mmgp 3.5.7__py3-none-any.whl → 3.6.11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,498 @@
1
+ from __future__ import annotations
2
+ import json, re, inspect
3
+ from types import SimpleNamespace
4
+ from typing import Dict, Optional, Tuple, Union, Iterable, Callable
5
+
6
+ import torch
7
+ from safetensors.torch import safe_open, save_file
8
+
9
+ # ---------- Constants ----------
10
+ DATA_SUFFIX = "._data"
11
+ SCALE_SUFFIX = "._scale" # per-channel, shape [out, 1, ...]
12
+ IN_SCALE = ".input_scale" # 1-D placeholder tensor [1]
13
+ OUT_SCALE = ".output_scale" # 1-D placeholder tensor [1]
14
+
15
+ _QTYPE_NAME = {
16
+ "e4m3fn": "qfloat8_e4m3fn",
17
+ "e5m2": "qfloat8_e5m2",
18
+ "auto": "qfloat8",
19
+ }
20
+
21
+ _SCALE_META_KEYS = (
22
+ "fp8_scale_map", "fp8.scale_map", "scale_map",
23
+ "quant_scale_map", "weights_scales", "scales",
24
+ )
25
+
26
+ _DTYPE_ALIASES = {
27
+ "float32": torch.float32, "fp32": torch.float32,
28
+ "bfloat16": torch.bfloat16, "bf16": torch.bfloat16,
29
+ "float16": torch.float16, "fp16": torch.float16, "half": torch.float16,
30
+ }
31
+
32
+ def _is_weight_key(k: str) -> bool:
33
+ return k.endswith(".weight")
34
+
35
+ # ---------- Accessors (unify file vs dict) ----------
36
+ class Accessor:
37
+ def keys(self) -> Iterable[str]: ...
38
+ def get_tensor(self, key: str) -> torch.Tensor: ...
39
+ def metadata(self) -> Dict[str, str]: ...
40
+ def has(self, key: str) -> bool: ... # NEW
41
+ def can_delete(self) -> bool: return False
42
+ def delete(self, key: str) -> None: raise NotImplementedError
43
+
44
+ class FileAccessor(Accessor):
45
+ def __init__(self, path: str):
46
+ self._fh = safe_open(path, framework="pt")
47
+ self._keys = list(self._fh.keys())
48
+ self._keys_set = set(self._keys) # O(1) membership
49
+ self._meta = self._fh.metadata() or {}
50
+ def keys(self) -> Iterable[str]: return self._keys
51
+ def has(self, key: str) -> bool: return key in self._keys_set
52
+ def get_tensor(self, key: str) -> torch.Tensor: return self._fh.get_tensor(key)
53
+ def metadata(self) -> Dict[str, str]: return self._meta
54
+ def close(self) -> None: self._fh.close()
55
+
56
+ class DictAccessor(Accessor):
57
+ def __init__(self, sd: Dict[str, torch.Tensor], meta: Optional[Dict[str, str]] = None,
58
+ in_place: bool = False, free_cuda_cache: bool = False, cuda_cache_interval: int = 32):
59
+ self.sd = sd
60
+ self._meta = meta or {}
61
+ self._in_place = in_place
62
+ self._free = free_cuda_cache
63
+ self._interval = int(cuda_cache_interval)
64
+ self._deletions = 0
65
+ def keys(self) -> Iterable[str]: return list(self.sd.keys())
66
+ def has(self, key: str) -> bool: return key in self.sd # dict membership = O(1)
67
+ def get_tensor(self, key: str) -> torch.Tensor: return self.sd[key]
68
+ def metadata(self) -> Dict[str, str]: return self._meta
69
+ def can_delete(self) -> bool: return self._in_place
70
+ def delete(self, key: str) -> None:
71
+ if key in self.sd:
72
+ self.sd.pop(key, None)
73
+ self._deletions += 1
74
+ if self._free and (self._deletions % self._interval == 0) and torch.cuda.is_available():
75
+ torch.cuda.empty_cache()
76
+ def _as_accessor(src: Union[str, Dict[str, torch.Tensor]], **dict_opts) -> Tuple[Accessor, Callable[[], None]]:
77
+ if isinstance(src, str):
78
+ acc = FileAccessor(src)
79
+ return acc, acc.close
80
+ acc = DictAccessor(src, **dict_opts)
81
+ return acc, (lambda: None)
82
+
83
+ # ---------- Shared helpers ----------
84
+ def _normalize_scale_dtype(scale_dtype: Union[str, torch.dtype]) -> torch.dtype:
85
+ if isinstance(scale_dtype, torch.dtype):
86
+ return scale_dtype
87
+ key = str(scale_dtype).lower()
88
+ if key not in _DTYPE_ALIASES:
89
+ raise ValueError(f"scale_dtype must be one of {list(_DTYPE_ALIASES.keys())} or a torch.dtype")
90
+ return _DTYPE_ALIASES[key]
91
+
92
+ def _json_to_dict(s: str) -> Optional[Dict]:
93
+ # Strictly catch JSON decoding only
94
+ try:
95
+ return json.loads(s)
96
+ except json.JSONDecodeError:
97
+ return None
98
+
99
+ def _maybe_parse_scale_map(meta: Dict[str, str]) -> Optional[Dict[str, float]]:
100
+ def try_parse(obj) -> Optional[Dict[str, float]]:
101
+ if not isinstance(obj, dict):
102
+ return None
103
+ out: Dict[str, float] = {}
104
+ for wk, v in obj.items():
105
+ if isinstance(v, (int, float)):
106
+ out[wk] = float(v)
107
+ elif isinstance(v, dict) and "scale" in v:
108
+ sc = v["scale"]
109
+ if isinstance(sc, (int, float)):
110
+ out[wk] = float(sc)
111
+ elif isinstance(sc, (list, tuple)) and len(sc) == 1 and isinstance(sc[0], (int, float)):
112
+ out[wk] = float(sc[0])
113
+ if out:
114
+ return out
115
+ for sub in ("weights", "tensors", "params", "map"):
116
+ subobj = obj.get(sub)
117
+ if isinstance(subobj, dict):
118
+ got = try_parse(subobj)
119
+ if got:
120
+ return got
121
+ return None
122
+
123
+ # exact keys first
124
+ for k in _SCALE_META_KEYS:
125
+ raw = meta.get(k)
126
+ if isinstance(raw, str) and raw.startswith("{") and raw.endswith("}"):
127
+ parsed = _json_to_dict(raw)
128
+ if parsed:
129
+ got = try_parse(parsed)
130
+ if got:
131
+ return got
132
+
133
+ # loose scan of any JSON-looking value
134
+ for v in meta.values():
135
+ if isinstance(v, str) and v.startswith("{") and v.endswith("}"):
136
+ parsed = _json_to_dict(v)
137
+ if parsed:
138
+ got = try_parse(parsed)
139
+ if got:
140
+ return got
141
+ return None
142
+
143
+ def _quick_fp8_variant_from_sentinel(acc: Accessor) -> Optional[str]:
144
+ if "scaled_fp8" in set(acc.keys()):
145
+ dt = acc.get_tensor("scaled_fp8").dtype
146
+ if dt == torch.float8_e4m3fn: return "e4m3fn"
147
+ if dt == torch.float8_e5m2: return "e5m2"
148
+ return None
149
+
150
+ def _per_channel_reshape(vec: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
151
+ return vec.view(weight.shape[0], *([1] * (weight.ndim - 1)))
152
+
153
+ # ---------- Unified converter ----------
154
+ class ConvertResult(Dict[str, object]):
155
+ @property
156
+ def state_dict(self) -> Dict[str, torch.Tensor]: return self["state_dict"] # type: ignore
157
+ @property
158
+ def quant_map(self) -> Dict[str, Dict]: return self["quant_map"] # type: ignore
159
+ @property
160
+ def fp8_format(self) -> str: return self["fp8_format"] # type: ignore
161
+ @property
162
+ def patch_needed(self) -> bool: return self["patch_needed"] # type: ignore
163
+
164
+ def convert_scaled_fp8_to_quanto(
165
+ src: Union[str, Dict[str, torch.Tensor]],
166
+ *,
167
+ fp8_format: Optional[str] = None, # 'e4m3fn' | 'e5m2' | None (auto)
168
+ require_scale: bool = False,
169
+ allow_default_scale: bool = True,
170
+ default_missing_scale: float = 1.0,
171
+ dtype: Union[str, torch.dtype] = "float32",
172
+ add_activation_placeholders: bool = True,
173
+ # dict mode options
174
+ sd_metadata: Optional[Dict[str, str]] = None,
175
+ in_place: bool = False,
176
+ free_cuda_cache: bool = False,
177
+ cuda_cache_interval: int = 32,
178
+ ) -> ConvertResult:
179
+ sd_scale_dtype = _normalize_scale_dtype(dtype)
180
+ patch_needed = (sd_scale_dtype == torch.float32)
181
+
182
+ acc, closer = _as_accessor(
183
+ src,
184
+ meta=sd_metadata,
185
+ in_place=in_place,
186
+ free_cuda_cache=free_cuda_cache,
187
+ cuda_cache_interval=cuda_cache_interval,
188
+ )
189
+ if not acc.can_delete(): in_place = False
190
+ try:
191
+ meta = acc.metadata() or {}
192
+ meta_scale_map = _maybe_parse_scale_map(meta) or {}
193
+
194
+ keys = list(acc.keys())
195
+
196
+ # FP8 variant: sentinel -> first FP8 weight -> 'auto'
197
+ fmt = fp8_format or _quick_fp8_variant_from_sentinel(acc)
198
+ if fmt is None:
199
+ for wk in keys:
200
+ if not _is_weight_key(wk): continue
201
+ dt = acc.get_tensor(wk).dtype
202
+ if dt == torch.float8_e4m3fn: fmt = "e4m3fn"; break
203
+ if dt == torch.float8_e5m2: fmt = "e5m2"; break
204
+ if fmt is None: fmt = "auto"
205
+
206
+ # Map '<base>.scale_weight' -> '<base>.weight'
207
+ scale_weight_map: Dict[str, str] = {}
208
+ for sk in keys:
209
+ if sk.endswith(".scale_weight"):
210
+ base = sk[: -len(".scale_weight")]
211
+ wk = base + ".weight"
212
+ if wk in keys:
213
+ scale_weight_map[wk] = sk
214
+
215
+ def get_scale_vec_for_weight(wk: str, out_ch: int) -> Optional[torch.Tensor]:
216
+ # 1) explicit tensor
217
+ sk = scale_weight_map.get(wk)
218
+ if sk is not None:
219
+ s_t = acc.get_tensor(sk).to(torch.float32)
220
+ if in_place: acc.delete(s_t)
221
+ if s_t.numel() == 1:
222
+ return torch.full((out_ch,), float(s_t.item()), dtype=torch.float32)
223
+ if s_t.numel() == out_ch:
224
+ return s_t.reshape(out_ch)
225
+ if torch.numel(s_t.unique()) == 1:
226
+ return torch.full((out_ch,), float(s_t.view(-1)[0].item()), dtype=torch.float32)
227
+ raise ValueError(f"Unexpected scale length for '{wk}': {s_t.numel()} (out_ch={out_ch})")
228
+ # 2) metadata exact / normalized
229
+ if wk in meta_scale_map:
230
+ return torch.full((out_ch,), float(meta_scale_map[wk]), dtype=torch.float32)
231
+ for alt in (wk.replace("model.", ""), re.sub(r"(^|\.)weight$", "", wk)):
232
+ if alt in meta_scale_map:
233
+ return torch.full((out_ch,), float(meta_scale_map[alt]), dtype=torch.float32)
234
+ return None
235
+
236
+ out_sd: Dict[str, torch.Tensor] = {}
237
+ qmap: Dict[str, Dict] = {}
238
+
239
+ # Single pass: rewrite FP8 weights, copy-through others
240
+ for k in keys:
241
+ # Drop source-only artifacts
242
+ if k == "scaled_fp8" or k.endswith(".scale_weight") :
243
+ continue
244
+
245
+ t = acc.get_tensor(k)
246
+ if in_place: acc.delete(k)
247
+ if _is_weight_key(k) and t.dtype in (torch.float8_e4m3fn, torch.float8_e5m2):
248
+ # Quantized: keep original FP8 tensor as _data
249
+ out_sd[k + DATA_SUFFIX] = t
250
+
251
+ out_ch = int(t.shape[0])
252
+ s_vec = get_scale_vec_for_weight(k, out_ch)
253
+ if s_vec is None:
254
+ if require_scale and not allow_default_scale:
255
+ raise KeyError(f"No scale found for '{k}' (looked for '.scale_weight' and metadata).")
256
+ s_vec = torch.full((out_ch,), float(default_missing_scale), dtype=torch.float32)
257
+
258
+ s_grid = _per_channel_reshape(s_vec, t).to(sd_scale_dtype)
259
+ out_sd[k + SCALE_SUFFIX] = s_grid
260
+
261
+ if add_activation_placeholders:
262
+ base = k[:-len(".weight")]
263
+ out_sd[base + IN_SCALE] = torch.tensor([1], dtype=sd_scale_dtype)
264
+ out_sd[base + OUT_SCALE] = torch.tensor([1], dtype=sd_scale_dtype)
265
+
266
+ base = k[:-len(".weight")]
267
+ qmap[base] = {"weights": _QTYPE_NAME[fmt], "activations": "none"}
268
+ else:
269
+ out_sd[k] = t if t.dtype == dtype or t.dtype == torch.float32 else t.to(dtype)
270
+ t = None
271
+ return ConvertResult(state_dict=out_sd, quant_map=qmap, fp8_format=fmt, patch_needed=patch_needed)
272
+ finally:
273
+ closer()
274
+
275
+ def detect_safetensors_format(
276
+ src: Union[str, Dict[str, torch.Tensor]],
277
+ *,
278
+ sd_metadata: Optional[Dict[str, str]] = None,
279
+ probe_weights: bool = False, # if True, we may read up to 2 weights total
280
+ with_hints: bool = False,
281
+ ) -> Dict[str, str]:
282
+ """
283
+ Returns:
284
+ {
285
+ 'kind': 'quanto' | 'scaled_fp8' | 'fp8' | 'none',
286
+ 'quant_format': 'qfloat8_e4m3fn' | 'qfloat8_e5m2' | 'qfloat8' | 'qint8' | 'qint4' | 'unknown' | '',
287
+ 'fp8_format': 'e4m3fn' | 'e5m2' | 'unknown' | '',
288
+ 'hint': '...' # only when with_hints=True
289
+ }
290
+ """
291
+ acc, closer = _as_accessor(src, meta=sd_metadata, in_place=False)
292
+ try:
293
+ # --- O(1) sentinel test up-front (no key scan) ---
294
+ if acc.has("scaled_fp8"):
295
+ dt = acc.get_tensor("scaled_fp8").dtype
296
+ fp8_fmt = "e4m3fn" if dt == torch.float8_e4m3fn else ("e5m2" if dt == torch.float8_e5m2 else "unknown")
297
+ out = {"kind": "scaled_fp8", "quant_format": "", "fp8_format": fp8_fmt}
298
+ if with_hints: out["hint"] = "sentinel"
299
+ return out
300
+
301
+ # --- Single pass over keys (no re-scans) ---
302
+ ks = list(acc.keys())
303
+ has_scale_weight = False
304
+ saw_quanto_data = False
305
+ fp8_variant = None
306
+ fp8_probe_budget = 2 if probe_weights else 1
307
+
308
+ for k in ks:
309
+ # Quanto pack short-circuit
310
+ if not saw_quanto_data and k.endswith(DATA_SUFFIX):
311
+ saw_quanto_data = True
312
+ # we can break here, but keep minimal state setting uniformity
313
+ break
314
+
315
+ if saw_quanto_data:
316
+ out = {"kind": "quanto", "quant_format": "qfloat8", "fp8_format": ""}
317
+ if with_hints: out["hint"] = "keys:*._data"
318
+ return out
319
+
320
+ # continue single pass for the rest (scale keys + bounded dtype probe)
321
+ for k in ks:
322
+ if not has_scale_weight and k.endswith(".scale_weight"):
323
+ has_scale_weight = True
324
+ # don't return yet; we may still probe a dtype to grab variant
325
+
326
+ if fp8_probe_budget > 0 and _is_weight_key(k):
327
+ dt = acc.get_tensor(k).dtype
328
+ if dt == torch.float8_e4m3fn:
329
+ fp8_variant = "e4m3fn"; fp8_probe_budget -= 1
330
+ elif dt == torch.float8_e5m2:
331
+ fp8_variant = "e5m2"; fp8_probe_budget -= 1
332
+
333
+ if has_scale_weight:
334
+ out = {"kind": "scaled_fp8", "quant_format": "", "fp8_format": fp8_variant or "unknown"}
335
+ if with_hints: out["hint"] = "scale_weight keys"
336
+ return out
337
+
338
+ if fp8_variant is not None:
339
+ out = {"kind": "fp8", "quant_format": "", "fp8_format": fp8_variant}
340
+ if with_hints: out["hint"] = "weight dtype (plain fp8)"
341
+ return out
342
+
343
+ # --- Cheap metadata peek only if keys didn't decide it (no JSON parsing) ---
344
+ meta = acc.metadata() or {}
345
+ blob = " ".join(v for v in meta.values() if isinstance(v, str)).lower()
346
+
347
+ # scaled-fp8 hinted by metadata only
348
+ has_scale_map = (
349
+ any(k in meta for k in _SCALE_META_KEYS) or
350
+ (("scale" in blob) and (("fp8" in blob) or ("float8" in blob)))
351
+ )
352
+ if has_scale_map:
353
+ fmt = "e4m3fn" if "e4m3" in blob else ("e5m2" if "e5m2" in blob else "unknown")
354
+ out = {"kind": "scaled_fp8", "quant_format": "", "fp8_format": fmt}
355
+ if with_hints: out["hint"] = "metadata"
356
+ return out
357
+
358
+ # quanto hinted by metadata only (not decisive without keys)
359
+ qtype_hint = ""
360
+ for tok in ("qfloat8_e4m3fn", "qfloat8_e5m2", "qfloat8", "qint8", "qint4"):
361
+ if tok in blob:
362
+ qtype_hint = tok
363
+ break
364
+
365
+ out = {"kind": "none", "quant_format": qtype_hint, "fp8_format": ""}
366
+ if with_hints: out["hint"] = "no decisive keys"
367
+ return out
368
+
369
+ finally:
370
+ closer()
371
+
372
+ # ---------- Optional Quanto runtime patch (FP32-scale support), enable/disable ----------
373
+ _patch_state = SimpleNamespace(enabled=False, orig=None, scale_index=None)
374
+
375
+ def enable_fp8_fp32_scale_support():
376
+ """
377
+ Version-robust wrapper for WeightQBytesTensor.create:
378
+ - matches both positional/keyword call styles via *args/**kwargs,
379
+ - for FP8 + FP32 scales, expands scalar/uniform scales with a VIEW to the needed length,
380
+ - leaves bf16/fp16 (classic Quanto) untouched.
381
+ Enable only if you emitted float32 scales.
382
+ """
383
+ if _patch_state.enabled:
384
+ return True
385
+
386
+ from optimum.quanto.tensor.weights import qbytes as _qbytes # late import
387
+ orig = _qbytes.WeightQBytesTensor.create
388
+ sig = inspect.signature(orig)
389
+ params = list(sig.parameters.keys())
390
+ scale_index = params.index("scale") if "scale" in params else 5 # fallback
391
+
392
+ def wrapper(*args, **kwargs):
393
+ # Extract fields irrespective of signature
394
+ qtype = kwargs.get("qtype", args[0] if len(args) > 0 else None)
395
+ axis = kwargs.get("axis", args[1] if len(args) > 1 else None)
396
+ size = kwargs.get("size", args[2] if len(args) > 2 else None)
397
+
398
+ if "scale" in kwargs:
399
+ scale = kwargs["scale"]
400
+ def set_scale(new): kwargs.__setitem__("scale", new)
401
+ else:
402
+ scale = args[scale_index] if len(args) > scale_index else None
403
+ def set_scale(new):
404
+ nonlocal args
405
+ args = list(args)
406
+ if len(args) > scale_index:
407
+ args[scale_index] = new
408
+ else:
409
+ kwargs["scale"] = new
410
+ args = tuple(args)
411
+
412
+ is_fp8 = isinstance(qtype, str) and ("float8" in qtype.lower() or "qfloat8" in qtype.lower()) or \
413
+ (not isinstance(qtype, str) and "float8" in str(qtype).lower())
414
+
415
+ if is_fp8 and isinstance(scale, torch.Tensor) and scale.dtype == torch.float32:
416
+ need = int(size[axis]) if (isinstance(size, (tuple, list)) and axis is not None and axis >= 0) else None
417
+ if need is not None:
418
+ if scale.numel() == 1:
419
+ scale = scale.view(1).expand(need, *scale.shape[1:])
420
+ elif scale.shape[0] != need:
421
+ # Expand if uniform; otherwise raise
422
+ uniform = (scale.numel() == 1) or (torch.numel(scale.unique()) == 1)
423
+ if uniform:
424
+ scale = scale.reshape(1, *scale.shape[1:]).expand(need, *scale.shape[1:])
425
+ else:
426
+ raise ValueError(f"Scale leading dim {scale.shape[0]} != required {need}")
427
+ set_scale(scale)
428
+
429
+ return orig(*args, **kwargs)
430
+
431
+ _qbytes.WeightQBytesTensor.create = wrapper
432
+ _patch_state.enabled = True
433
+ _patch_state.orig = orig
434
+ _patch_state.scale_index = scale_index
435
+ return True
436
+
437
+ def disable_fp8_fp32_scale_support():
438
+ """Restore Quanto's original factory."""
439
+ if not _patch_state.enabled:
440
+ return False
441
+ from optimum.quanto.tensor.weights import qbytes as _qbytes
442
+ _qbytes.WeightQBytesTensor.create = _patch_state.orig
443
+ _patch_state.enabled = False
444
+ _patch_state.orig = None
445
+ _patch_state.scale_index = None
446
+ return True
447
+
448
+ # ---------- Tiny CLI (optional) ----------
449
+ def _cli():
450
+ import argparse, json as _json
451
+ p = argparse.ArgumentParser("fp8_quanto_bridge")
452
+ sub = p.add_subparsers(dest="cmd", required=True)
453
+
454
+ p_conv = sub.add_parser("convert", help="Convert scaled-FP8 (file) to Quanto artifacts.")
455
+ p_conv.add_argument("in_path")
456
+ p_conv.add_argument("out_weights")
457
+ p_conv.add_argument("out_qmap")
458
+ p_conv.add_argument("--fp8-format", choices=("e4m3fn", "e5m2"), default=None)
459
+ p_conv.add_argument("--scale-dtype", default="float32",
460
+ choices=("float32","bfloat16","float16","fp32","bf16","fp16","half"))
461
+ p_conv.add_argument("--no-activation-placeholders", action="store_true")
462
+ p_conv.add_argument("--default-missing-scale", type=float, default=1.0)
463
+
464
+ p_det = sub.add_parser("detect", help="Detect format quickly (path).")
465
+ p_det.add_argument("path")
466
+ p_det.add_argument("--probe", action="store_true")
467
+ p_det.add_argument("--hints", action="store_true")
468
+
469
+ p_patch = sub.add_parser("patch", help="Enable/disable FP32-scale runtime patch.")
470
+ p_patch.add_argument("mode", choices=("enable","disable"))
471
+
472
+ args = p.parse_args()
473
+
474
+ if args.cmd == "convert":
475
+ res = convert_scaled_fp8_to_quanto(
476
+ args.in_path,
477
+ fp8_format=args.fp8_format,
478
+ dtype=args.scale_dtype,
479
+ add_activation_placeholders=not args.no_activation_placeholders,
480
+ default_missing_scale=args.default_missing_scale,
481
+ )
482
+ save_file(res.state_dict, args.out_weights)
483
+ with open(args.out_qmap, "w") as f:
484
+ _json.dump(res.quant_map, f)
485
+ print(f"Wrote: {args.out_weights} and {args.out_qmap}. Patch needed: {res.patch_needed}")
486
+ return 0
487
+
488
+ if args.cmd == "detect":
489
+ info = detect_safetensors_format(args.path, probe_weights=args.probe, with_hints=args.hints)
490
+ print(info); return 0
491
+
492
+ if args.cmd == "patch":
493
+ ok = enable_fp8_fp32_scale_support() if args.mode == "enable" else disable_fp8_fp32_scale_support()
494
+ print(f"patch {args.mode}: {'ok' if ok else 'already in that state'}")
495
+ return 0
496
+
497
+ if __name__ == "__main__":
498
+ raise SystemExit(_cli())