mlx-cluster 0.0.6__cp313-cp313-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,5 @@
1
+ import mlx.core as mx
2
+
3
+ from ._ext import random_walk
4
+ from ._ext import rejection_sampling
5
+ from ._ext import neighbor_sample
Binary file
Binary file
Binary file
@@ -0,0 +1,243 @@
1
+ Metadata-Version: 2.4
2
+ Name: mlx_cluster
3
+ Version: 0.0.6
4
+ Summary: C++ extension for generating random graphs
5
+ Author-email: Vinay Pandya <vinayharshadpandya27@gmail.com>
6
+ Project-URL: Homepage, https://github.com/vinayhpandya/mlx_cluster
7
+ Project-URL: Issues, https://github.com/vinayhpandya/mlx_cluster/Issues
8
+ Classifier: Development Status :: 3 - Alpha
9
+ Classifier: Programming Language :: Python :: 3
10
+ Classifier: Programming Language :: C++
11
+ Classifier: License :: OSI Approved :: MIT License
12
+ Classifier: Operating System :: MacOS
13
+ Requires-Python: >=3.8
14
+ Description-Content-Type: text/markdown
15
+ License-File: LICENSE
16
+ Provides-Extra: dev
17
+ Provides-Extra: docs
18
+ Requires-Dist: mlx>=0.27.1; extra == "docs"
19
+ Requires-Dist: mlx-graphs>=0.0.8; extra == "docs"
20
+ Requires-Dist: ipython==8.21.0; extra == "docs"
21
+ Requires-Dist: sphinx>=7.2.6; extra == "docs"
22
+ Requires-Dist: sphinx-book-theme==1.1.0; extra == "docs"
23
+ Requires-Dist: sphinx-autodoc-typehints==1.25.2; extra == "docs"
24
+ Requires-Dist: nbsphinx==0.9.3; extra == "docs"
25
+ Requires-Dist: sphinx-gallery==0.15.0; extra == "docs"
26
+ Provides-Extra: test
27
+ Requires-Dist: mlx-graphs>=0.0.8; extra == "test"
28
+ Requires-Dist: torch>=2.2.0; extra == "test"
29
+ Requires-Dist: mlx>=0.26.0; extra == "test"
30
+ Requires-Dist: pytest==7.4.4; extra == "test"
31
+ Requires-Dist: scipy>=1.13.0; extra == "test"
32
+ Requires-Dist: requests==2.31.0; extra == "test"
33
+ Requires-Dist: fsspec[http]==2024.2.0; extra == "test"
34
+ Requires-Dist: tqdm==4.66.1; extra == "test"
35
+ Dynamic: license-file
36
+ Dynamic: requires-python
37
+
38
+ # MLX-Cluster
39
+
40
+ High-performance graph algorithms optimized for Apple's MLX framework, featuring random walks, biased random walks, and neighbor sampling.
41
+
42
+ [![PyPI version](https://img.shields.io/pypi/v/mlx-cluster)](https://pypi.org/project/mlx-cluster/)
43
+ [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
44
+ [![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
45
+
46
+ **[Documentation](https://vinayhpandya.github.io/mlx_cluster/)** | **[Quickstart](https://vinayhpandya.github.io/mlx_cluster/quickstart.html)** |
47
+
48
+ ## ๐Ÿš€ Features
49
+
50
+ - **๐Ÿ”ฅ MLX Optimized**: Built specifically for Apple's MLX framework with GPU acceleration
51
+ - **โšก High Performance**: Optimized C++ implementations with Metal shaders for Apple Silicon
52
+ - **๐ŸŽฏ Graph Algorithms**:
53
+ - Uniform random walks
54
+ - Biased random walks (Node2Vec style with p/q parameters)
55
+ - Multi-hop neighbor sampling (GraphSAGE style)
56
+
57
+ ## ๐Ÿ“ฆ Installation
58
+
59
+ ### From PyPI (Recommended)
60
+
61
+ ```bash
62
+ pip install mlx-cluster
63
+ ```
64
+
65
+ ### From Source
66
+
67
+ ```bash
68
+ git clone https://github.com/vinayhpandya/mlx_cluster.git
69
+ cd mlx_cluster
70
+ pip install -e .
71
+ ```
72
+
73
+ ### Development Installation
74
+
75
+ ```bash
76
+ git clone https://github.com/vinayhpandya/mlx_cluster.git
77
+ cd mlx_cluster
78
+ pip install -e . --verbose
79
+ ```
80
+
81
+ ### Dependencies
82
+
83
+ Required:
84
+ - Python 3.8+
85
+ - MLX framework
86
+ - NumPy
87
+
88
+ Optional (for examples and testing):
89
+ - MLX-Graphs
90
+ - PyTorch (for dataset utilities)
91
+ - pytest
92
+
93
+ ## ๐Ÿ”ง Quick Start
94
+
95
+ ### Random Walks
96
+
97
+ ```python
98
+ import mlx.core as mx
99
+ import numpy as np
100
+ from mlx_cluster import random_walk
101
+ from mlx_graphs.datasets import PlanetoidDataset
102
+ from mlx_graphs.utils.sorting import sort_edge_index
103
+
104
+ # Load dataset
105
+ cora = PlanetoidDataset(name="cora")
106
+ edge_index = cora.graphs[0].edge_index.astype(mx.int64)
107
+
108
+ # Convert to CSR format
109
+ sorted_edge_index = sort_edge_index(edge_index=edge_index)
110
+ row = sorted_edge_index[0][0]
111
+ col = sorted_edge_index[0][1]
112
+ _, counts = np.unique(np.array(row, copy=False), return_counts=True)
113
+ row_ptr = mx.concatenate([mx.array([0]), mx.array(counts.cumsum())])
114
+
115
+ # Generate random walks
116
+ num_walks = 1000
117
+ walk_length = 10
118
+ start_nodes = mx.array(np.random.randint(0, cora.graphs[0].num_nodes, num_walks))
119
+ rand_values = mx.random.uniform(shape=[num_walks, walk_length])
120
+
121
+ mx.eval(rowptr,col, start_nodes, rand_values)
122
+ # Perform walks
123
+ node_sequences, edge_sequences = random_walk(
124
+ row_ptr, col, start_nodes, rand_values, walk_length, stream=mx.gpu
125
+ )
126
+
127
+ print(f"Generated {num_walks} walks of length {walk_length + 1}")
128
+ print(f"Shape: {node_sequences.shape}")
129
+ ```
130
+
131
+ ### Biased Random Walks (Node2Vec)
132
+
133
+ ```python
134
+ from mlx_cluster import rejection_sampling
135
+
136
+ # Biased random walks with p/q parameters
137
+ node_sequences, edge_sequences = rejection_sampling(
138
+ row_ptr, col, start_nodes, walk_length,
139
+ p=1.0, # Return parameter
140
+ q=2.0, # In-out parameter
141
+ stream=mx.gpu
142
+ )
143
+ ```
144
+
145
+ ### Neighbor Sampling
146
+
147
+ ```python
148
+ from mlx_cluster import neighbor_sample
149
+
150
+ # Convert to CSC format (required for neighbor sampling)
151
+ def create_csc_format(edge_index, num_nodes):
152
+ sources, targets = edge_index[0].tolist(), edge_index[1].tolist()
153
+ edges = sorted(zip(sources, targets), key=lambda x: x[1])
154
+
155
+ colptr = np.zeros(num_nodes + 1, dtype=np.int64)
156
+ for _, target in edges:
157
+ colptr[target + 1] += 1
158
+ colptr = np.cumsum(colptr)
159
+
160
+ sorted_sources = [source for source, _ in edges]
161
+ return mx.array(colptr), mx.array(sorted_sources, dtype=mx.int64)
162
+
163
+ colptr, row = create_csc_format(edge_index, cora.graphs[0].num_nodes)
164
+
165
+ # Multi-hop neighbor sampling
166
+ input_nodes = mx.array([0, 1, 2], dtype=mx.int64)
167
+ num_neighbors = [10, 5] # 10 neighbors in first hop, 5 in second
168
+ mx.eval(colptr, row, input_nodes)
169
+ samples, rows, cols, edges = neighbor_sample(
170
+ colptr, row, input_nodes, num_neighbors,
171
+ replace=True, directed=True
172
+ )
173
+
174
+ print(f"Sampled {len(samples)} nodes and {len(edges)} edges")
175
+ ```
176
+
177
+ ## ๐Ÿ“š Documentation
178
+
179
+ For comprehensive documentation, examples, and API reference, visit:
180
+ [Documentation]()
181
+
182
+ ## ๐Ÿงช Testing
183
+
184
+ Run the test suite:
185
+
186
+ ```bash
187
+ # Install test dependencies
188
+ pip install pytest mlx-graphs torch
189
+
190
+ # Run tests
191
+ pytest -s -v
192
+ ```
193
+
194
+ ## โšก Performance
195
+
196
+ MLX-Cluster is optimized for Apple Silicon and shows significant speedups:
197
+
198
+ - **Apple M1/M2/M3**: 2-5x faster than CPU-only implementations
199
+ - **GPU Acceleration**: Automatic optimization for Metal Performance Shaders
200
+ - **Memory Efficient**: Optimized sparse graph representations
201
+ - **Batch Processing**: Efficient handling of thousands of concurrent walks
202
+
203
+ ## ๐Ÿค Contributing
204
+
205
+ We welcome contributions!
206
+ 1. Fork the repository
207
+ 2. Create your feature branch (`git checkout -b feature/new-feature`)
208
+ 3. Commit your changes (`git commit -m 'Add new algorithm'`)
209
+ 4. Push to the branch (`git push origin feature/new-feature`)
210
+ 5. Open a Pull Request
211
+ For installation and test intructions please visit the documentation
212
+
213
+ ## ๐Ÿ“„ License
214
+
215
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
216
+
217
+ ## ๐Ÿ™ Acknowledgments
218
+
219
+ - [PyTorch Cluster](https://github.com/rusty1s/pytorch_cluster) for everything
220
+ - [MLX](https://github.com/ml-explore/mlx) for the foundational framework
221
+ - [MLX-Graphs](https://github.com/mlx-graphs/mlx-graphs) for graph utilities and datasets
222
+
223
+ ## ๐Ÿ“Š Citation
224
+
225
+ If you use MLX-Cluster in your research, please cite:
226
+
227
+ ```bibtex
228
+ @software{mlx_cluster,
229
+ author = {Vinay Pandya},
230
+ title = {MLX-Cluster: High-Performance Graph Algorithms for Apple MLX},
231
+ url = {https://github.com/vinayhpandya/mlx_cluster},
232
+ version = {0.0.6},
233
+ year = {2025}
234
+ }
235
+ ```
236
+
237
+ ## ๐Ÿ”— Related Projects
238
+
239
+ - [MLX](https://github.com/ml-explore/mlx) - Apple's machine learning framework
240
+ - [MLX-Graphs](https://github.com/mlx-graphs/mlx-graphs) - Graph neural networks for MLX
241
+ - [PyTorch Geometric](https://github.com/pyg-team/pytorch_geometric) - Graph deep learning library
242
+
243
+ ---
@@ -0,0 +1,9 @@
1
+ mlx_cluster/__init__.py,sha256=0OCVEloeEo3Y9a-RlrSH7-C18IOTMDFS1-TjUMEYlSw,124
2
+ mlx_cluster/_ext.cpython-313-darwin.so,sha256=PIvpq3FZ3ZvwtFlvm42m9IcstODLCt7LKpjoLgMgtHI,148280
3
+ mlx_cluster/libmlx_cluster.dylib,sha256=rc39d9Jk37cU19TqzRDtc9D0mrzwJv0QbZhiX4A91nE,86248
4
+ mlx_cluster/mlx_cluster.metallib,sha256=LdYPYY3iNcwYXpRY-yX_ANOMbDPx04iMx4QJaCFTanA,5416
5
+ mlx_cluster-0.0.6.dist-info/licenses/LICENSE,sha256=7ixsoVuroKzGl84-ZV90CDH6bQrQF2UXvgnTqtW4Zb4,1069
6
+ mlx_cluster-0.0.6.dist-info/METADATA,sha256=-8iqo7hi_d_sug1sGTbjfeFzA0noYLrN1r3OuaMGD1Y,7451
7
+ mlx_cluster-0.0.6.dist-info/WHEEL,sha256=YCEX_TxbnuuI_upERK7jZTaix0ZISTH8GkhUivMjL5M,114
8
+ mlx_cluster-0.0.6.dist-info/top_level.txt,sha256=sERi0kZuQnKmsHnqOkAda1kkBXdQAwV25Y9L-ATj110,12
9
+ mlx_cluster-0.0.6.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.9.0)
3
+ Root-Is-Purelib: false
4
+ Tag: cp313-cp313-macosx_14_0_universal2
5
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2024 vinayhpandya
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
@@ -0,0 +1 @@
1
+ mlx_cluster