mlx-cpu 0.30.1__py3-none-manylinux_2_35_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mlx/__main__.py +27 -0
- mlx/_reprlib_fix.py +16 -0
- mlx/extension.py +88 -0
- mlx/include/mlx/3rdparty/pocketfft.h +3581 -0
- mlx/include/mlx/allocator.h +73 -0
- mlx/include/mlx/array.h +645 -0
- mlx/include/mlx/backend/common/binary.h +97 -0
- mlx/include/mlx/backend/common/broadcasting.h +11 -0
- mlx/include/mlx/backend/common/buffer_cache.h +157 -0
- mlx/include/mlx/backend/common/compiled.h +77 -0
- mlx/include/mlx/backend/common/copy.h +50 -0
- mlx/include/mlx/backend/common/hadamard.h +109 -0
- mlx/include/mlx/backend/common/matmul.h +67 -0
- mlx/include/mlx/backend/common/reduce.h +59 -0
- mlx/include/mlx/backend/common/slicing.h +20 -0
- mlx/include/mlx/backend/common/ternary.h +85 -0
- mlx/include/mlx/backend/common/unary.h +29 -0
- mlx/include/mlx/backend/common/utils.h +205 -0
- mlx/include/mlx/backend/cpu/arange.h +28 -0
- mlx/include/mlx/backend/cpu/available.h +9 -0
- mlx/include/mlx/backend/cpu/binary.h +517 -0
- mlx/include/mlx/backend/cpu/binary_ops.h +98 -0
- mlx/include/mlx/backend/cpu/binary_two.h +166 -0
- mlx/include/mlx/backend/cpu/compiled_preamble.h +12 -0
- mlx/include/mlx/backend/cpu/copy.h +36 -0
- mlx/include/mlx/backend/cpu/encoder.h +67 -0
- mlx/include/mlx/backend/cpu/eval.h +12 -0
- mlx/include/mlx/backend/cpu/gemm.h +26 -0
- mlx/include/mlx/backend/cpu/gemms/simd_gemm.h +139 -0
- mlx/include/mlx/backend/cpu/jit_compiler.h +20 -0
- mlx/include/mlx/backend/cpu/lapack.h +80 -0
- mlx/include/mlx/backend/cpu/simd/accelerate_fp16_simd.h +56 -0
- mlx/include/mlx/backend/cpu/simd/accelerate_simd.h +329 -0
- mlx/include/mlx/backend/cpu/simd/base_simd.h +295 -0
- mlx/include/mlx/backend/cpu/simd/math.h +193 -0
- mlx/include/mlx/backend/cpu/simd/neon_fp16_simd.h +212 -0
- mlx/include/mlx/backend/cpu/simd/simd.h +4 -0
- mlx/include/mlx/backend/cpu/simd/type.h +11 -0
- mlx/include/mlx/backend/cpu/slicing.h +21 -0
- mlx/include/mlx/backend/cpu/ternary.h +154 -0
- mlx/include/mlx/backend/cpu/threefry.h +21 -0
- mlx/include/mlx/backend/cpu/unary.h +281 -0
- mlx/include/mlx/backend/cpu/unary_ops.h +180 -0
- mlx/include/mlx/backend/cuda/allocator.h +89 -0
- mlx/include/mlx/backend/cuda/conv/conv.h +126 -0
- mlx/include/mlx/backend/cuda/cublas_utils.h +96 -0
- mlx/include/mlx/backend/cuda/cuda.h +10 -0
- mlx/include/mlx/backend/cuda/cuda_utils.h +89 -0
- mlx/include/mlx/backend/cuda/cudnn_utils.h +171 -0
- mlx/include/mlx/backend/cuda/device/config.h +12 -0
- mlx/include/mlx/backend/cuda/device.h +189 -0
- mlx/include/mlx/backend/cuda/event.h +78 -0
- mlx/include/mlx/backend/cuda/gemms/cublas_gemm.h +114 -0
- mlx/include/mlx/backend/cuda/gemms/gemv.h +24 -0
- mlx/include/mlx/backend/cuda/jit_module.h +119 -0
- mlx/include/mlx/backend/cuda/lru_cache.h +189 -0
- mlx/include/mlx/backend/cuda/quantized/cublas_qqmm.h +88 -0
- mlx/include/mlx/backend/cuda/quantized/cuda_fp4.h +83 -0
- mlx/include/mlx/backend/cuda/quantized/qqmm_utils.h +30 -0
- mlx/include/mlx/backend/cuda/quantized/quantized.h +45 -0
- mlx/include/mlx/backend/cuda/utils.h +46 -0
- mlx/include/mlx/backend/cuda/worker.h +55 -0
- mlx/include/mlx/backend/gpu/available.h +9 -0
- mlx/include/mlx/backend/gpu/copy.h +57 -0
- mlx/include/mlx/backend/gpu/eval.h +18 -0
- mlx/include/mlx/backend/gpu/slicing.h +36 -0
- mlx/include/mlx/backend/metal/allocator.h +79 -0
- mlx/include/mlx/backend/metal/binary.h +33 -0
- mlx/include/mlx/backend/metal/device.h +283 -0
- mlx/include/mlx/backend/metal/jit/includes.h +57 -0
- mlx/include/mlx/backend/metal/jit/indexing.h +76 -0
- mlx/include/mlx/backend/metal/kernels/arange.h +9 -0
- mlx/include/mlx/backend/metal/kernels/atomic.h +345 -0
- mlx/include/mlx/backend/metal/kernels/bf16.h +16 -0
- mlx/include/mlx/backend/metal/kernels/bf16_math.h +380 -0
- mlx/include/mlx/backend/metal/kernels/binary.h +199 -0
- mlx/include/mlx/backend/metal/kernels/binary_ops.h +326 -0
- mlx/include/mlx/backend/metal/kernels/binary_two.h +244 -0
- mlx/include/mlx/backend/metal/kernels/cexpf.h +134 -0
- mlx/include/mlx/backend/metal/kernels/complex.h +173 -0
- mlx/include/mlx/backend/metal/kernels/copy.h +276 -0
- mlx/include/mlx/backend/metal/kernels/defines.h +24 -0
- mlx/include/mlx/backend/metal/kernels/erf.h +69 -0
- mlx/include/mlx/backend/metal/kernels/expm1f.h +90 -0
- mlx/include/mlx/backend/metal/kernels/fft/radix.h +328 -0
- mlx/include/mlx/backend/metal/kernels/fft/readwrite.h +624 -0
- mlx/include/mlx/backend/metal/kernels/fft.h +486 -0
- mlx/include/mlx/backend/metal/kernels/fp4.h +59 -0
- mlx/include/mlx/backend/metal/kernels/fp8.h +82 -0
- mlx/include/mlx/backend/metal/kernels/fp_quantized.h +1804 -0
- mlx/include/mlx/backend/metal/kernels/fp_quantized_nax.h +1059 -0
- mlx/include/mlx/backend/metal/kernels/gemv_masked.h +827 -0
- mlx/include/mlx/backend/metal/kernels/hadamard.h +182 -0
- mlx/include/mlx/backend/metal/kernels/indexing/gather.h +51 -0
- mlx/include/mlx/backend/metal/kernels/indexing/gather_axis.h +44 -0
- mlx/include/mlx/backend/metal/kernels/indexing/gather_front.h +24 -0
- mlx/include/mlx/backend/metal/kernels/indexing/indexing.h +23 -0
- mlx/include/mlx/backend/metal/kernels/indexing/masked_scatter.h +38 -0
- mlx/include/mlx/backend/metal/kernels/indexing/scatter.h +59 -0
- mlx/include/mlx/backend/metal/kernels/indexing/scatter_axis.h +52 -0
- mlx/include/mlx/backend/metal/kernels/logsumexp.h +140 -0
- mlx/include/mlx/backend/metal/kernels/quantized.h +2502 -0
- mlx/include/mlx/backend/metal/kernels/quantized_nax.h +1705 -0
- mlx/include/mlx/backend/metal/kernels/quantized_utils.h +90 -0
- mlx/include/mlx/backend/metal/kernels/reduce.h +5 -0
- mlx/include/mlx/backend/metal/kernels/reduce_utils.h +6 -0
- mlx/include/mlx/backend/metal/kernels/reduction/ops.h +275 -0
- mlx/include/mlx/backend/metal/kernels/reduction/reduce_all.h +66 -0
- mlx/include/mlx/backend/metal/kernels/reduction/reduce_col.h +398 -0
- mlx/include/mlx/backend/metal/kernels/reduction/reduce_init.h +8 -0
- mlx/include/mlx/backend/metal/kernels/reduction/reduce_row.h +369 -0
- mlx/include/mlx/backend/metal/kernels/scan.h +514 -0
- mlx/include/mlx/backend/metal/kernels/sdpa_vector.h +415 -0
- mlx/include/mlx/backend/metal/kernels/softmax.h +190 -0
- mlx/include/mlx/backend/metal/kernels/sort.h +715 -0
- mlx/include/mlx/backend/metal/kernels/steel/attn/attn.h +296 -0
- mlx/include/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h +476 -0
- mlx/include/mlx/backend/metal/kernels/steel/attn/kernels/steel_attention_nax.h +481 -0
- mlx/include/mlx/backend/metal/kernels/steel/attn/loader.h +264 -0
- mlx/include/mlx/backend/metal/kernels/steel/attn/mma.h +750 -0
- mlx/include/mlx/backend/metal/kernels/steel/attn/nax.h +1076 -0
- mlx/include/mlx/backend/metal/kernels/steel/attn/params.h +44 -0
- mlx/include/mlx/backend/metal/kernels/steel/attn/transforms.h +71 -0
- mlx/include/mlx/backend/metal/kernels/steel/conv/conv.h +13 -0
- mlx/include/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv.h +176 -0
- mlx/include/mlx/backend/metal/kernels/steel/conv/kernels/steel_conv_general.h +225 -0
- mlx/include/mlx/backend/metal/kernels/steel/conv/loader.h +6 -0
- mlx/include/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_l.h +451 -0
- mlx/include/mlx/backend/metal/kernels/steel/conv/loaders/loader_channel_n.h +319 -0
- mlx/include/mlx/backend/metal/kernels/steel/conv/loaders/loader_general.h +381 -0
- mlx/include/mlx/backend/metal/kernels/steel/conv/params.h +62 -0
- mlx/include/mlx/backend/metal/kernels/steel/defines.h +7 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/gemm.h +295 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/gemm_nax.h +156 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused.h +346 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_fused_nax.h +207 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather.h +459 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_gather_nax.h +132 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_masked.h +719 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h +266 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_splitk.h +227 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/loader.h +137 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/mma.h +1146 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/nax.h +1084 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/params.h +64 -0
- mlx/include/mlx/backend/metal/kernels/steel/gemm/transforms.h +72 -0
- mlx/include/mlx/backend/metal/kernels/steel/utils/integral_constant.h +134 -0
- mlx/include/mlx/backend/metal/kernels/steel/utils/type_traits.h +55 -0
- mlx/include/mlx/backend/metal/kernels/steel/utils.h +42 -0
- mlx/include/mlx/backend/metal/kernels/ternary.h +145 -0
- mlx/include/mlx/backend/metal/kernels/ternary_ops.h +10 -0
- mlx/include/mlx/backend/metal/kernels/unary.h +63 -0
- mlx/include/mlx/backend/metal/kernels/unary_ops.h +454 -0
- mlx/include/mlx/backend/metal/kernels/utils.h +444 -0
- mlx/include/mlx/backend/metal/matmul.h +144 -0
- mlx/include/mlx/backend/metal/metal.h +22 -0
- mlx/include/mlx/backend/metal/reduce.h +41 -0
- mlx/include/mlx/backend/metal/resident.h +32 -0
- mlx/include/mlx/backend/metal/scan.h +17 -0
- mlx/include/mlx/backend/metal/ternary.h +21 -0
- mlx/include/mlx/backend/metal/unary.h +21 -0
- mlx/include/mlx/backend/metal/utils.h +84 -0
- mlx/include/mlx/backend/no_gpu/apple_memory.h +16 -0
- mlx/include/mlx/backend/no_gpu/linux_memory.h +22 -0
- mlx/include/mlx/compile.h +44 -0
- mlx/include/mlx/compile_impl.h +69 -0
- mlx/include/mlx/device.h +31 -0
- mlx/include/mlx/distributed/distributed.h +60 -0
- mlx/include/mlx/distributed/distributed_impl.h +59 -0
- mlx/include/mlx/distributed/jaccl/jaccl.h +12 -0
- mlx/include/mlx/distributed/mpi/mpi.h +12 -0
- mlx/include/mlx/distributed/mpi/mpi_declarations.h +28 -0
- mlx/include/mlx/distributed/nccl/nccl.h +12 -0
- mlx/include/mlx/distributed/ops.h +56 -0
- mlx/include/mlx/distributed/primitives.h +156 -0
- mlx/include/mlx/distributed/reduction_ops.h +38 -0
- mlx/include/mlx/distributed/ring/ring.h +12 -0
- mlx/include/mlx/distributed/utils.h +67 -0
- mlx/include/mlx/dtype.h +115 -0
- mlx/include/mlx/dtype_utils.h +119 -0
- mlx/include/mlx/einsum.h +22 -0
- mlx/include/mlx/event.h +58 -0
- mlx/include/mlx/export.h +136 -0
- mlx/include/mlx/export_impl.h +98 -0
- mlx/include/mlx/fast.h +102 -0
- mlx/include/mlx/fast_primitives.h +427 -0
- mlx/include/mlx/fence.h +39 -0
- mlx/include/mlx/fft.h +167 -0
- mlx/include/mlx/graph_utils.h +66 -0
- mlx/include/mlx/io/gguf.h +20 -0
- mlx/include/mlx/io/load.h +175 -0
- mlx/include/mlx/io.h +61 -0
- mlx/include/mlx/linalg.h +111 -0
- mlx/include/mlx/memory.h +78 -0
- mlx/include/mlx/mlx.h +25 -0
- mlx/include/mlx/ops.h +1627 -0
- mlx/include/mlx/primitives.h +2524 -0
- mlx/include/mlx/random.h +282 -0
- mlx/include/mlx/scheduler.h +188 -0
- mlx/include/mlx/small_vector.h +540 -0
- mlx/include/mlx/stream.h +41 -0
- mlx/include/mlx/threadpool.h +133 -0
- mlx/include/mlx/transforms.h +229 -0
- mlx/include/mlx/transforms_impl.h +86 -0
- mlx/include/mlx/types/bf16.h +187 -0
- mlx/include/mlx/types/complex.h +113 -0
- mlx/include/mlx/types/fp16.h +234 -0
- mlx/include/mlx/types/half_types.h +58 -0
- mlx/include/mlx/types/limits.h +70 -0
- mlx/include/mlx/utils.h +175 -0
- mlx/include/mlx/version.h +20 -0
- mlx/lib/libmlx.so +0 -0
- mlx/py.typed +1 -0
- mlx/share/cmake/MLX/FindNCCL.cmake +54 -0
- mlx/share/cmake/MLX/Findnvpl.cmake +3 -0
- mlx/share/cmake/MLX/MLXConfig.cmake +66 -0
- mlx/share/cmake/MLX/MLXConfigVersion.cmake +65 -0
- mlx/share/cmake/MLX/MLXTargets-release.cmake +19 -0
- mlx/share/cmake/MLX/MLXTargets.cmake +106 -0
- mlx/share/cmake/MLX/extension.cmake +50 -0
- mlx/utils.py +325 -0
- mlx_cpu-0.30.1.dist-info/METADATA +142 -0
- mlx_cpu-0.30.1.dist-info/RECORD +231 -0
- mlx_cpu-0.30.1.dist-info/WHEEL +5 -0
- mlx_cpu-0.30.1.dist-info/licenses/LICENSE +21 -0
- mlx_cpu-0.30.1.dist-info/sboms/auditwheel.cdx.json +1 -0
- mlx_cpu-0.30.1.dist-info/top_level.txt +1 -0
- mlx_cpu.libs/libblas-bd8a282c.so.3.10.0 +0 -0
- mlx_cpu.libs/libgfortran-3ec47101.so.5.0.0 +0 -0
- mlx_cpu.libs/liblapack-86b2c207.so.3.10.0 +0 -0
- mlx_cpu.libs/libquadmath-67d31475.so.0.0.0 +0 -0
|
@@ -0,0 +1,517 @@
|
|
|
1
|
+
// Copyright © 2023 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
#include <cassert>
|
|
5
|
+
|
|
6
|
+
#include "mlx/array.h"
|
|
7
|
+
#include "mlx/backend/common/binary.h"
|
|
8
|
+
#include "mlx/backend/common/utils.h"
|
|
9
|
+
|
|
10
|
+
#include "mlx/backend/cpu/encoder.h"
|
|
11
|
+
#include "mlx/backend/cpu/simd/simd.h"
|
|
12
|
+
|
|
13
|
+
namespace mlx::core {
|
|
14
|
+
|
|
15
|
+
template <typename Op>
|
|
16
|
+
struct VectorScalar {
|
|
17
|
+
template <typename T, typename U>
|
|
18
|
+
void operator()(const T* a, const T* b, U* dst, int size) {
|
|
19
|
+
T scalar = *b;
|
|
20
|
+
constexpr int N = simd::max_size<T>;
|
|
21
|
+
while (size >= N) {
|
|
22
|
+
simd::store(dst, Op{}(simd::load<T, N>(a), simd::Simd<T, N>(scalar)));
|
|
23
|
+
dst += N;
|
|
24
|
+
a += N;
|
|
25
|
+
size -= N;
|
|
26
|
+
}
|
|
27
|
+
while (size-- > 0) {
|
|
28
|
+
*dst = Op{}(*a, scalar);
|
|
29
|
+
dst++;
|
|
30
|
+
a++;
|
|
31
|
+
}
|
|
32
|
+
}
|
|
33
|
+
};
|
|
34
|
+
|
|
35
|
+
template <typename Op>
|
|
36
|
+
struct ScalarVector {
|
|
37
|
+
template <typename T, typename U>
|
|
38
|
+
void operator()(const T* a, const T* b, U* dst, int size) {
|
|
39
|
+
T scalar = *a;
|
|
40
|
+
constexpr int N = simd::max_size<T>;
|
|
41
|
+
while (size >= N) {
|
|
42
|
+
simd::store(dst, Op{}(simd::Simd<T, N>(scalar), simd::load<T, N>(b)));
|
|
43
|
+
dst += N;
|
|
44
|
+
b += N;
|
|
45
|
+
size -= N;
|
|
46
|
+
}
|
|
47
|
+
while (size-- > 0) {
|
|
48
|
+
*dst = Op{}(scalar, *b);
|
|
49
|
+
dst++;
|
|
50
|
+
b++;
|
|
51
|
+
}
|
|
52
|
+
}
|
|
53
|
+
};
|
|
54
|
+
|
|
55
|
+
template <typename Op>
|
|
56
|
+
struct VectorVector {
|
|
57
|
+
template <typename T, typename U>
|
|
58
|
+
void operator()(const T* a, const T* b, U* dst, int size) {
|
|
59
|
+
constexpr int N = simd::max_size<T>;
|
|
60
|
+
while (size >= N) {
|
|
61
|
+
simd::store(dst, Op{}(simd::load<T, N>(a), simd::load<T, N>(b)));
|
|
62
|
+
dst += N;
|
|
63
|
+
a += N;
|
|
64
|
+
b += N;
|
|
65
|
+
size -= N;
|
|
66
|
+
}
|
|
67
|
+
while (size-- > 0) {
|
|
68
|
+
*dst = Op{}(*a, *b);
|
|
69
|
+
dst++;
|
|
70
|
+
a++;
|
|
71
|
+
b++;
|
|
72
|
+
}
|
|
73
|
+
}
|
|
74
|
+
};
|
|
75
|
+
|
|
76
|
+
template <typename T, typename U, typename Op, int D, bool Strided>
|
|
77
|
+
void binary_op_dims(
|
|
78
|
+
const T* a,
|
|
79
|
+
const T* b,
|
|
80
|
+
U* out,
|
|
81
|
+
const Shape& shape,
|
|
82
|
+
const Strides& a_strides,
|
|
83
|
+
const Strides& b_strides,
|
|
84
|
+
const Strides& out_strides,
|
|
85
|
+
int axis) {
|
|
86
|
+
auto stride_a = a_strides[axis];
|
|
87
|
+
auto stride_b = b_strides[axis];
|
|
88
|
+
auto stride_out = out_strides[axis];
|
|
89
|
+
auto N = shape[axis];
|
|
90
|
+
|
|
91
|
+
for (int i = 0; i < N; i++) {
|
|
92
|
+
if constexpr (D > 1) {
|
|
93
|
+
binary_op_dims<T, U, Op, D - 1, Strided>(
|
|
94
|
+
a, b, out, shape, a_strides, b_strides, out_strides, axis + 1);
|
|
95
|
+
} else {
|
|
96
|
+
if constexpr (Strided) {
|
|
97
|
+
Op{}(a, b, out, stride_out);
|
|
98
|
+
} else {
|
|
99
|
+
*out = Op{}(*a, *b);
|
|
100
|
+
}
|
|
101
|
+
}
|
|
102
|
+
out += stride_out;
|
|
103
|
+
a += stride_a;
|
|
104
|
+
b += stride_b;
|
|
105
|
+
}
|
|
106
|
+
}
|
|
107
|
+
|
|
108
|
+
template <typename T, typename U, bool Strided, typename Op>
|
|
109
|
+
void binary_op_dispatch_dims(
|
|
110
|
+
const T* a,
|
|
111
|
+
const T* b,
|
|
112
|
+
U* out,
|
|
113
|
+
int dim,
|
|
114
|
+
int size,
|
|
115
|
+
const Shape& shape,
|
|
116
|
+
const Strides& a_strides,
|
|
117
|
+
const Strides& b_strides,
|
|
118
|
+
const Strides& out_strides) {
|
|
119
|
+
switch (dim) {
|
|
120
|
+
case 1:
|
|
121
|
+
binary_op_dims<T, U, Op, 1, Strided>(
|
|
122
|
+
a, b, out, shape, a_strides, b_strides, out_strides, 0);
|
|
123
|
+
return;
|
|
124
|
+
case 2:
|
|
125
|
+
binary_op_dims<T, U, Op, 2, Strided>(
|
|
126
|
+
a, b, out, shape, a_strides, b_strides, out_strides, 0);
|
|
127
|
+
return;
|
|
128
|
+
case 3:
|
|
129
|
+
binary_op_dims<T, U, Op, 3, Strided>(
|
|
130
|
+
a, b, out, shape, a_strides, b_strides, out_strides, 0);
|
|
131
|
+
return;
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
ContiguousIterator a_it(shape, a_strides, dim - 3);
|
|
135
|
+
ContiguousIterator b_it(shape, b_strides, dim - 3);
|
|
136
|
+
auto stride = out_strides[dim - 4];
|
|
137
|
+
for (int64_t elem = 0; elem < size; elem += stride) {
|
|
138
|
+
binary_op_dims<T, U, Op, 3, Strided>(
|
|
139
|
+
a + a_it.loc,
|
|
140
|
+
b + b_it.loc,
|
|
141
|
+
out + elem,
|
|
142
|
+
shape,
|
|
143
|
+
a_strides,
|
|
144
|
+
b_strides,
|
|
145
|
+
out_strides,
|
|
146
|
+
dim - 3);
|
|
147
|
+
a_it.step();
|
|
148
|
+
b_it.step();
|
|
149
|
+
}
|
|
150
|
+
}
|
|
151
|
+
|
|
152
|
+
template <typename T, typename U, typename Op>
|
|
153
|
+
void binary_op(const array& a, const array& b, array& out, BinaryOpType bopt) {
|
|
154
|
+
// The full computation is scalar scalar so call the base op once
|
|
155
|
+
auto a_ptr = a.data<T>();
|
|
156
|
+
auto b_ptr = b.data<T>();
|
|
157
|
+
|
|
158
|
+
auto out_ptr = out.data<U>();
|
|
159
|
+
if (bopt == BinaryOpType::ScalarScalar) {
|
|
160
|
+
*out_ptr = Op{}(*a_ptr, *b_ptr);
|
|
161
|
+
return;
|
|
162
|
+
}
|
|
163
|
+
|
|
164
|
+
// The full computation is scalar vector so delegate to the op
|
|
165
|
+
if (bopt == BinaryOpType::ScalarVector) {
|
|
166
|
+
ScalarVector<Op>{}(a_ptr, b_ptr, out_ptr, b.data_size());
|
|
167
|
+
return;
|
|
168
|
+
}
|
|
169
|
+
|
|
170
|
+
// The full computation is vector scalar so delegate to the op
|
|
171
|
+
if (bopt == BinaryOpType::VectorScalar) {
|
|
172
|
+
VectorScalar<Op>{}(a_ptr, b_ptr, out_ptr, a.data_size());
|
|
173
|
+
return;
|
|
174
|
+
}
|
|
175
|
+
|
|
176
|
+
// The full computation is vector vector so delegate to the op
|
|
177
|
+
if (bopt == BinaryOpType::VectorVector) {
|
|
178
|
+
VectorVector<Op>{}(a_ptr, b_ptr, out_ptr, a.size());
|
|
179
|
+
return;
|
|
180
|
+
}
|
|
181
|
+
|
|
182
|
+
// General computation so let's try to optimize
|
|
183
|
+
auto [new_shape, new_strides] = collapse_contiguous_dims(
|
|
184
|
+
a.shape(), {a.strides(), b.strides(), out.strides()});
|
|
185
|
+
auto& a_strides = new_strides[0];
|
|
186
|
+
auto& b_strides = new_strides[1];
|
|
187
|
+
auto& strides = new_strides[2];
|
|
188
|
+
|
|
189
|
+
// Get the left-most dim such that the array is row contiguous after
|
|
190
|
+
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
|
|
191
|
+
int d = arr_strides.size() - 1;
|
|
192
|
+
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
|
|
193
|
+
}
|
|
194
|
+
return d + 1;
|
|
195
|
+
};
|
|
196
|
+
auto a_rc_dim = leftmost_rc_dim(a_strides);
|
|
197
|
+
auto b_rc_dim = leftmost_rc_dim(b_strides);
|
|
198
|
+
|
|
199
|
+
// Get the left-most dim such that the array is a broadcasted "scalar" after
|
|
200
|
+
auto leftmost_s_dim = [](const auto& arr_strides) {
|
|
201
|
+
int d = arr_strides.size() - 1;
|
|
202
|
+
for (; d >= 0 && arr_strides[d] == 0; d--) {
|
|
203
|
+
}
|
|
204
|
+
return d + 1;
|
|
205
|
+
};
|
|
206
|
+
auto a_s_dim = leftmost_s_dim(a_strides);
|
|
207
|
+
auto b_s_dim = leftmost_s_dim(b_strides);
|
|
208
|
+
|
|
209
|
+
auto ndim = new_shape.size();
|
|
210
|
+
|
|
211
|
+
// Case 1: LxM and FxM where L and F are broadcastable and M is row
|
|
212
|
+
// contiguous
|
|
213
|
+
int dim = ndim;
|
|
214
|
+
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
|
|
215
|
+
bopt = BinaryOpType::VectorVector;
|
|
216
|
+
dim = d;
|
|
217
|
+
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
|
|
218
|
+
// contiguous
|
|
219
|
+
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
|
|
220
|
+
bopt = BinaryOpType::VectorScalar;
|
|
221
|
+
dim = d;
|
|
222
|
+
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
|
|
223
|
+
// contiguous
|
|
224
|
+
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
|
|
225
|
+
bopt = BinaryOpType::ScalarVector;
|
|
226
|
+
dim = d;
|
|
227
|
+
}
|
|
228
|
+
|
|
229
|
+
// Can be sure dim > 0 since otherwise we would have used one of the fully
|
|
230
|
+
// contiguous methods above. Except for the case that the flags do not
|
|
231
|
+
// correspond to the underlying contiguity.
|
|
232
|
+
if (dim == 0 || strides[dim - 1] < 16) {
|
|
233
|
+
bopt = BinaryOpType::General;
|
|
234
|
+
dim = ndim;
|
|
235
|
+
}
|
|
236
|
+
|
|
237
|
+
switch (bopt) {
|
|
238
|
+
case BinaryOpType::VectorVector:
|
|
239
|
+
binary_op_dispatch_dims<T, U, true, VectorVector<Op>>(
|
|
240
|
+
a_ptr,
|
|
241
|
+
b_ptr,
|
|
242
|
+
out_ptr,
|
|
243
|
+
dim,
|
|
244
|
+
a.size(),
|
|
245
|
+
new_shape,
|
|
246
|
+
a_strides,
|
|
247
|
+
b_strides,
|
|
248
|
+
strides);
|
|
249
|
+
break;
|
|
250
|
+
case BinaryOpType::VectorScalar:
|
|
251
|
+
binary_op_dispatch_dims<T, U, true, VectorScalar<Op>>(
|
|
252
|
+
a_ptr,
|
|
253
|
+
b_ptr,
|
|
254
|
+
out_ptr,
|
|
255
|
+
dim,
|
|
256
|
+
a.size(),
|
|
257
|
+
new_shape,
|
|
258
|
+
a_strides,
|
|
259
|
+
b_strides,
|
|
260
|
+
strides);
|
|
261
|
+
break;
|
|
262
|
+
case BinaryOpType::ScalarVector:
|
|
263
|
+
binary_op_dispatch_dims<T, U, true, ScalarVector<Op>>(
|
|
264
|
+
a_ptr,
|
|
265
|
+
b_ptr,
|
|
266
|
+
out_ptr,
|
|
267
|
+
dim,
|
|
268
|
+
a.size(),
|
|
269
|
+
new_shape,
|
|
270
|
+
a_strides,
|
|
271
|
+
b_strides,
|
|
272
|
+
strides);
|
|
273
|
+
break;
|
|
274
|
+
default:
|
|
275
|
+
binary_op_dispatch_dims<T, U, false, Op>(
|
|
276
|
+
a_ptr,
|
|
277
|
+
b_ptr,
|
|
278
|
+
out_ptr,
|
|
279
|
+
dim,
|
|
280
|
+
a.size(),
|
|
281
|
+
new_shape,
|
|
282
|
+
a_strides,
|
|
283
|
+
b_strides,
|
|
284
|
+
strides);
|
|
285
|
+
break;
|
|
286
|
+
}
|
|
287
|
+
}
|
|
288
|
+
|
|
289
|
+
template <typename T, typename Op>
|
|
290
|
+
void binary_op(const array& a, const array& b, array& out, BinaryOpType bopt) {
|
|
291
|
+
binary_op<T, T, Op>(a, b, out, bopt);
|
|
292
|
+
}
|
|
293
|
+
|
|
294
|
+
template <typename Op>
|
|
295
|
+
void binary_op_cpu(
|
|
296
|
+
const array& a,
|
|
297
|
+
const array& b,
|
|
298
|
+
array& out,
|
|
299
|
+
Op op,
|
|
300
|
+
Stream stream) {
|
|
301
|
+
auto bopt = get_binary_op_type(a, b);
|
|
302
|
+
set_binary_op_output_data(a, b, out, bopt);
|
|
303
|
+
|
|
304
|
+
auto& encoder = cpu::get_command_encoder(stream);
|
|
305
|
+
encoder.set_input_array(a);
|
|
306
|
+
encoder.set_input_array(b);
|
|
307
|
+
encoder.set_output_array(out);
|
|
308
|
+
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
|
309
|
+
b = array::unsafe_weak_copy(b),
|
|
310
|
+
out = array::unsafe_weak_copy(out),
|
|
311
|
+
bopt]() mutable {
|
|
312
|
+
switch (out.dtype()) {
|
|
313
|
+
case bool_:
|
|
314
|
+
binary_op<bool, Op>(a, b, out, bopt);
|
|
315
|
+
break;
|
|
316
|
+
case uint8:
|
|
317
|
+
binary_op<uint8_t, Op>(a, b, out, bopt);
|
|
318
|
+
break;
|
|
319
|
+
case uint16:
|
|
320
|
+
binary_op<uint16_t, Op>(a, b, out, bopt);
|
|
321
|
+
break;
|
|
322
|
+
case uint32:
|
|
323
|
+
binary_op<uint32_t, Op>(a, b, out, bopt);
|
|
324
|
+
break;
|
|
325
|
+
case uint64:
|
|
326
|
+
binary_op<uint64_t, Op>(a, b, out, bopt);
|
|
327
|
+
break;
|
|
328
|
+
case int8:
|
|
329
|
+
binary_op<int8_t, Op>(a, b, out, bopt);
|
|
330
|
+
break;
|
|
331
|
+
case int16:
|
|
332
|
+
binary_op<int16_t, Op>(a, b, out, bopt);
|
|
333
|
+
break;
|
|
334
|
+
case int32:
|
|
335
|
+
binary_op<int32_t, Op>(a, b, out, bopt);
|
|
336
|
+
break;
|
|
337
|
+
case int64:
|
|
338
|
+
binary_op<int64_t, Op>(a, b, out, bopt);
|
|
339
|
+
break;
|
|
340
|
+
case float16:
|
|
341
|
+
binary_op<float16_t, Op>(a, b, out, bopt);
|
|
342
|
+
break;
|
|
343
|
+
case float32:
|
|
344
|
+
binary_op<float, Op>(a, b, out, bopt);
|
|
345
|
+
break;
|
|
346
|
+
case float64:
|
|
347
|
+
binary_op<double, Op>(a, b, out, bopt);
|
|
348
|
+
break;
|
|
349
|
+
case bfloat16:
|
|
350
|
+
binary_op<bfloat16_t, Op>(a, b, out, bopt);
|
|
351
|
+
break;
|
|
352
|
+
case complex64:
|
|
353
|
+
binary_op<complex64_t, Op>(a, b, out, bopt);
|
|
354
|
+
break;
|
|
355
|
+
}
|
|
356
|
+
});
|
|
357
|
+
}
|
|
358
|
+
|
|
359
|
+
template <typename Op>
|
|
360
|
+
void comparison_op_cpu(
|
|
361
|
+
const array& a,
|
|
362
|
+
const array& b,
|
|
363
|
+
array& out,
|
|
364
|
+
Op op,
|
|
365
|
+
Stream stream) {
|
|
366
|
+
auto bopt = get_binary_op_type(a, b);
|
|
367
|
+
set_binary_op_output_data(a, b, out, bopt);
|
|
368
|
+
|
|
369
|
+
auto& encoder = cpu::get_command_encoder(stream);
|
|
370
|
+
encoder.set_input_array(a);
|
|
371
|
+
encoder.set_input_array(b);
|
|
372
|
+
encoder.set_output_array(out);
|
|
373
|
+
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
|
374
|
+
b = array::unsafe_weak_copy(b),
|
|
375
|
+
out = array::unsafe_weak_copy(out),
|
|
376
|
+
bopt]() mutable {
|
|
377
|
+
switch (a.dtype()) {
|
|
378
|
+
case bool_:
|
|
379
|
+
binary_op<bool, bool, Op>(a, b, out, bopt);
|
|
380
|
+
break;
|
|
381
|
+
case uint8:
|
|
382
|
+
binary_op<uint8_t, bool, Op>(a, b, out, bopt);
|
|
383
|
+
break;
|
|
384
|
+
case uint16:
|
|
385
|
+
binary_op<uint16_t, bool, Op>(a, b, out, bopt);
|
|
386
|
+
break;
|
|
387
|
+
case uint32:
|
|
388
|
+
binary_op<uint32_t, bool, Op>(a, b, out, bopt);
|
|
389
|
+
break;
|
|
390
|
+
case uint64:
|
|
391
|
+
binary_op<uint64_t, bool, Op>(a, b, out, bopt);
|
|
392
|
+
break;
|
|
393
|
+
case int8:
|
|
394
|
+
binary_op<int8_t, bool, Op>(a, b, out, bopt);
|
|
395
|
+
break;
|
|
396
|
+
case int16:
|
|
397
|
+
binary_op<int16_t, bool, Op>(a, b, out, bopt);
|
|
398
|
+
break;
|
|
399
|
+
case int32:
|
|
400
|
+
binary_op<int32_t, bool, Op>(a, b, out, bopt);
|
|
401
|
+
break;
|
|
402
|
+
case int64:
|
|
403
|
+
binary_op<int64_t, bool, Op>(a, b, out, bopt);
|
|
404
|
+
break;
|
|
405
|
+
case float16:
|
|
406
|
+
binary_op<float16_t, bool, Op>(a, b, out, bopt);
|
|
407
|
+
break;
|
|
408
|
+
case float32:
|
|
409
|
+
binary_op<float, bool, Op>(a, b, out, bopt);
|
|
410
|
+
break;
|
|
411
|
+
case float64:
|
|
412
|
+
binary_op<double, bool, Op>(a, b, out, bopt);
|
|
413
|
+
break;
|
|
414
|
+
case bfloat16:
|
|
415
|
+
binary_op<bfloat16_t, bool, Op>(a, b, out, bopt);
|
|
416
|
+
break;
|
|
417
|
+
case complex64:
|
|
418
|
+
binary_op<complex64_t, bool, Op>(a, b, out, bopt);
|
|
419
|
+
break;
|
|
420
|
+
}
|
|
421
|
+
});
|
|
422
|
+
}
|
|
423
|
+
|
|
424
|
+
template <typename Op>
|
|
425
|
+
void binary_float_op_cpu(
|
|
426
|
+
const array& a,
|
|
427
|
+
const array& b,
|
|
428
|
+
array& out,
|
|
429
|
+
Op op,
|
|
430
|
+
Stream stream) {
|
|
431
|
+
auto bopt = get_binary_op_type(a, b);
|
|
432
|
+
set_binary_op_output_data(a, b, out, bopt);
|
|
433
|
+
|
|
434
|
+
auto& encoder = cpu::get_command_encoder(stream);
|
|
435
|
+
encoder.set_input_array(a);
|
|
436
|
+
encoder.set_input_array(b);
|
|
437
|
+
encoder.set_output_array(out);
|
|
438
|
+
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
|
439
|
+
b = array::unsafe_weak_copy(b),
|
|
440
|
+
out = array::unsafe_weak_copy(out),
|
|
441
|
+
bopt]() mutable {
|
|
442
|
+
switch (out.dtype()) {
|
|
443
|
+
case float16:
|
|
444
|
+
binary_op<float16_t, Op>(a, b, out, bopt);
|
|
445
|
+
break;
|
|
446
|
+
case float32:
|
|
447
|
+
binary_op<float, Op>(a, b, out, bopt);
|
|
448
|
+
break;
|
|
449
|
+
case float64:
|
|
450
|
+
binary_op<double, Op>(a, b, out, bopt);
|
|
451
|
+
break;
|
|
452
|
+
case bfloat16:
|
|
453
|
+
binary_op<bfloat16_t, Op>(a, b, out, bopt);
|
|
454
|
+
break;
|
|
455
|
+
case complex64:
|
|
456
|
+
binary_op<complex64_t, Op>(a, b, out, bopt);
|
|
457
|
+
break;
|
|
458
|
+
default:
|
|
459
|
+
throw std::runtime_error(
|
|
460
|
+
"[binary_float] Only supports floating point types.");
|
|
461
|
+
}
|
|
462
|
+
});
|
|
463
|
+
}
|
|
464
|
+
|
|
465
|
+
template <typename Op>
|
|
466
|
+
void binary_int_op_cpu(
|
|
467
|
+
const array& a,
|
|
468
|
+
const array& b,
|
|
469
|
+
array& out,
|
|
470
|
+
Op op,
|
|
471
|
+
Stream stream) {
|
|
472
|
+
auto bopt = get_binary_op_type(a, b);
|
|
473
|
+
set_binary_op_output_data(a, b, out, bopt);
|
|
474
|
+
|
|
475
|
+
auto& encoder = cpu::get_command_encoder(stream);
|
|
476
|
+
encoder.set_input_array(a);
|
|
477
|
+
encoder.set_input_array(b);
|
|
478
|
+
encoder.set_output_array(out);
|
|
479
|
+
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
|
480
|
+
b = array::unsafe_weak_copy(b),
|
|
481
|
+
out = array::unsafe_weak_copy(out),
|
|
482
|
+
bopt]() mutable {
|
|
483
|
+
switch (out.dtype()) {
|
|
484
|
+
case bool_:
|
|
485
|
+
binary_op<bool, Op>(a, b, out, bopt);
|
|
486
|
+
case uint8:
|
|
487
|
+
binary_op<uint8_t, Op>(a, b, out, bopt);
|
|
488
|
+
break;
|
|
489
|
+
case uint16:
|
|
490
|
+
binary_op<uint16_t, Op>(a, b, out, bopt);
|
|
491
|
+
break;
|
|
492
|
+
case uint32:
|
|
493
|
+
binary_op<uint32_t, Op>(a, b, out, bopt);
|
|
494
|
+
break;
|
|
495
|
+
case uint64:
|
|
496
|
+
binary_op<uint64_t, Op>(a, b, out, bopt);
|
|
497
|
+
break;
|
|
498
|
+
case int8:
|
|
499
|
+
binary_op<int8_t, Op>(a, b, out, bopt);
|
|
500
|
+
break;
|
|
501
|
+
case int16:
|
|
502
|
+
binary_op<int16_t, Op>(a, b, out, bopt);
|
|
503
|
+
break;
|
|
504
|
+
case int32:
|
|
505
|
+
binary_op<int32_t, Op>(a, b, out, bopt);
|
|
506
|
+
break;
|
|
507
|
+
case int64:
|
|
508
|
+
binary_op<int64_t, Op>(a, b, out, bopt);
|
|
509
|
+
break;
|
|
510
|
+
default:
|
|
511
|
+
throw std::runtime_error("[binary_int] Type not supported");
|
|
512
|
+
break;
|
|
513
|
+
}
|
|
514
|
+
});
|
|
515
|
+
}
|
|
516
|
+
|
|
517
|
+
} // namespace mlx::core
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
// Copyright © 2023-2024 Apple Inc.
|
|
2
|
+
|
|
3
|
+
#pragma once
|
|
4
|
+
|
|
5
|
+
#include "mlx/backend/cpu/simd/simd.h"
|
|
6
|
+
|
|
7
|
+
namespace mlx::core::detail {
|
|
8
|
+
|
|
9
|
+
using namespace mlx::core::simd;
|
|
10
|
+
|
|
11
|
+
#define BINARY_SINGLE() \
|
|
12
|
+
template <typename T> \
|
|
13
|
+
T operator()(T x, T y) { \
|
|
14
|
+
return (*this)(Simd<T, 1>(x), Simd<T, 1>(y)).value; \
|
|
15
|
+
}
|
|
16
|
+
|
|
17
|
+
#define DEFAULT_BINARY_OP(Op, op) \
|
|
18
|
+
struct Op { \
|
|
19
|
+
template <int N, typename T> \
|
|
20
|
+
Simd<T, N> operator()(Simd<T, N> x, Simd<T, N> y) { \
|
|
21
|
+
return op(x, y); \
|
|
22
|
+
} \
|
|
23
|
+
BINARY_SINGLE() \
|
|
24
|
+
};
|
|
25
|
+
|
|
26
|
+
DEFAULT_BINARY_OP(Add, operator+)
|
|
27
|
+
DEFAULT_BINARY_OP(ArcTan2, atan2)
|
|
28
|
+
DEFAULT_BINARY_OP(Divide, operator/)
|
|
29
|
+
DEFAULT_BINARY_OP(Multiply, operator*)
|
|
30
|
+
DEFAULT_BINARY_OP(Subtract, operator-)
|
|
31
|
+
DEFAULT_BINARY_OP(LogicalAnd, operator&&)
|
|
32
|
+
DEFAULT_BINARY_OP(LogicalOr, operator||)
|
|
33
|
+
DEFAULT_BINARY_OP(BitwiseAnd, operator&)
|
|
34
|
+
DEFAULT_BINARY_OP(BitwiseOr, operator|)
|
|
35
|
+
DEFAULT_BINARY_OP(BitwiseXor, operator^)
|
|
36
|
+
DEFAULT_BINARY_OP(LeftShift, operator<<)
|
|
37
|
+
DEFAULT_BINARY_OP(RightShift, operator>>)
|
|
38
|
+
DEFAULT_BINARY_OP(Remainder, remainder)
|
|
39
|
+
DEFAULT_BINARY_OP(Maximum, maximum)
|
|
40
|
+
DEFAULT_BINARY_OP(Minimum, minimum)
|
|
41
|
+
DEFAULT_BINARY_OP(Power, pow)
|
|
42
|
+
|
|
43
|
+
#define DEFAULT_BOOL_OP(Op, op) \
|
|
44
|
+
struct Op { \
|
|
45
|
+
template <int N, typename T> \
|
|
46
|
+
Simd<bool, N> operator()(Simd<T, N> x, Simd<T, N> y) { \
|
|
47
|
+
return op(x, y); \
|
|
48
|
+
} \
|
|
49
|
+
template <typename T> \
|
|
50
|
+
bool operator()(T x, T y) { \
|
|
51
|
+
return (*this)(Simd<T, 1>(x), Simd<T, 1>(y)).value; \
|
|
52
|
+
} \
|
|
53
|
+
};
|
|
54
|
+
|
|
55
|
+
DEFAULT_BOOL_OP(Equal, operator==)
|
|
56
|
+
DEFAULT_BOOL_OP(Greater, operator>)
|
|
57
|
+
DEFAULT_BOOL_OP(GreaterEqual, operator>=)
|
|
58
|
+
DEFAULT_BOOL_OP(Less, operator<)
|
|
59
|
+
DEFAULT_BOOL_OP(LessEqual, operator<=)
|
|
60
|
+
DEFAULT_BOOL_OP(NotEqual, operator!=)
|
|
61
|
+
|
|
62
|
+
struct NaNEqual {
|
|
63
|
+
template <int N, typename T>
|
|
64
|
+
Simd<bool, N> operator()(Simd<T, N> x, Simd<T, N> y) {
|
|
65
|
+
return x == y || (isnan(x) && isnan(y));
|
|
66
|
+
}
|
|
67
|
+
template <typename T>
|
|
68
|
+
bool operator()(T x, T y) {
|
|
69
|
+
return (*this)(Simd<T, 1>(x), Simd<T, 1>(y)).value;
|
|
70
|
+
}
|
|
71
|
+
};
|
|
72
|
+
|
|
73
|
+
struct LogAddExp {
|
|
74
|
+
template <int N, typename T>
|
|
75
|
+
Simd<T, N> operator()(Simd<T, N> x, Simd<T, N> y) {
|
|
76
|
+
auto maxval = maximum(x, y);
|
|
77
|
+
auto minval = minimum(x, y);
|
|
78
|
+
auto mask = minval == -inf || maxval == inf;
|
|
79
|
+
auto out = maxval + log1p(exp(minval - maxval));
|
|
80
|
+
return select(mask, Simd<T, N>(maxval), Simd<T, N>(out));
|
|
81
|
+
}
|
|
82
|
+
BINARY_SINGLE()
|
|
83
|
+
};
|
|
84
|
+
|
|
85
|
+
struct Select {
|
|
86
|
+
template <typename T>
|
|
87
|
+
T operator()(bool condition, T x, T y) {
|
|
88
|
+
return (*this)(Simd<bool, 1>(condition), Simd<T, 1>(x), Simd<T, 1>(y))
|
|
89
|
+
.value;
|
|
90
|
+
}
|
|
91
|
+
|
|
92
|
+
template <int N, typename T>
|
|
93
|
+
Simd<T, N> operator()(Simd<bool, N> condition, Simd<T, N> x, Simd<T, N> y) {
|
|
94
|
+
return select(condition, x, y);
|
|
95
|
+
}
|
|
96
|
+
};
|
|
97
|
+
|
|
98
|
+
} // namespace mlx::core::detail
|