mlxsmith 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mlxsmith/__init__.py +2 -0
- mlxsmith/accel/__init__.py +10 -0
- mlxsmith/accel/base.py +17 -0
- mlxsmith/accel/none.py +13 -0
- mlxsmith/accel/zmlx_backend.py +42 -0
- mlxsmith/adapters.py +46 -0
- mlxsmith/api/__init__.py +48 -0
- mlxsmith/api/handlers.py +1217 -0
- mlxsmith/api/schemas.py +436 -0
- mlxsmith/auth.py +88 -0
- mlxsmith/bench.py +102 -0
- mlxsmith/cli.py +950 -0
- mlxsmith/config.py +543 -0
- mlxsmith/config_models.py +261 -0
- mlxsmith/data.py +493 -0
- mlxsmith/envs/__init__.py +33 -0
- mlxsmith/envs/system.py +388 -0
- mlxsmith/envs/token_env.py +191 -0
- mlxsmith/eval.py +112 -0
- mlxsmith/infer.py +140 -0
- mlxsmith/llm/__init__.py +16 -0
- mlxsmith/llm/backend.py +126 -0
- mlxsmith/llm/interface.py +212 -0
- mlxsmith/llm/mlx_lm_backend.py +509 -0
- mlxsmith/llm/mock_backend.py +228 -0
- mlxsmith/llm/registry.py +12 -0
- mlxsmith/models.py +257 -0
- mlxsmith/orchestrator/__init__.py +25 -0
- mlxsmith/orchestrator/daemon.py +454 -0
- mlxsmith/orchestrator/inference_worker.py +496 -0
- mlxsmith/orchestrator/queue.py +355 -0
- mlxsmith/orchestrator/trainer_worker.py +437 -0
- mlxsmith/rlm/__init__.py +8 -0
- mlxsmith/rlm/corpus.py +74 -0
- mlxsmith/rlm/gating.py +90 -0
- mlxsmith/rlm/generate.py +249 -0
- mlxsmith/rlm/history.py +12 -0
- mlxsmith/rlm/inference.py +150 -0
- mlxsmith/rlm/loop.py +1297 -0
- mlxsmith/rlm/mutate.py +82 -0
- mlxsmith/rlm/trainer.py +73 -0
- mlxsmith/rlm/weights.py +263 -0
- mlxsmith/runs.py +44 -0
- mlxsmith/sdk/__init__.py +392 -0
- mlxsmith/sdk/future.py +486 -0
- mlxsmith/sdk/losses.py +262 -0
- mlxsmith/sdk/sampling_client.py +729 -0
- mlxsmith/sdk/training_client.py +676 -0
- mlxsmith/server.py +376 -0
- mlxsmith/train/__init__.py +0 -0
- mlxsmith/train/distill.py +279 -0
- mlxsmith/train/lora.py +280 -0
- mlxsmith/train/pref.py +180 -0
- mlxsmith/train/rft.py +458 -0
- mlxsmith/train/sft.py +151 -0
- mlxsmith/util.py +174 -0
- mlxsmith/verifiers/__init__.py +3 -0
- mlxsmith/verifiers/compose.py +109 -0
- mlxsmith/verifiers/docker_verifier.py +111 -0
- mlxsmith/verifiers/jsonschema.py +54 -0
- mlxsmith/verifiers/pytest_verifier.py +82 -0
- mlxsmith/verifiers/regex.py +15 -0
- mlxsmith/verifiers/types.py +10 -0
- mlxsmith-0.1.0.dist-info/METADATA +163 -0
- mlxsmith-0.1.0.dist-info/RECORD +69 -0
- mlxsmith-0.1.0.dist-info/WHEEL +5 -0
- mlxsmith-0.1.0.dist-info/entry_points.txt +2 -0
- mlxsmith-0.1.0.dist-info/licenses/LICENSE +21 -0
- mlxsmith-0.1.0.dist-info/top_level.txt +1 -0
mlxsmith/sdk/losses.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import Any, Callable, Optional, Sequence
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
LOSS_REGISTRY: dict[str, Callable[..., Any]] = {}
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
def register_loss(name: str):
|
|
10
|
+
def decorator(fn: Callable[..., Any]):
|
|
11
|
+
LOSS_REGISTRY[name] = fn
|
|
12
|
+
return fn
|
|
13
|
+
|
|
14
|
+
return decorator
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
def get_loss(name: str) -> Callable[..., Any]:
|
|
18
|
+
if name not in LOSS_REGISTRY:
|
|
19
|
+
raise KeyError(f"Unknown loss: {name}")
|
|
20
|
+
return LOSS_REGISTRY[name]
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
def _require_mx(backend) -> Any:
|
|
24
|
+
mx = getattr(backend, "mx", None)
|
|
25
|
+
if mx is None:
|
|
26
|
+
raise RuntimeError("Backend does not expose mx; cannot compute preference losses.")
|
|
27
|
+
return mx
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
def _to_mx_scalar(mx: Any, value: Any) -> Any:
|
|
31
|
+
if hasattr(value, "item"):
|
|
32
|
+
try:
|
|
33
|
+
value = value.item()
|
|
34
|
+
except Exception:
|
|
35
|
+
pass
|
|
36
|
+
try:
|
|
37
|
+
return mx.array(value)
|
|
38
|
+
except Exception:
|
|
39
|
+
return value
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
def _coerce_logprob(mx: Any, value: Any) -> Any:
|
|
43
|
+
if isinstance(value, (list, tuple)):
|
|
44
|
+
total = 0.0
|
|
45
|
+
for v in value:
|
|
46
|
+
try:
|
|
47
|
+
total += float(v)
|
|
48
|
+
except Exception:
|
|
49
|
+
total += float(_to_mx_scalar(mx, v))
|
|
50
|
+
return _to_mx_scalar(mx, total)
|
|
51
|
+
return value
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def preference_diff(
|
|
55
|
+
backend,
|
|
56
|
+
chosen_ids: Sequence[int],
|
|
57
|
+
rejected_ids: Sequence[int],
|
|
58
|
+
*,
|
|
59
|
+
prompt_len_chosen: int,
|
|
60
|
+
prompt_len_rejected: int,
|
|
61
|
+
reference_backend: Optional[Any] = None,
|
|
62
|
+
) -> Any:
|
|
63
|
+
logp_c = backend.sequence_logprob(chosen_ids, prompt_len=prompt_len_chosen)
|
|
64
|
+
logp_r = backend.sequence_logprob(rejected_ids, prompt_len=prompt_len_rejected)
|
|
65
|
+
ref_diff = 0.0
|
|
66
|
+
if reference_backend is not None:
|
|
67
|
+
ref_logp_c = reference_backend.sequence_logprob(chosen_ids, prompt_len=prompt_len_chosen)
|
|
68
|
+
ref_logp_r = reference_backend.sequence_logprob(rejected_ids, prompt_len=prompt_len_rejected)
|
|
69
|
+
ref_diff = ref_logp_c - ref_logp_r
|
|
70
|
+
return (logp_c - logp_r) - ref_diff
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
@register_loss("dpo")
|
|
74
|
+
def dpo_loss(
|
|
75
|
+
backend,
|
|
76
|
+
chosen_ids: Sequence[int],
|
|
77
|
+
rejected_ids: Sequence[int],
|
|
78
|
+
*,
|
|
79
|
+
prompt_len_chosen: int,
|
|
80
|
+
prompt_len_rejected: int,
|
|
81
|
+
beta: float = 0.1,
|
|
82
|
+
reference_backend: Optional[Any] = None,
|
|
83
|
+
kl_coeff: float = 0.0,
|
|
84
|
+
) -> Any:
|
|
85
|
+
mx = _require_mx(backend)
|
|
86
|
+
diff = preference_diff(
|
|
87
|
+
backend,
|
|
88
|
+
chosen_ids,
|
|
89
|
+
rejected_ids,
|
|
90
|
+
prompt_len_chosen=prompt_len_chosen,
|
|
91
|
+
prompt_len_rejected=prompt_len_rejected,
|
|
92
|
+
reference_backend=reference_backend,
|
|
93
|
+
)
|
|
94
|
+
scaled = _to_mx_scalar(mx, beta) * diff
|
|
95
|
+
loss = mx.log1p(mx.exp(-scaled))
|
|
96
|
+
|
|
97
|
+
if reference_backend is not None and kl_coeff > 0:
|
|
98
|
+
logp_c = backend.sequence_logprob(chosen_ids, prompt_len=prompt_len_chosen)
|
|
99
|
+
ref_logp_c = reference_backend.sequence_logprob(chosen_ids, prompt_len=prompt_len_chosen)
|
|
100
|
+
loss = loss + _to_mx_scalar(mx, kl_coeff) * (logp_c - ref_logp_c)
|
|
101
|
+
|
|
102
|
+
return loss
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
@register_loss("orpo")
|
|
106
|
+
def orpo_loss(
|
|
107
|
+
backend,
|
|
108
|
+
chosen_ids: Sequence[int],
|
|
109
|
+
rejected_ids: Sequence[int],
|
|
110
|
+
*,
|
|
111
|
+
prompt_len_chosen: int,
|
|
112
|
+
prompt_len_rejected: int,
|
|
113
|
+
beta: float = 0.1,
|
|
114
|
+
reference_backend: Optional[Any] = None,
|
|
115
|
+
kl_coeff: float = 0.0,
|
|
116
|
+
train_on_prompt: bool = False,
|
|
117
|
+
) -> Any:
|
|
118
|
+
mx = _require_mx(backend)
|
|
119
|
+
diff = preference_diff(
|
|
120
|
+
backend,
|
|
121
|
+
chosen_ids,
|
|
122
|
+
rejected_ids,
|
|
123
|
+
prompt_len_chosen=prompt_len_chosen,
|
|
124
|
+
prompt_len_rejected=prompt_len_rejected,
|
|
125
|
+
reference_backend=reference_backend,
|
|
126
|
+
)
|
|
127
|
+
nll = backend.sft_loss(chosen_ids, train_on_prompt=train_on_prompt, prompt_len=prompt_len_chosen)
|
|
128
|
+
or_term = -_to_mx_scalar(mx, beta) * mx.log(mx.sigmoid(diff))
|
|
129
|
+
loss = _to_mx_scalar(mx, nll) + or_term
|
|
130
|
+
|
|
131
|
+
if reference_backend is not None and kl_coeff > 0:
|
|
132
|
+
logp_c = backend.sequence_logprob(chosen_ids, prompt_len=prompt_len_chosen)
|
|
133
|
+
ref_logp_c = reference_backend.sequence_logprob(chosen_ids, prompt_len=prompt_len_chosen)
|
|
134
|
+
loss = loss + _to_mx_scalar(mx, kl_coeff) * (logp_c - ref_logp_c)
|
|
135
|
+
|
|
136
|
+
return loss
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
@register_loss("preference")
|
|
140
|
+
def preference_loss(
|
|
141
|
+
backend,
|
|
142
|
+
chosen_ids: Sequence[int],
|
|
143
|
+
rejected_ids: Sequence[int],
|
|
144
|
+
*,
|
|
145
|
+
prompt_len_chosen: int,
|
|
146
|
+
prompt_len_rejected: int,
|
|
147
|
+
algo: str = "dpo",
|
|
148
|
+
beta: float = 0.1,
|
|
149
|
+
reference_backend: Optional[Any] = None,
|
|
150
|
+
kl_coeff: float = 0.0,
|
|
151
|
+
train_on_prompt: bool = False,
|
|
152
|
+
) -> Any:
|
|
153
|
+
if algo.lower() == "orpo":
|
|
154
|
+
return orpo_loss(
|
|
155
|
+
backend,
|
|
156
|
+
chosen_ids,
|
|
157
|
+
rejected_ids,
|
|
158
|
+
prompt_len_chosen=prompt_len_chosen,
|
|
159
|
+
prompt_len_rejected=prompt_len_rejected,
|
|
160
|
+
beta=beta,
|
|
161
|
+
reference_backend=reference_backend,
|
|
162
|
+
kl_coeff=kl_coeff,
|
|
163
|
+
train_on_prompt=train_on_prompt,
|
|
164
|
+
)
|
|
165
|
+
return dpo_loss(
|
|
166
|
+
backend,
|
|
167
|
+
chosen_ids,
|
|
168
|
+
rejected_ids,
|
|
169
|
+
prompt_len_chosen=prompt_len_chosen,
|
|
170
|
+
prompt_len_rejected=prompt_len_rejected,
|
|
171
|
+
beta=beta,
|
|
172
|
+
reference_backend=reference_backend,
|
|
173
|
+
kl_coeff=kl_coeff,
|
|
174
|
+
)
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
@register_loss("cross_entropy")
|
|
178
|
+
def cross_entropy_loss(
|
|
179
|
+
backend,
|
|
180
|
+
token_ids: Sequence[int],
|
|
181
|
+
*,
|
|
182
|
+
prompt_len: int,
|
|
183
|
+
train_on_prompt: bool = False,
|
|
184
|
+
) -> Any:
|
|
185
|
+
return backend.sft_loss(token_ids, train_on_prompt=train_on_prompt, prompt_len=prompt_len)
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def _mx_clip(mx: Any, x: Any, lo: float, hi: float) -> Any:
|
|
189
|
+
if hasattr(mx, "minimum") and hasattr(mx, "maximum"):
|
|
190
|
+
return mx.minimum(mx.maximum(x, _to_mx_scalar(mx, lo)), _to_mx_scalar(mx, hi))
|
|
191
|
+
return min(max(x, lo), hi)
|
|
192
|
+
|
|
193
|
+
|
|
194
|
+
@register_loss("importance_sampling")
|
|
195
|
+
def importance_sampling_loss(
|
|
196
|
+
backend,
|
|
197
|
+
token_ids: Sequence[int],
|
|
198
|
+
*,
|
|
199
|
+
prompt_len: int,
|
|
200
|
+
advantage: float,
|
|
201
|
+
behavior_logprob: Optional[Any] = None,
|
|
202
|
+
) -> Any:
|
|
203
|
+
mx = _require_mx(backend)
|
|
204
|
+
logp = backend.sequence_logprob(token_ids, prompt_len=prompt_len)
|
|
205
|
+
if behavior_logprob is None:
|
|
206
|
+
behavior_logprob = logp
|
|
207
|
+
behavior_logprob = _coerce_logprob(mx, behavior_logprob)
|
|
208
|
+
ratio = mx.exp(logp - behavior_logprob)
|
|
209
|
+
return -ratio * _to_mx_scalar(mx, advantage)
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
@register_loss("ppo")
|
|
213
|
+
def ppo_loss(
|
|
214
|
+
backend,
|
|
215
|
+
token_ids: Sequence[int],
|
|
216
|
+
*,
|
|
217
|
+
prompt_len: int,
|
|
218
|
+
advantage: float,
|
|
219
|
+
behavior_logprob: Any,
|
|
220
|
+
clip: float = 0.2,
|
|
221
|
+
) -> Any:
|
|
222
|
+
mx = _require_mx(backend)
|
|
223
|
+
logp = backend.sequence_logprob(token_ids, prompt_len=prompt_len)
|
|
224
|
+
ratio = mx.exp(logp - behavior_logprob)
|
|
225
|
+
adv = _to_mx_scalar(mx, advantage)
|
|
226
|
+
clipped = _mx_clip(mx, ratio, 1.0 - clip, 1.0 + clip)
|
|
227
|
+
return -mx.minimum(ratio * adv, clipped * adv)
|
|
228
|
+
|
|
229
|
+
|
|
230
|
+
@register_loss("cispo")
|
|
231
|
+
def cispo_loss(
|
|
232
|
+
backend,
|
|
233
|
+
token_ids: Sequence[int],
|
|
234
|
+
*,
|
|
235
|
+
prompt_len: int,
|
|
236
|
+
advantage: float,
|
|
237
|
+
behavior_logprob: Any,
|
|
238
|
+
clip: float = 0.2,
|
|
239
|
+
penalty: float = 0.1,
|
|
240
|
+
) -> Any:
|
|
241
|
+
mx = _require_mx(backend)
|
|
242
|
+
logp = backend.sequence_logprob(token_ids, prompt_len=prompt_len)
|
|
243
|
+
ratio = mx.exp(logp - behavior_logprob)
|
|
244
|
+
adv = _to_mx_scalar(mx, advantage)
|
|
245
|
+
clipped = _mx_clip(mx, ratio, 1.0 - clip, 1.0 + clip)
|
|
246
|
+
penalty_term = _to_mx_scalar(mx, penalty) * (ratio - clipped) ** 2
|
|
247
|
+
return -(clipped * adv) + penalty_term
|
|
248
|
+
|
|
249
|
+
|
|
250
|
+
@register_loss("dro")
|
|
251
|
+
def dro_loss(
|
|
252
|
+
backend,
|
|
253
|
+
token_ids: Sequence[int],
|
|
254
|
+
*,
|
|
255
|
+
prompt_len: int,
|
|
256
|
+
advantage: float,
|
|
257
|
+
temperature: float = 1.0,
|
|
258
|
+
) -> Any:
|
|
259
|
+
mx = _require_mx(backend)
|
|
260
|
+
logp = backend.sequence_logprob(token_ids, prompt_len=prompt_len)
|
|
261
|
+
weight = mx.exp(_to_mx_scalar(mx, advantage) / _to_mx_scalar(mx, temperature))
|
|
262
|
+
return -weight * logp
|