mmgp 1.0.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mmgp might be problematic. Click here for more details.

mmgp/__init__.py ADDED
@@ -0,0 +1,13 @@
1
+ try:
2
+ from ._version import (
3
+ version as __version__, # type: ignore
4
+ version_tuple,
5
+ )
6
+ except ImportError:
7
+ __version__ = "unknown (no version information available)"
8
+ version_tuple = (0, 0, "unknown", "noinfo")
9
+
10
+ from pathlib import Path
11
+
12
+ PACKAGE = __package__.replace("_", "-")
13
+ PACKAGE_ROOT = Path(__file__).parent
mmgp/_version.py ADDED
@@ -0,0 +1,16 @@
1
+ # file generated by setuptools_scm
2
+ # don't change, don't track in version control
3
+ TYPE_CHECKING = False
4
+ if TYPE_CHECKING:
5
+ from typing import Tuple, Union
6
+ VERSION_TUPLE = Tuple[Union[int, str], ...]
7
+ else:
8
+ VERSION_TUPLE = object
9
+
10
+ version: str
11
+ __version__: str
12
+ __version_tuple__: VERSION_TUPLE
13
+ version_tuple: VERSION_TUPLE
14
+
15
+ __version__ = version = '1.0.0'
16
+ __version_tuple__ = version_tuple = (1, 0, 0)
mmgp/mmgp.py ADDED
@@ -0,0 +1,405 @@
1
+ # ------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------
2
+ #
3
+ # This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
4
+ # This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several times in a pipe (eg VAE)
5
+ #
6
+ # Requirements:
7
+ # - GPU: RTX 3090/ RTX 4090
8
+ # - RAM: minimum 48 GB, recommended 64 GB
9
+ #
10
+ # It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
11
+ # 1) First make sure that the pipeline explictly loads the models in the CPU device
12
+ # for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
13
+ # 2) Once every potential Lora has been loaded and merged, add the following lines:
14
+ # from mmgp import offload
15
+ # offload.me(pipe)
16
+ # If you don't have enough RAM you may disable RAM pinning but model switching option pinInRAM= False
17
+ # Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models^.
18
+ #
19
+ # For instance :
20
+ # for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
21
+ # for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
22
+ #
23
+ # Please note that there should be always one model whose Id is 'transformer'. It is corresponds to the main image / video model which usually needs to be quantized (this is done by default)
24
+ #
25
+ # Becareful, lots of models uses the T5 XXL as a text encoder. However, quite often their corresponding pipeline configuratons points at the official Google T5 XXL repository
26
+ # where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
27
+ # I suggest you use instead one of the 16 bits encoder only version available around, for instance:
28
+ # text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
29
+ #
30
+ # You are free to use my code as long you give me proper credits. You may contact me on twitter @deepbeepmeep
31
+ #
32
+ # Credits
33
+ # -------
34
+ # Huggingface / accelerate for the hooking examples
35
+ # Huggingface / quanto for their very useful quantizer
36
+ # gau-nernst for his Pinnig RAM examples
37
+
38
+
39
+ #
40
+ import torch
41
+ #
42
+ import gc
43
+ import time
44
+ import functools
45
+ from optimum.quanto import freeze, qfloat8, qint8, quantize, QModuleMixin, QTensor
46
+
47
+
48
+ # config Dimension X (CogVideo derived ) : Quantization False: because Lora applied later
49
+
50
+
51
+ cotenants_map = {
52
+ "text_encoder": ["vae", "text_encoder_2"],
53
+ "text_encoder_2": ["vae", "text_encoder"],
54
+ }
55
+
56
+ # useful functions to move a group of tensors (to design custom offload patches)
57
+ def move_tensors(obj, device):
58
+ if torch.is_tensor(obj):
59
+ return obj.to(device)
60
+ elif isinstance(obj, dict):
61
+ _dict = {}
62
+ for k, v in obj.items():
63
+ _dict[k] = move_tensors(v, device)
64
+ return _dict
65
+ elif isinstance(obj, list):
66
+ _list = []
67
+ for v in obj:
68
+ _list.append(move_tensors(v, device))
69
+ return _list
70
+ else:
71
+ raise TypeError("Tensor or list / dict of tensors expected")
72
+
73
+
74
+ def get_model_name(model):
75
+ return model.name
76
+
77
+ class HfHook:
78
+ def __init__(self):
79
+ self.execution_device = "cuda"
80
+
81
+ def detach_hook(self, module):
82
+ pass
83
+
84
+ class offload:
85
+ def __init__(self):
86
+ self.active_models = []
87
+ self.active_models_ids = []
88
+ self.models = {}
89
+ self.verbose = False
90
+ self.models_to_quantize = []
91
+ self.pinned_modules_data = {}
92
+ self.params_of_modules = {}
93
+ self.pinTensors = False
94
+ self.device_mem_capacity = torch.cuda.get_device_properties(0).total_memory
95
+ self.last_reserved_mem_check =0
96
+
97
+ def collect_module_parameters(self, module: torch.nn.Module, module_params):
98
+ if isinstance(module, (torch.nn.ModuleList, torch.nn.Sequential)):
99
+ for i in range(len(module)):
100
+ current_layer = module[i]
101
+ module_params.extend(current_layer.parameters())
102
+ module_params.extend(current_layer.buffers())
103
+ else:
104
+ for p in module.parameters(recurse=False):
105
+ module_params.append(p)
106
+ for p in module.buffers(recurse=False):
107
+ module_params.append(p)
108
+ for sub_module in module.children():
109
+ self.collect_module_parameters(sub_module, module_params)
110
+
111
+ def can_model_be_cotenant(self, model_id):
112
+ potential_cotenants= cotenants_map.get(model_id, None)
113
+ if potential_cotenants is None:
114
+ return False
115
+ for existing_cotenant in self.active_models_ids:
116
+ if existing_cotenant not in potential_cotenants:
117
+ return False
118
+ return True
119
+
120
+ def gpu_load(self, model_id):
121
+ model = self.models[model_id]
122
+ self.active_models.append(model)
123
+ self.active_models_ids.append(model_id)
124
+ if self.verbose:
125
+ model_name = model._get_name()
126
+ print(f"Loading model {model_name} ({model_id}) in GPU")
127
+ if not self.pinInRAM:
128
+ model.to("cuda")
129
+ else:
130
+ module_params = self.params_of_modules[model_id]
131
+ for p in module_params:
132
+ if isinstance(p, QTensor):
133
+ p._data = p._data.cuda(non_blocking=True)
134
+ p._scale = p._scale.cuda(non_blocking=True)
135
+ else:
136
+ p.data = p.data.cuda(non_blocking=True) #
137
+ # torch.cuda.current_stream().synchronize()
138
+
139
+ def unload_all(self):
140
+ for model, model_id in zip(self.active_models, self.active_models_ids):
141
+ if not self.pinInRAM:
142
+ model.to("cpu")
143
+ else:
144
+ module_params = self.params_of_modules[model_id]
145
+ pinned_parameters_data = self.pinned_modules_data[model_id]
146
+ for p in module_params:
147
+ if isinstance(p, QTensor):
148
+ data = pinned_parameters_data[p]
149
+ p._data = data[0]
150
+ p._scale = data[1]
151
+ else:
152
+ p.data = pinned_parameters_data[p]
153
+
154
+
155
+ self.active_models = []
156
+ self.active_models_ids = []
157
+ torch.cuda.empty_cache()
158
+ gc.collect()
159
+
160
+ def move_args_to_gpu(self, *args, **kwargs):
161
+ new_args= []
162
+ new_kwargs={}
163
+ for arg in args:
164
+ if torch.is_tensor(arg):
165
+ if arg.dtype == torch.float32:
166
+ arg = arg.to(torch.bfloat16).cuda(non_blocking=True)
167
+ else:
168
+ arg = arg.cuda(non_blocking=True)
169
+ new_args.append(arg)
170
+
171
+ for k in kwargs:
172
+ arg = kwargs[k]
173
+ if torch.is_tensor(arg):
174
+ if arg.dtype == torch.float32:
175
+ arg = arg.to(torch.bfloat16).cuda(non_blocking=True)
176
+ else:
177
+ arg = arg.cuda(non_blocking=True)
178
+ new_kwargs[k]= arg
179
+
180
+ return new_args, new_kwargs
181
+
182
+ def ready_to_check_mem(self, forceMemoryCheck):
183
+ cur_clock = time.time()
184
+ # can't check at each call if we can empty the cuda cache as quering the reserved memory value is a time consuming operation
185
+ if not forceMemoryCheck and (cur_clock - self.last_reserved_mem_check)<0.200:
186
+ return False
187
+ self.last_reserved_mem_check = cur_clock
188
+ return True
189
+
190
+
191
+ def empty_cache_if_needed(self):
192
+ mem_reserved = torch.cuda.memory_reserved()
193
+ if mem_reserved >= 0.9*self.device_mem_capacity:
194
+ mem_allocated = torch.cuda.memory_allocated()
195
+ if mem_allocated <= 0.70 * mem_reserved:
196
+ # print(f"Cuda empty cache triggered as Allocated Memory ({mem_allocated/1024000:0f} MB) is lot less than Cached Memory ({mem_reserved/1024000:0f} MB) ")
197
+ torch.cuda.empty_cache()
198
+ # print(f"New cached memory after purge is {torch.cuda.memory_reserved()/1024000:0f} MB) ")
199
+
200
+ def hook_me_light(self, target_module, forceMemoryCheck, previous_method):
201
+ # @torch.compiler.disable()
202
+ def check_empty_cache(module, *args, **kwargs):
203
+ if self.ready_to_check_mem(forceMemoryCheck):
204
+ self.empty_cache_if_needed()
205
+ return previous_method(*args, **kwargs)
206
+
207
+ setattr(target_module, "forward", functools.update_wrapper(functools.partial(check_empty_cache, target_module), previous_method) )
208
+
209
+
210
+ def hook_me(self, target_module, model, model_id, module_id, previous_method):
211
+ @torch.compiler.disable()
212
+ def check_change_module(module, *args, **kwargs):
213
+ performEmptyCacheTest = False
214
+ if not model_id in self.active_models_ids:
215
+ new_model_id = getattr(module, "_mm_id")
216
+ # do not always unload existing models if it is more efficient to keep in them in the GPU
217
+ # (e.g: small modules whose calls are text encoders)
218
+ if not self.can_model_be_cotenant(new_model_id) :
219
+ self.unload_all()
220
+ performEmptyCacheTest = False
221
+ self.gpu_load(new_model_id)
222
+ # transfer leftovers inputs that were incorrectly created in the RAM (mostly due to some .device tests that returned incorrectly "cpu")
223
+ args, kwargs = self.move_args_to_gpu(*args, **kwargs)
224
+ if performEmptyCacheTest:
225
+ self.empty_cache_if_needed()
226
+ return previous_method(*args, **kwargs)
227
+
228
+ if hasattr(target_module, "_mm_id"):
229
+ return
230
+ setattr(target_module, "_mm_id", model_id)
231
+
232
+ # create a fake accelerate parameter so that the _execution_device property returns always "cuda"
233
+ # (it is queried in many pipelines even if offloading is not properly implemented)
234
+ if not hasattr(target_module, "_hf_hook"):
235
+ setattr(target_module, "_hf_hook", HfHook())
236
+ setattr(target_module, "forward", functools.update_wrapper(functools.partial(check_change_module, target_module), previous_method) )
237
+
238
+ if not self.verbose:
239
+ return
240
+
241
+ if module_id == None or module_id =='':
242
+ model_name = model._get_name()
243
+ print(f"Hooked in model {model_name} ({model_id})")
244
+
245
+
246
+ # Not implemented yet, but why would one want to get rid of these features ?
247
+ # def unhook_module(module: torch.nn.Module):
248
+ # if not hasattr(module,"_mm_id"):
249
+ # return
250
+
251
+ # delattr(module, "_mm_id")
252
+
253
+ # def unhook_all(parent_module: torch.nn.Module):
254
+ # for module in parent_module.components.items():
255
+ # self.unhook_module(module)
256
+
257
+
258
+
259
+
260
+ @classmethod
261
+ def all(cls, pipe_or_dict_of_modules, quantizeTransformer = True, pinInRAM = True, compile= True, verbose = True):
262
+ self = cls()
263
+ self.verbose = verbose
264
+ self.pinned_modules_data = {}
265
+
266
+ self.pinInRAM = pinInRAM
267
+
268
+ preloadInRAM = True
269
+ torch.set_default_device('cuda')
270
+ if hasattr(pipe_or_dict_of_modules, "components"):
271
+ pipe_or_dict_of_modules.to("cpu") #XXXX
272
+ # create a fake Accelerate parameter so that lora loading doesn't change the device
273
+ pipe_or_dict_of_modules.hf_device_map = torch.device("cuda")
274
+ pipe_or_dict_of_modules= pipe_or_dict_of_modules.components
275
+
276
+
277
+
278
+ models = {k: v for k, v in pipe_or_dict_of_modules.items() if isinstance(v, torch.nn.Module)}
279
+
280
+
281
+ if quantizeTransformer:
282
+ self.models_to_quantize = ["transformer"]
283
+ # del models["transformer"] # to test everything but the transformer that has a much longer loading
284
+ # models = { 'transformer': pipe_or_dict_of_modules["transformer"]} # to test only the transformer
285
+ for model_id in models:
286
+ current_model: torch.nn.Module = models[model_id]
287
+ # make sure that no RAM or GPU memory is not allocated for gradiant / training
288
+ current_model.to("cpu").eval() #XXXXX
289
+
290
+ # Quantize model just before transferring it to the RAM to keep OS cache file
291
+ # open as short as possible. Indeed it seems that as long as the lazy safetensors
292
+ # are not fully fully loaded, the OS won't be able to release the corresponding cache file in RAM.
293
+ if model_id in self.models_to_quantize:
294
+ print(f"Quantization of model '{model_id}' started")
295
+ quantize(current_model, weights=qint8)
296
+ freeze(current_model)
297
+ print(f"Quantization of model '{model_id}' done")
298
+ torch.cuda.empty_cache()
299
+ gc.collect()
300
+
301
+
302
+
303
+ if preloadInRAM: #
304
+ # load all the remaining unread lazy safetensors in RAM to free open cache files
305
+ for p in current_model.parameters():
306
+ # Preread every tensor in RAM except tensors that have just been quantified
307
+ # and are no longer needed
308
+ if isinstance(p, QTensor):
309
+ # fix quanto bug (see below) now as he won't have any opportunity to do it during RAM pinning
310
+ if not pinInRAM and p._scale.dtype == torch.float32:
311
+ p._scale = p._scale.to(torch.bfloat16)
312
+
313
+ else:
314
+ if p.data.dtype == torch.float32:
315
+ # convert any left overs float32 weight to bloat16 to divide by 2 the model memory footprint
316
+ p.data = p.data.to(torch.bfloat16)
317
+ else:
318
+ # force reading the tensors from the disk by pretending to modify them
319
+ p.data = p.data + 0
320
+
321
+
322
+ addModelFlag = False
323
+
324
+ current_block_sequence = None
325
+ for submodule_name, submodule in current_model.named_modules():
326
+ if hasattr(submodule, "forward"):
327
+ submodule_method = getattr(submodule, "forward")
328
+ if callable(submodule_method):
329
+ addModelFlag = True
330
+ if submodule_name=='' or len(submodule_name.split("."))==1:
331
+ # hook only the first two levels of modules with the full suite of processing
332
+ self.hook_me(submodule, current_model, model_id, submodule_name, submodule_method)
333
+ else:
334
+ forceMemoryCheck = False
335
+ pos = submodule_name.find(".0.")
336
+ if pos > 0:
337
+ if current_block_sequence == None:
338
+ new_candidate = submodule_name[0:pos+3]
339
+ if len(new_candidate.split("."))<=4:
340
+ current_block_sequence = new_candidate
341
+ # force a memory check when initiating a new sequence of blocks as the shapes of tensor will certainly change
342
+ # and memory reusability is less likely
343
+ # we limit this check to the first level of blocks as quering the cuda cache is time consuming
344
+ forceMemoryCheck = True
345
+ else:
346
+ if current_block_sequence != submodule_name[0:len(current_block_sequence)]:
347
+ current_block_sequence = None
348
+ self.hook_me_light(submodule, forceMemoryCheck, submodule_method)
349
+
350
+
351
+ if addModelFlag:
352
+ if model_id not in self.models:
353
+ self.models[model_id] = current_model
354
+
355
+ # Pin in RAM models only once they have been fully loaded otherwise there may be some contention in the non pageable memory
356
+ # between partially loaded lazy safetensors and pinned tensors
357
+ if pinInRAM:
358
+ if verbose:
359
+ print("Pinning model tensors in RAM")
360
+ torch.cuda.empty_cache()
361
+ gc.collect()
362
+ for model_id in models:
363
+ pinned_parameters_data = {}
364
+ current_model: torch.nn.Module = models[model_id]
365
+ for p in current_model.parameters():
366
+ if isinstance(p, QTensor):
367
+ # pin in memory both quantized data and scales of quantized parameters
368
+ # but don't pin .data as it corresponds to the original tensor that we don't want to reload
369
+ p._data = p._data.pin_memory()
370
+ # fix quanto bug that allows _scale to be float32 if the original weight was float32
371
+ # (this may cause type mismatch between dequantified bfloat16 weights and float32 scales)
372
+ p._scale = p._scale.to(torch.bfloat16).pin_memory() if p._scale.dtype == torch.float32 else p._scale.pin_memory()
373
+ pinned_parameters_data[p]=[p._data, p._scale]
374
+ else:
375
+ p.data = p.data.pin_memory()
376
+ pinned_parameters_data[p]=p.data
377
+ for b in current_model.buffers():
378
+ b.data = b.data.pin_memory()
379
+
380
+ pinned_buffers_data = {b: b.data for b in current_model.buffers()}
381
+ pinned_parameters_data.update(pinned_buffers_data)
382
+ self.pinned_modules_data[model_id]=pinned_parameters_data
383
+
384
+ module_params = []
385
+ self.params_of_modules[model_id] = module_params
386
+ self.collect_module_parameters(current_model,module_params)
387
+
388
+ if compile:
389
+ if verbose:
390
+ print("Torch compilation started")
391
+ torch._dynamo.config.cache_size_limit = 10000
392
+ for model_id in models:
393
+ current_model: torch.nn.Module = models[model_id]
394
+ current_model.compile()
395
+ #models["transformer"].compile()
396
+ if verbose:
397
+ print("Torch compilation done")
398
+
399
+ torch.cuda.empty_cache()
400
+ gc.collect()
401
+
402
+
403
+ return self
404
+
405
+
@@ -0,0 +1,201 @@
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
@@ -0,0 +1,249 @@
1
+ Metadata-Version: 2.1
2
+ Name: mmgp
3
+ Version: 1.0.0
4
+ Summary: Memory Management for the GPU Poor
5
+ Author-email: deepbeepmeep <deepbeepmeep@yahoo.com>
6
+ License: Apache License
7
+ Version 2.0, January 2004
8
+ http://www.apache.org/licenses/
9
+
10
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
11
+
12
+ 1. Definitions.
13
+
14
+ "License" shall mean the terms and conditions for use, reproduction,
15
+ and distribution as defined by Sections 1 through 9 of this document.
16
+
17
+ "Licensor" shall mean the copyright owner or entity authorized by
18
+ the copyright owner that is granting the License.
19
+
20
+ "Legal Entity" shall mean the union of the acting entity and all
21
+ other entities that control, are controlled by, or are under common
22
+ control with that entity. For the purposes of this definition,
23
+ "control" means (i) the power, direct or indirect, to cause the
24
+ direction or management of such entity, whether by contract or
25
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
26
+ outstanding shares, or (iii) beneficial ownership of such entity.
27
+
28
+ "You" (or "Your") shall mean an individual or Legal Entity
29
+ exercising permissions granted by this License.
30
+
31
+ "Source" form shall mean the preferred form for making modifications,
32
+ including but not limited to software source code, documentation
33
+ source, and configuration files.
34
+
35
+ "Object" form shall mean any form resulting from mechanical
36
+ transformation or translation of a Source form, including but
37
+ not limited to compiled object code, generated documentation,
38
+ and conversions to other media types.
39
+
40
+ "Work" shall mean the work of authorship, whether in Source or
41
+ Object form, made available under the License, as indicated by a
42
+ copyright notice that is included in or attached to the work
43
+ (an example is provided in the Appendix below).
44
+
45
+ "Derivative Works" shall mean any work, whether in Source or Object
46
+ form, that is based on (or derived from) the Work and for which the
47
+ editorial revisions, annotations, elaborations, or other modifications
48
+ represent, as a whole, an original work of authorship. For the purposes
49
+ of this License, Derivative Works shall not include works that remain
50
+ separable from, or merely link (or bind by name) to the interfaces of,
51
+ the Work and Derivative Works thereof.
52
+
53
+ "Contribution" shall mean any work of authorship, including
54
+ the original version of the Work and any modifications or additions
55
+ to that Work or Derivative Works thereof, that is intentionally
56
+ submitted to Licensor for inclusion in the Work by the copyright owner
57
+ or by an individual or Legal Entity authorized to submit on behalf of
58
+ the copyright owner. For the purposes of this definition, "submitted"
59
+ means any form of electronic, verbal, or written communication sent
60
+ to the Licensor or its representatives, including but not limited to
61
+ communication on electronic mailing lists, source code control systems,
62
+ and issue tracking systems that are managed by, or on behalf of, the
63
+ Licensor for the purpose of discussing and improving the Work, but
64
+ excluding communication that is conspicuously marked or otherwise
65
+ designated in writing by the copyright owner as "Not a Contribution."
66
+
67
+ "Contributor" shall mean Licensor and any individual or Legal Entity
68
+ on behalf of whom a Contribution has been received by Licensor and
69
+ subsequently incorporated within the Work.
70
+
71
+ 2. Grant of Copyright License. Subject to the terms and conditions of
72
+ this License, each Contributor hereby grants to You a perpetual,
73
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
74
+ copyright license to reproduce, prepare Derivative Works of,
75
+ publicly display, publicly perform, sublicense, and distribute the
76
+ Work and such Derivative Works in Source or Object form.
77
+
78
+ 3. Grant of Patent License. Subject to the terms and conditions of
79
+ this License, each Contributor hereby grants to You a perpetual,
80
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
81
+ (except as stated in this section) patent license to make, have made,
82
+ use, offer to sell, sell, import, and otherwise transfer the Work,
83
+ where such license applies only to those patent claims licensable
84
+ by such Contributor that are necessarily infringed by their
85
+ Contribution(s) alone or by combination of their Contribution(s)
86
+ with the Work to which such Contribution(s) was submitted. If You
87
+ institute patent litigation against any entity (including a
88
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
89
+ or a Contribution incorporated within the Work constitutes direct
90
+ or contributory patent infringement, then any patent licenses
91
+ granted to You under this License for that Work shall terminate
92
+ as of the date such litigation is filed.
93
+
94
+ 4. Redistribution. You may reproduce and distribute copies of the
95
+ Work or Derivative Works thereof in any medium, with or without
96
+ modifications, and in Source or Object form, provided that You
97
+ meet the following conditions:
98
+
99
+ (a) You must give any other recipients of the Work or
100
+ Derivative Works a copy of this License; and
101
+
102
+ (b) You must cause any modified files to carry prominent notices
103
+ stating that You changed the files; and
104
+
105
+ (c) You must retain, in the Source form of any Derivative Works
106
+ that You distribute, all copyright, patent, trademark, and
107
+ attribution notices from the Source form of the Work,
108
+ excluding those notices that do not pertain to any part of
109
+ the Derivative Works; and
110
+
111
+ (d) If the Work includes a "NOTICE" text file as part of its
112
+ distribution, then any Derivative Works that You distribute must
113
+ include a readable copy of the attribution notices contained
114
+ within such NOTICE file, excluding those notices that do not
115
+ pertain to any part of the Derivative Works, in at least one
116
+ of the following places: within a NOTICE text file distributed
117
+ as part of the Derivative Works; within the Source form or
118
+ documentation, if provided along with the Derivative Works; or,
119
+ within a display generated by the Derivative Works, if and
120
+ wherever such third-party notices normally appear. The contents
121
+ of the NOTICE file are for informational purposes only and
122
+ do not modify the License. You may add Your own attribution
123
+ notices within Derivative Works that You distribute, alongside
124
+ or as an addendum to the NOTICE text from the Work, provided
125
+ that such additional attribution notices cannot be construed
126
+ as modifying the License.
127
+
128
+ You may add Your own copyright statement to Your modifications and
129
+ may provide additional or different license terms and conditions
130
+ for use, reproduction, or distribution of Your modifications, or
131
+ for any such Derivative Works as a whole, provided Your use,
132
+ reproduction, and distribution of the Work otherwise complies with
133
+ the conditions stated in this License.
134
+
135
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
136
+ any Contribution intentionally submitted for inclusion in the Work
137
+ by You to the Licensor shall be under the terms and conditions of
138
+ this License, without any additional terms or conditions.
139
+ Notwithstanding the above, nothing herein shall supersede or modify
140
+ the terms of any separate license agreement you may have executed
141
+ with Licensor regarding such Contributions.
142
+
143
+ 6. Trademarks. This License does not grant permission to use the trade
144
+ names, trademarks, service marks, or product names of the Licensor,
145
+ except as required for reasonable and customary use in describing the
146
+ origin of the Work and reproducing the content of the NOTICE file.
147
+
148
+ 7. Disclaimer of Warranty. Unless required by applicable law or
149
+ agreed to in writing, Licensor provides the Work (and each
150
+ Contributor provides its Contributions) on an "AS IS" BASIS,
151
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
152
+ implied, including, without limitation, any warranties or conditions
153
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
154
+ PARTICULAR PURPOSE. You are solely responsible for determining the
155
+ appropriateness of using or redistributing the Work and assume any
156
+ risks associated with Your exercise of permissions under this License.
157
+
158
+ 8. Limitation of Liability. In no event and under no legal theory,
159
+ whether in tort (including negligence), contract, or otherwise,
160
+ unless required by applicable law (such as deliberate and grossly
161
+ negligent acts) or agreed to in writing, shall any Contributor be
162
+ liable to You for damages, including any direct, indirect, special,
163
+ incidental, or consequential damages of any character arising as a
164
+ result of this License or out of the use or inability to use the
165
+ Work (including but not limited to damages for loss of goodwill,
166
+ work stoppage, computer failure or malfunction, or any and all
167
+ other commercial damages or losses), even if such Contributor
168
+ has been advised of the possibility of such damages.
169
+
170
+ 9. Accepting Warranty or Additional Liability. While redistributing
171
+ the Work or Derivative Works thereof, You may choose to offer,
172
+ and charge a fee for, acceptance of support, warranty, indemnity,
173
+ or other liability obligations and/or rights consistent with this
174
+ License. However, in accepting such obligations, You may act only
175
+ on Your own behalf and on Your sole responsibility, not on behalf
176
+ of any other Contributor, and only if You agree to indemnify,
177
+ defend, and hold each Contributor harmless for any liability
178
+ incurred by, or claims asserted against, such Contributor by reason
179
+ of your accepting any such warranty or additional liability.
180
+
181
+ END OF TERMS AND CONDITIONS
182
+
183
+ APPENDIX: How to apply the Apache License to your work.
184
+
185
+ To apply the Apache License to your work, attach the following
186
+ boilerplate notice, with the fields enclosed by brackets "[]"
187
+ replaced with your own identifying information. (Don't include
188
+ the brackets!) The text should be enclosed in the appropriate
189
+ comment syntax for the file format. We also recommend that a
190
+ file or class name and description of purpose be included on the
191
+ same "printed page" as the copyright notice for easier
192
+ identification within third-party archives.
193
+
194
+ Copyright [yyyy] [name of copyright owner]
195
+
196
+ Licensed under the Apache License, Version 2.0 (the "License");
197
+ you may not use this file except in compliance with the License.
198
+ You may obtain a copy of the License at
199
+
200
+ http://www.apache.org/licenses/LICENSE-2.0
201
+
202
+ Unless required by applicable law or agreed to in writing, software
203
+ distributed under the License is distributed on an "AS IS" BASIS,
204
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
205
+ See the License for the specific language governing permissions and
206
+ limitations under the License.
207
+
208
+ Requires-Python: >=3.10
209
+ Description-Content-Type: text/markdown
210
+ License-File: LICENSE.md
211
+ Requires-Dist: torch>=2.1.0
212
+ Requires-Dist: optimum-quanto
213
+
214
+ **------------------ Memory Management for the GPU Poor by DeepBeepMeep ------------------**
215
+
216
+ This module contains multiples optimisations so that models such as Flux (and derived), Mochi, CogView, HunyuanVideo, ... run smoothly on a 24 GB GPU limited card
217
+ This a replacement for the accelerate library that should in theory manage offloading, but doesn't work properly with models that are loaded / unloaded several times in a pipe (eg VAE)
218
+
219
+ Requirements:
220
+ - GPU: RTX 3090/ RTX 4090
221
+ - RAM: minimum 48 GB, recommended 64 GB
222
+
223
+ It is almost plug and play and just needs to be invoked from the main app just after the model pipeline has been created.
224
+ 1) First make sure that the pipeline explictly loads the models in the CPU device
225
+ for instance: pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to("cpu")
226
+ 2) Once every potential Lora has been loaded and merged, add the following lines:
227
+ from mmgp import offload
228
+ offload.me(pipe)
229
+ If you don't have enough RAM you may disable RAM pinning but model switching option pinInRAM= False
230
+ Sometime there isn't an explicit pipe object as each submodel is loaded separately in the main app. If this is the case, you need to create a dictionary that manually maps all the models^.
231
+
232
+ For instance :
233
+ for flux derived models: pipe = { "text_encoder": clip, "text_encoder_2": t5, "transformer": model, "vae":ae }
234
+ for mochi: pipe = { "text_encoder": self.text_encoder, "transformer": self.dit, "vae":self.decoder }
235
+
236
+ Please note that there should be always one model whose Id is 'transformer'. It is corresponds to the main image / video model which usually needs to be quantized (this is done by default)
237
+
238
+ Becareful, lots of models uses the T5 XXL as a text encoder. However, quite often their corresponding pipeline configuratons points at the official Google T5 XXL repository
239
+ where there is a huge 40GB model to download and load. It is cumbersorme as it is a 32 bits model and contains the decoder part of T5 that is not used.
240
+ I suggest you use instead one of the 16 bits encoder only version available around, for instance:
241
+ text_encoder_2 = T5EncoderModel.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", torch_dtype=torch.float16)
242
+
243
+ You are free to use my code as long you give me proper credits. You may contact me on twitter @deepbeepmeep
244
+
245
+ Credits
246
+ -------
247
+ Huggingface / accelerate for the hooking examples
248
+ Huggingface / quanto for their very useful quantizer
249
+ gau-nernst for his Pinnig RAM examples
@@ -0,0 +1,8 @@
1
+ mmgp/__init__.py,sha256=N-ewQSpv5s0q9LUWWMY8pf13pLoUVsrFLk4ueOjqSbM,345
2
+ mmgp/_version.py,sha256=DGJ4pj32xs3_DRJhSzQwCiRNnAQrMgo09USYpyMZsKc,411
3
+ mmgp/mmgp.py,sha256=aMVV3jeB0zTq0NCJDphUFeW8_6CTqqWCKpmMdMnEjK8,19596
4
+ mmgp-1.0.0.dist-info/LICENSE.md,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
5
+ mmgp-1.0.0.dist-info/METADATA,sha256=IPg_YFm2mD3MkGFLRui5IDtlrjjHiqE7_MU96Q4FGQ4,15791
6
+ mmgp-1.0.0.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
7
+ mmgp-1.0.0.dist-info/top_level.txt,sha256=nPtltlwG1fODvMY43SuGiMhijSwrtBTrp1E2-xiv49U,5
8
+ mmgp-1.0.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (75.6.0)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ mmgp