mmgp 1.0.6__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mmgp might be problematic. Click here for more details.

__init__.py ADDED
File without changes
@@ -0,0 +1,2 @@
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
@@ -0,0 +1,109 @@
1
+ Metadata-Version: 2.1
2
+ Name: mmgp
3
+ Version: 1.2.0
4
+ Summary: Memory Management for the GPU Poor
5
+ Author-email: deepbeepmeep <deepbeepmeep@yahoo.com>
6
+ License: GNU GENERAL PUBLIC LICENSE
7
+ Version 3, 29 June 2007
8
+ Requires-Python: >=3.10
9
+ Description-Content-Type: text/markdown
10
+ License-File: LICENSE.md
11
+ Requires-Dist: torch>=2.1.0
12
+ Requires-Dist: optimum-quanto
13
+
14
+
15
+ <p align="center">
16
+ <H2>Memory Management for the GPU Poor by DeepBeepMeep</H2>
17
+ </p>
18
+
19
+
20
+ This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... can run smoothly on a 24 GB GPU limited card.
21
+ This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
22
+ times in a pipe (eg VAE).
23
+
24
+ Requirements:
25
+ - GPU: RTX 3090/ RTX 4090 (24 GB of VRAM)
26
+ - RAM: minimum 48 GB, recommended 64 GB
27
+
28
+ ## Usage
29
+ First you need to install the module in your current project with:
30
+ ```shell
31
+ pip install mmgp
32
+ ```
33
+
34
+ It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
35
+ 1) First make sure that the pipeline explictly loads the models in the CPU device, for instance:
36
+ ```
37
+ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
38
+ ```
39
+
40
+ 2) Once every potential Lora has been loaded and merged, add the following lines:
41
+
42
+ ```
43
+ from mmgp import offload
44
+ offload.all(pipe)
45
+ ```
46
+
47
+ ## Options
48
+ The 'transformer' model in the pipe contains usually the video or image generator is quantized on the fly by default to 8 bits. If you want to save time on disk and reduce the loading time, you may want to load directly a prequantized model. In that case you need to set the option *quantizeTransformer* to *False* to turn off on the fly quantization.
49
+
50
+ You can specify a list of additional models string ids to quantize (for instance the text_encoder) using the optional argument *modelsToQuantize* for instance *modelsToQuantize = ["text_encoder_2"]*.This may be useful if you have less than 48 GB of RAM.
51
+
52
+ Note that there is little advantage on the GPU / VRAM side to quantize text encoders as their inputs are usually quite light.
53
+
54
+ Conversely if you have more than 64GB of RAM you may want to enable RAM pinning with the option *pinInRAM = True*. You will get in return super fast loading / unloading of models
55
+ (this can save significant time if the same pipeline is run multiple times in a row)
56
+
57
+ In Summary, if you have:
58
+ - Between 32 GB and 48 GB of RAM
59
+ ```
60
+ offload.all(pipe, modelsToQuantize = ["text_encoder_2"]) # for Flux models
61
+ #OR
62
+ offload.all(pipe, modelsToQuantize = ["text_encoder"]) # for HunyuanVideo models
63
+
64
+ ```
65
+
66
+ - Between 48 GB and 64 GB of RAM
67
+ ```
68
+ offload.all(pipe)
69
+ ```
70
+ - More than 64 GB of RAM
71
+ ```
72
+ offload.all(pipe), pinInRAM = True
73
+ ```
74
+
75
+ ## Special
76
+ Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models.\
77
+ For instance :
78
+
79
+
80
+ - for flux derived models:
81
+ ```
82
+ pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
83
+ ```
84
+ - for mochi:
85
+ ```
86
+ pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
87
+ ```
88
+
89
+
90
+ Please note that there should be always one model whose Id is 'transformer'. It corresponds to the main image / video model which usually needs to be quantized (this is done on the fly by default when loading the model).
91
+
92
+ Becareful, lots of models use the T5 XXL as a text encoder. However, quite often their corresponding pipeline configurations point at the official Google T5 XXL repository
93
+ where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
94
+ I suggest you use instead one of the 16 bits encoder only version available around, for instance:
95
+ ```
96
+ text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
97
+ ```
98
+
99
+ Sometime just providing the pipe won't be sufficient as you will need to change the content of the core model:
100
+ - For instance you may need to disable an existing CPU offload logic that already exists (such as manual calls to move tensors between cuda and the cpu)
101
+ - mmpg to tries to fake the device as being "cuda" but sometimes some code won't be fooled and it will create tensors in the cpu device and this may cause some issues.
102
+
103
+ You are free to use my module for non commercial use as long you give me proper credits. You may contact me on twitter @deepbeepmeep
104
+
105
+ Thanks to
106
+ ---------
107
+ - Huggingface / accelerate for the hooking examples
108
+ - Huggingface / quanto for their very useful quantizer
109
+ - gau-nernst for his Pinnig RAM samples
@@ -0,0 +1,7 @@
1
+ __init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ mmgp.py,sha256=IijgE22bUPl98VvXwoC1qngmkdWU11YXjkiksp8o1hY,21418
3
+ mmgp-1.2.0.dist-info/LICENSE.md,sha256=HjzvY2grdtdduZclbZ46B2M-XpT4MDCxFub5ZwTWq2g,93
4
+ mmgp-1.2.0.dist-info/METADATA,sha256=jRXi-iNZ_3zNNVxMC1qmVDd7ylq8kAr5Y5FgYyBvVh4,4897
5
+ mmgp-1.2.0.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
6
+ mmgp-1.2.0.dist-info/top_level.txt,sha256=waGaepj2qVfnS2yAOkaMu4r9mJaVjGbEi6AwOUogU_U,14
7
+ mmgp-1.2.0.dist-info/RECORD,,
@@ -0,0 +1,2 @@
1
+ __init__
2
+ mmgp
mmgp.py ADDED
@@ -0,0 +1,421 @@
1
+ # ------------------ Memory Management for the GPU Poor by DeepBeepMeep (mmgp)------------------
2
+ #
3
+ # This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... can run smoothly on a 24 GB GPU limited card.
4
+ # This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several
5
+ # times in a pipe (eg VAE).
6
+ #
7
+ # Requirements:
8
+ # - GPU: RTX 3090/ RTX 4090 (24 GB of VRAM)
9
+ # - RAM: minimum 48 GB, recommended 64 GB
10
+ #
11
+ # It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
12
+ # 1) First make sure that the pipeline explictly loads the models in the CPU device
13
+ # for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
14
+ # 2) Once every potential Lora has been loaded and merged, add the following lines:
15
+ # from mmgp import offload
16
+ # offload.all(pipe)
17
+ # The 'transformer' model that contains usually the video or image generator is quantized on the fly by default to 8 bits so that it can fit into 24 GB of VRAM.
18
+ # If you want to save time on disk and reduce the loading time, you may want to load directly a prequantized model. In that case you need to set the option quantizeTransformer to False to turn off on the fly quantization.
19
+ # You can specify a list of additional models string ids to quantize (for instance the text_encoder) using the optional argument modelsToQuantize. This may be useful if you have less than 48 GB of RAM.
20
+ # Note that there is little advantage on the GPU / VRAM side to quantize text encoders as their inputs are usually quite light.
21
+ # Conversely if you have more than 64GB RAM you may want to enable RAM pinning with the option pinInRAM = True. You will get in return super fast loading / unloading of models
22
+ # (this can save significant time if the same pipeline is run multiple times in a row)
23
+ #
24
+ # Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models.
25
+ #
26
+ # For instance :
27
+ # for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
28
+ # for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
29
+ #
30
+ # Please note that there should be always one model whose Id is 'transformer'. It corresponds to the main image / video model which usually needs to be quantized (this is done on the fly by default when loading the model)
31
+ #
32
+ # Becareful, lots of models use the T5 XXL as a text encoder. However, quite often their corresponding pipeline configurations point at the official Google T5 XXL repository
33
+ # where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
34
+ # I suggest you use instead one of the 16 bits encoder only version available around, for instance:
35
+ # text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
36
+ #
37
+ # Sometime just providing the pipe won't be sufficient as you will need to change the content of the core model:
38
+ # - For instance you may need to disable an existing CPU offload logic that already exists (such as manual calls to move tensors between cuda and the cpu)
39
+ # - mmpg to tries to fake the device as being "cuda" but sometimes some code won't be fooled and it will create tensors in the cpu device and this may cause some issues.
40
+ #
41
+ # You are free to use my module for non commercial use as long you give me proper credits. You may contact me on twitter @deepbeepmeep
42
+ #
43
+ # Thanks to
44
+ # ---------
45
+ # Huggingface / accelerate for the hooking examples
46
+ # Huggingface / quanto for their very useful quantizer
47
+ # gau-nernst for his Pinnig RAM samples
48
+
49
+
50
+ #
51
+ import torch
52
+ #
53
+ import gc
54
+ import time
55
+ import functools
56
+ from optimum.quanto import freeze, qfloat8, qint8, quantize, QModuleMixin, QTensor
57
+
58
+
59
+
60
+ cotenants_map = {
61
+ "text_encoder": ["vae", "text_encoder_2"],
62
+ "text_encoder_2": ["vae", "text_encoder"],
63
+ }
64
+
65
+ # useful functions to move a group of tensors (to design custom offload patches)
66
+ def move_tensors(obj, device):
67
+ if torch.is_tensor(obj):
68
+ return obj.to(device)
69
+ elif isinstance(obj, dict):
70
+ _dict = {}
71
+ for k, v in obj.items():
72
+ _dict[k] = move_tensors(v, device)
73
+ return _dict
74
+ elif isinstance(obj, list):
75
+ _list = []
76
+ for v in obj:
77
+ _list.append(move_tensors(v, device))
78
+ return _list
79
+ else:
80
+ raise TypeError("Tensor or list / dict of tensors expected")
81
+
82
+
83
+ def get_model_name(model):
84
+ return model.name
85
+
86
+ class HfHook:
87
+ def __init__(self):
88
+ self.execution_device = "cuda"
89
+
90
+ def detach_hook(self, module):
91
+ pass
92
+
93
+ class offload:
94
+ def __init__(self):
95
+ self.active_models = []
96
+ self.active_models_ids = []
97
+ self.models = {}
98
+ self.verbose = False
99
+ self.models_to_quantize = []
100
+ self.pinned_modules_data = {}
101
+ self.params_of_modules = {}
102
+ self.pinTensors = False
103
+ self.device_mem_capacity = torch.cuda.get_device_properties(0).total_memory
104
+ self.last_reserved_mem_check =0
105
+
106
+ def collect_module_parameters(self, module: torch.nn.Module, module_params):
107
+ if isinstance(module, (torch.nn.ModuleList, torch.nn.Sequential)):
108
+ for i in range(len(module)):
109
+ current_layer = module[i]
110
+ module_params.extend(current_layer.parameters())
111
+ module_params.extend(current_layer.buffers())
112
+ else:
113
+ for p in module.parameters(recurse=False):
114
+ module_params.append(p)
115
+ for p in module.buffers(recurse=False):
116
+ module_params.append(p)
117
+ for sub_module in module.children():
118
+ self.collect_module_parameters(sub_module, module_params)
119
+
120
+ def can_model_be_cotenant(self, model_id):
121
+ potential_cotenants= cotenants_map.get(model_id, None)
122
+ if potential_cotenants is None:
123
+ return False
124
+ for existing_cotenant in self.active_models_ids:
125
+ if existing_cotenant not in potential_cotenants:
126
+ return False
127
+ return True
128
+
129
+ def gpu_load(self, model_id):
130
+ model = self.models[model_id]
131
+ self.active_models.append(model)
132
+ self.active_models_ids.append(model_id)
133
+ if self.verbose:
134
+ model_name = model._get_name()
135
+ print(f"Loading model {model_name} ({model_id}) in GPU")
136
+ if not self.pinInRAM:
137
+ model.to("cuda")
138
+ else:
139
+ module_params = self.params_of_modules[model_id]
140
+ for p in module_params:
141
+ if isinstance(p, QTensor):
142
+ p._data = p._data.cuda(non_blocking=True)
143
+ p._scale = p._scale.cuda(non_blocking=True)
144
+ else:
145
+ p.data = p.data.cuda(non_blocking=True) #
146
+ # torch.cuda.current_stream().synchronize()
147
+ @torch.compiler.disable()
148
+ def unload_all(self):
149
+ for model, model_id in zip(self.active_models, self.active_models_ids):
150
+ if not self.pinInRAM:
151
+ model.to("cpu")
152
+ else:
153
+ module_params = self.params_of_modules[model_id]
154
+ pinned_parameters_data = self.pinned_modules_data[model_id]
155
+ for p in module_params:
156
+ if isinstance(p, QTensor):
157
+ data = pinned_parameters_data[p]
158
+ p._data = data[0]
159
+ p._scale = data[1]
160
+ else:
161
+ p.data = pinned_parameters_data[p]
162
+
163
+
164
+ self.active_models = []
165
+ self.active_models_ids = []
166
+ torch.cuda.empty_cache()
167
+ gc.collect()
168
+
169
+ def move_args_to_gpu(self, *args, **kwargs):
170
+ new_args= []
171
+ new_kwargs={}
172
+ for arg in args:
173
+ if torch.is_tensor(arg):
174
+ if arg.dtype == torch.float32:
175
+ arg = arg.to(torch.bfloat16).cuda(non_blocking=True)
176
+ else:
177
+ arg = arg.cuda(non_blocking=True)
178
+ new_args.append(arg)
179
+
180
+ for k in kwargs:
181
+ arg = kwargs[k]
182
+ if torch.is_tensor(arg):
183
+ if arg.dtype == torch.float32:
184
+ arg = arg.to(torch.bfloat16).cuda(non_blocking=True)
185
+ else:
186
+ arg = arg.cuda(non_blocking=True)
187
+ new_kwargs[k]= arg
188
+
189
+ return new_args, new_kwargs
190
+
191
+ def ready_to_check_mem(self, forceMemoryCheck):
192
+ cur_clock = time.time()
193
+ # can't check at each call if we can empty the cuda cache as quering the reserved memory value is a time consuming operation
194
+ if not forceMemoryCheck and (cur_clock - self.last_reserved_mem_check)<0.200:
195
+ return False
196
+ self.last_reserved_mem_check = cur_clock
197
+ return True
198
+
199
+
200
+ def empty_cache_if_needed(self):
201
+ mem_reserved = torch.cuda.memory_reserved()
202
+ if mem_reserved >= 0.9*self.device_mem_capacity:
203
+ mem_allocated = torch.cuda.memory_allocated()
204
+ if mem_allocated <= 0.70 * mem_reserved:
205
+ # print(f"Cuda empty cache triggered as Allocated Memory ({mem_allocated/1024000:0f} MB) is lot less than Cached Memory ({mem_reserved/1024000:0f} MB) ")
206
+ torch.cuda.empty_cache()
207
+ # print(f"New cached memory after purge is {torch.cuda.memory_reserved()/1024000:0f} MB) ")
208
+
209
+ def hook_me_light(self, target_module, forceMemoryCheck, previous_method):
210
+ def check_empty_cache(module, *args, **kwargs):
211
+ if self.ready_to_check_mem(forceMemoryCheck):
212
+ self.empty_cache_if_needed()
213
+ return previous_method(*args, **kwargs)
214
+
215
+ setattr(target_module, "forward", functools.update_wrapper(functools.partial(check_empty_cache, target_module), previous_method) )
216
+
217
+
218
+ def hook_me(self, target_module, model, model_id, module_id, previous_method):
219
+ def check_change_module(module, *args, **kwargs):
220
+ performEmptyCacheTest = False
221
+ if not model_id in self.active_models_ids:
222
+ new_model_id = getattr(module, "_mm_id")
223
+ # do not always unload existing models if it is more efficient to keep in them in the GPU
224
+ # (e.g: small modules whose calls are text encoders)
225
+ if not self.can_model_be_cotenant(new_model_id) :
226
+ self.unload_all()
227
+ performEmptyCacheTest = False
228
+ self.gpu_load(new_model_id)
229
+ # transfer leftovers inputs that were incorrectly created in the RAM (mostly due to some .device tests that returned incorrectly "cpu")
230
+ args, kwargs = self.move_args_to_gpu(*args, **kwargs)
231
+ if performEmptyCacheTest:
232
+ self.empty_cache_if_needed()
233
+ return previous_method(*args, **kwargs)
234
+
235
+ if hasattr(target_module, "_mm_id"):
236
+ return
237
+ setattr(target_module, "_mm_id", model_id)
238
+
239
+ # create a fake accelerate parameter so that the _execution_device property returns always "cuda"
240
+ # (it is queried in many pipelines even if offloading is not properly implemented)
241
+ if not hasattr(target_module, "_hf_hook"):
242
+ setattr(target_module, "_hf_hook", HfHook())
243
+ setattr(target_module, "forward", functools.update_wrapper(functools.partial(check_change_module, target_module), previous_method) )
244
+
245
+ if not self.verbose:
246
+ return
247
+
248
+ if module_id == None or module_id =='':
249
+ model_name = model._get_name()
250
+ print(f"Hooked in model '{model_id}' ({model_name})")
251
+
252
+
253
+ # Not implemented yet, but why would one want to get rid of these features ?
254
+ # def unhook_module(module: torch.nn.Module):
255
+ # if not hasattr(module,"_mm_id"):
256
+ # return
257
+
258
+ # delattr(module, "_mm_id")
259
+
260
+ # def unhook_all(parent_module: torch.nn.Module):
261
+ # for module in parent_module.components.items():
262
+ # self.unhook_module(module)
263
+
264
+
265
+
266
+
267
+ @classmethod
268
+ def all(cls, pipe_or_dict_of_modules, quantizeTransformer = True, pinInRAM = False, verbose = True, modelsToQuantize = None ):
269
+ self = cls()
270
+ self.verbose = verbose
271
+ self.pinned_modules_data = {}
272
+
273
+ # compile not working yet or slower
274
+ compile = False
275
+ self.pinInRAM = pinInRAM
276
+ pipe = None
277
+ preloadInRAM = True
278
+ torch.set_default_device('cuda')
279
+ if hasattr(pipe_or_dict_of_modules, "components"):
280
+ pipe_or_dict_of_modules.to("cpu") #XXXX
281
+ # create a fake Accelerate parameter so that lora loading doesn't change the device
282
+ pipe_or_dict_of_modules.hf_device_map = torch.device("cuda")
283
+ pipe = pipe_or_dict_of_modules
284
+ pipe_or_dict_of_modules= pipe_or_dict_of_modules.components
285
+
286
+
287
+ models = {k: v for k, v in pipe_or_dict_of_modules.items() if isinstance(v, torch.nn.Module)}
288
+
289
+ modelsToQuantize = modelsToQuantize if modelsToQuantize is not None else []
290
+ if not isinstance(modelsToQuantize, list):
291
+ modelsToQuantize = [modelsToQuantize]
292
+ if quantizeTransformer:
293
+ modelsToQuantize.append("transformer")
294
+ self.models_to_quantize = modelsToQuantize
295
+ # del models["transformer"] # to test everything but the transformer that has a much longer loading
296
+ # models = { 'transformer': pipe_or_dict_of_modules["transformer"]} # to test only the transformer
297
+ for model_id in models:
298
+ current_model: torch.nn.Module = models[model_id]
299
+ # make sure that no RAM or GPU memory is not allocated for gradiant / training
300
+ current_model.to("cpu").eval() #XXXXX
301
+
302
+ # Quantize model just before transferring it to the RAM to keep OS cache file
303
+ # open as short as possible. Indeed it seems that as long as the lazy safetensors
304
+ # are not fully fully loaded, the OS won't be able to release the corresponding cache file in RAM.
305
+ if model_id in self.models_to_quantize:
306
+ print(f"Quantization of model '{model_id}' started")
307
+ quantize(current_model, weights=qint8)
308
+ freeze(current_model)
309
+ print(f"Quantization of model '{model_id}' done")
310
+ torch.cuda.empty_cache()
311
+ gc.collect()
312
+
313
+
314
+
315
+ if preloadInRAM: #
316
+ # load all the remaining unread lazy safetensors in RAM to free open cache files
317
+ for p in current_model.parameters():
318
+ # Preread every tensor in RAM except tensors that have just been quantified
319
+ # and are no longer needed
320
+ if isinstance(p, QTensor):
321
+ # fix quanto bug (see below) now as he won't have any opportunity to do it during RAM pinning
322
+ if not pinInRAM and p._scale.dtype == torch.float32:
323
+ p._scale = p._scale.to(torch.bfloat16)
324
+
325
+ else:
326
+ if p.data.dtype == torch.float32:
327
+ # convert any left overs float32 weight to bloat16 to divide by 2 the model memory footprint
328
+ p.data = p.data.to(torch.bfloat16)
329
+ else:
330
+ # force reading the tensors from the disk by pretending to modify them
331
+ p.data = p.data + 0
332
+
333
+
334
+ addModelFlag = False
335
+
336
+ current_block_sequence = None
337
+ for submodule_name, submodule in current_model.named_modules():
338
+ if hasattr(submodule, "forward"):
339
+ submodule_method = getattr(submodule, "forward")
340
+ if callable(submodule_method):
341
+ addModelFlag = True
342
+ if submodule_name=='' or len(submodule_name.split("."))==1:
343
+ # hook only the first two levels of modules with the full suite of processing
344
+ self.hook_me(submodule, current_model, model_id, submodule_name, submodule_method)
345
+ else:
346
+ forceMemoryCheck = False
347
+ pos = submodule_name.find(".0.")
348
+ if pos > 0:
349
+ if current_block_sequence == None:
350
+ new_candidate = submodule_name[0:pos+3]
351
+ if len(new_candidate.split("."))<=4:
352
+ current_block_sequence = new_candidate
353
+ # force a memory check when initiating a new sequence of blocks as the shapes of tensor will certainly change
354
+ # and memory reusability is less likely
355
+ # we limit this check to the first level of blocks as quering the cuda cache is time consuming
356
+ forceMemoryCheck = True
357
+ else:
358
+ if current_block_sequence != submodule_name[0:len(current_block_sequence)]:
359
+ current_block_sequence = None
360
+ self.hook_me_light(submodule, forceMemoryCheck, submodule_method)
361
+
362
+
363
+ if addModelFlag:
364
+ if model_id not in self.models:
365
+ self.models[model_id] = current_model
366
+
367
+ # Pin in RAM models only once they have been fully loaded otherwise there may be some contention in the non pageable memory
368
+ # between partially loaded lazy safetensors and pinned tensors
369
+ if pinInRAM:
370
+ if verbose:
371
+ print("Pinning model tensors in RAM")
372
+ torch.cuda.empty_cache()
373
+ gc.collect()
374
+ for model_id in models:
375
+ pinned_parameters_data = {}
376
+ current_model: torch.nn.Module = models[model_id]
377
+ for p in current_model.parameters():
378
+ if isinstance(p, QTensor):
379
+ # pin in memory both quantized data and scales of quantized parameters
380
+ # but don't pin .data as it corresponds to the original tensor that we don't want to reload
381
+ p._data = p._data.pin_memory()
382
+ # fix quanto bug that allows _scale to be float32 if the original weight was float32
383
+ # (this may cause type mismatch between dequantified bfloat16 weights and float32 scales)
384
+ p._scale = p._scale.to(torch.bfloat16).pin_memory() if p._scale.dtype == torch.float32 else p._scale.pin_memory()
385
+ pinned_parameters_data[p]=[p._data, p._scale]
386
+ else:
387
+ p.data = p.data.pin_memory()
388
+ pinned_parameters_data[p]=p.data
389
+ for b in current_model.buffers():
390
+ b.data = b.data.pin_memory()
391
+
392
+ pinned_buffers_data = {b: b.data for b in current_model.buffers()}
393
+ pinned_parameters_data.update(pinned_buffers_data)
394
+ self.pinned_modules_data[model_id]=pinned_parameters_data
395
+
396
+ module_params = []
397
+ self.params_of_modules[model_id] = module_params
398
+ self.collect_module_parameters(current_model,module_params)
399
+
400
+ if compile:
401
+ if verbose:
402
+ print("Torch compilation started")
403
+ torch._dynamo.config.cache_size_limit = 10000
404
+ # if pipe != None and hasattr(pipe, "__call__"):
405
+ # pipe.__call__= torch.compile(pipe.__call__, mode= "max-autotune")
406
+
407
+ for model_id in models:
408
+ current_model: torch.nn.Module = models[model_id]
409
+ current_model.compile(mode= "max-autotune")
410
+ #models["transformer"].compile()
411
+
412
+ if verbose:
413
+ print("Torch compilation done")
414
+
415
+ torch.cuda.empty_cache()
416
+ gc.collect()
417
+
418
+
419
+ return self
420
+
421
+