
|
+
# temp_df["small_order_net_inflow"] = pd.to_numeric(temp_df["small_order_net_inflow"], errors="coerce")
|
|
203
|
+
|
|
204
|
+
# 大单比例
|
|
205
|
+
temp_df['large_order_net_inflow_ratio'] = round((temp_df['large_order_net_inflow'] / temp_df['amount']) * 100, 2)
|
|
206
|
+
|
|
207
|
+
# 外盘是内盘倍数
|
|
208
|
+
temp_df['disk_ratio'] = round((temp_df['outer_disk'] - temp_df['inner_disk']) / temp_df['inner_disk'], 2)
|
|
209
|
+
# 只有外盘没有内盘
|
|
210
|
+
temp_df.loc[temp_df["inner_disk"] == 0, ['disk_ratio']] = 1688
|
|
211
|
+
|
|
212
|
+
return temp_df
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
if __name__ == '__main__':
|
|
216
|
+
df = sync_real_time_quotes()
|
|
217
|
+
print(df)
|
|
@@ -10,10 +10,11 @@ mns_common/api/akshare/yjyg_sync_api.py,sha256=cvk50_XhJWUqduOiC15SYvQTCQqECt6td
|
|
|
10
10
|
mns_common/api/em/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
11
11
|
mns_common/api/em/east_money_debt_api.py,sha256=MT82oI3CjVw3Mk8Uh6M0vOHdB4yMz5krLWTj_goBla4,12429
|
|
12
12
|
mns_common/api/em/east_money_etf_api.py,sha256=88-PinW8EhiNg6CSfhF4Ea154PlaQomOYyWd7BVv2Fk,11578
|
|
13
|
-
mns_common/api/em/east_money_stock_api.py,sha256=
|
|
13
|
+
mns_common/api/em/east_money_stock_api.py,sha256=kG4a_xcnQMYPkUec74f_7TtpmNb6GPVS23Xgr4Cq2og,8392
|
|
14
|
+
mns_common/api/em/east_money_stock_api_develop.py,sha256=QpNmXiY6SvJKh1JmHnuFnvfqKEQKm7RaPNK005OePhc,9860
|
|
14
15
|
mns_common/api/em/east_money_stock_gdfx_free_top_10_api.py,sha256=jVy3fNdrkLq3ri7yUwXWt0ItB8LCHzt9CPz91Fj8sPA,9198
|
|
15
16
|
mns_common/api/em/east_money_stock_hk_api.py,sha256=JBMonPLMsz2YwsocCZtwEwtjqQ1fSzfFxKGTdm1fnsQ,9074
|
|
16
|
-
mns_common/api/em/east_money_stock_v2_api.py,sha256=
|
|
17
|
+
mns_common/api/em/east_money_stock_v2_api.py,sha256=Ux9-rW4vY429598_mOcbyupaEJG0gR_AZnqT7mlbL5w,14780
|
|
17
18
|
mns_common/api/em/em_concept_index_api.py,sha256=lbW0emuCSlJ54Sj8o07AuTEfLmNfOPo3Cz4lwWiv4c8,8285
|
|
18
19
|
mns_common/api/em/self_choose/__init__.py,sha256=vAy9qYgUgZL9Y0w3BBbqmZ9zES46pPnlJjO2hdtotp0,2673
|
|
19
20
|
mns_common/api/hk/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
@@ -58,6 +59,8 @@ mns_common/api/ths/wen_cai/ths_wen_cai_api.py,sha256=TiDbKIB57ARrnGb70vSJ7-c7lod
|
|
|
58
59
|
mns_common/api/ths/zt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
59
60
|
mns_common/api/ths/zt/ths_stock_zt_pool_api.py,sha256=GIYdc5J7ZrV25Elbf0n3bBZOc7x4OrlI0jFrO3du8lY,10756
|
|
60
61
|
mns_common/api/ths/zt/ths_stock_zt_pool_v2_api.py,sha256=ohkeXyUSvxie2YqFPxqy9eLAHyFKQ5nx9U0JcR5LKeQ,16349
|
|
62
|
+
mns_common/api/us/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
63
|
+
mns_common/api/us/ths_us_company_info_api.py,sha256=qQjv4F-ovQ2uuu-FlBAnxjvVA7qj9y_x5WZtUoyoEW4,241
|
|
61
64
|
mns_common/component/__init__.py,sha256=8b2PuXJM5fLoq71cWPXp695czQuaRtyR6OVHajGjDPc,161
|
|
62
65
|
mns_common/component/common_service_fun_api.py,sha256=3wlD3FlZ8W5X6indKZIX-ol48xNZX_UmeLnDxP10vvA,5221
|
|
63
66
|
mns_common/component/cache/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
@@ -69,7 +72,7 @@ mns_common/component/company/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALv
|
|
|
69
72
|
mns_common/component/company/company_common_service_api.py,sha256=pqb11v5y0uFWJtqA7K-AMf6hzyrFUq_OVpvr7uaWOow,8252
|
|
70
73
|
mns_common/component/company/company_common_service_new_api.py,sha256=sYJlofNUAa6AhvMvYIl_v1TA9N5ZAYwsoWRddB-9k4A,5585
|
|
71
74
|
mns_common/component/concept/__init__.py,sha256=2U9DiKslxsWwLLEcZKjS8UiQPN1QgALvnK3HiJNIZE0,163
|
|
72
|
-
mns_common/component/concept/kpl_concept_common_service_api.py,sha256=
|
|
75
|
+
mns_common/component/concept/kpl_concept_common_service_api.py,sha256=tagVanuIwcJxBuesFAciiS5kOz7a89gaugnDbp9D0ds,3286
|
|
73
76
|
mns_common/component/concept/ths_concept_common_service_api.py,sha256=yU-DU5gFHYYKNYqhgXpOBC54lsAbcIl7YdyyOFmlpLo,11662
|
|
74
77
|
mns_common/component/cookie/__init__.py,sha256=wEg73KlZo-dU0yKGwpA1C2y6LZm4IBb94tNda1tqLeg,163
|
|
75
78
|
mns_common/component/cookie/cookie_info_service.py,sha256=IIFKj84dnBrUOt2Wl6kbCj-BDdFX_X9z8IIk4LxLNTc,754
|
|
@@ -125,7 +128,7 @@ mns_common/utils/date_handle_util.py,sha256=P4WJUmoDpo4IoCrt2z4keyr7pqXHKmCZBVod
|
|
|
125
128
|
mns_common/utils/db_util.py,sha256=hSmfNAN4vEeEaUva6_cicZEhb2jSnib-Gvk2reke1vc,2590
|
|
126
129
|
mns_common/utils/file_util.py,sha256=egWu6PenGPRp_ixrNTHKarT4dAnOT6FETR82EHUZJnQ,1042
|
|
127
130
|
mns_common/utils/ip_util.py,sha256=UTcYfz_uytB__6nlBf7T-izuI7hi4XdB6ET0sJgEel4,969
|
|
128
|
-
mns_common-1.3.1.
|
|
129
|
-
mns_common-1.3.1.
|
|
130
|
-
mns_common-1.3.1.
|
|
131
|
-
mns_common-1.3.1.
|
|
131
|
+
mns_common-1.3.1.9.dist-info/METADATA,sha256=IgQWqYwszCgiU72bJR1Mm1kv3ifvTHX2UZu0e4Hgxhw,61
|
|
132
|
+
mns_common-1.3.1.9.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
133
|
+
mns_common-1.3.1.9.dist-info/top_level.txt,sha256=ZC58kAR-8Hvc6U2xhYNBNLAh3mb6sZazbdj5nZpvEkQ,11
|
|
134
|
+
mns_common-1.3.1.9.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|