mlrun 1.8.0rc5__py3-none-any.whl → 1.8.0rc9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (74) hide show
  1. mlrun/__init__.py +1 -0
  2. mlrun/artifacts/__init__.py +1 -1
  3. mlrun/artifacts/base.py +21 -1
  4. mlrun/artifacts/document.py +62 -39
  5. mlrun/artifacts/manager.py +12 -5
  6. mlrun/common/constants.py +1 -0
  7. mlrun/common/model_monitoring/__init__.py +0 -2
  8. mlrun/common/model_monitoring/helpers.py +0 -28
  9. mlrun/common/schemas/__init__.py +2 -4
  10. mlrun/common/schemas/alert.py +77 -1
  11. mlrun/common/schemas/client_spec.py +0 -1
  12. mlrun/common/schemas/model_monitoring/__init__.py +0 -6
  13. mlrun/common/schemas/model_monitoring/constants.py +11 -9
  14. mlrun/common/schemas/model_monitoring/model_endpoints.py +77 -149
  15. mlrun/common/schemas/notification.py +6 -0
  16. mlrun/common/schemas/project.py +3 -0
  17. mlrun/config.py +2 -3
  18. mlrun/datastore/datastore_profile.py +57 -17
  19. mlrun/datastore/sources.py +1 -2
  20. mlrun/datastore/store_resources.py +7 -2
  21. mlrun/datastore/vectorstore.py +99 -62
  22. mlrun/db/base.py +34 -20
  23. mlrun/db/httpdb.py +249 -163
  24. mlrun/db/nopdb.py +40 -17
  25. mlrun/execution.py +14 -7
  26. mlrun/feature_store/api.py +1 -0
  27. mlrun/model.py +3 -0
  28. mlrun/model_monitoring/__init__.py +3 -2
  29. mlrun/model_monitoring/api.py +64 -53
  30. mlrun/model_monitoring/applications/_application_steps.py +3 -1
  31. mlrun/model_monitoring/applications/base.py +115 -15
  32. mlrun/model_monitoring/applications/context.py +42 -24
  33. mlrun/model_monitoring/applications/histogram_data_drift.py +1 -1
  34. mlrun/model_monitoring/controller.py +43 -37
  35. mlrun/model_monitoring/db/__init__.py +0 -2
  36. mlrun/model_monitoring/db/tsdb/base.py +2 -1
  37. mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +2 -1
  38. mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +43 -0
  39. mlrun/model_monitoring/helpers.py +78 -66
  40. mlrun/model_monitoring/stream_processing.py +83 -270
  41. mlrun/model_monitoring/writer.py +1 -10
  42. mlrun/projects/pipelines.py +37 -1
  43. mlrun/projects/project.py +173 -70
  44. mlrun/run.py +40 -0
  45. mlrun/runtimes/nuclio/function.py +7 -6
  46. mlrun/runtimes/nuclio/serving.py +9 -4
  47. mlrun/serving/routers.py +158 -145
  48. mlrun/serving/server.py +6 -0
  49. mlrun/serving/states.py +21 -7
  50. mlrun/serving/v2_serving.py +94 -68
  51. mlrun/utils/helpers.py +23 -33
  52. mlrun/utils/notifications/notification/mail.py +17 -6
  53. mlrun/utils/notifications/notification_pusher.py +9 -5
  54. mlrun/utils/regex.py +8 -1
  55. mlrun/utils/version/version.json +2 -2
  56. {mlrun-1.8.0rc5.dist-info → mlrun-1.8.0rc9.dist-info}/METADATA +2 -2
  57. {mlrun-1.8.0rc5.dist-info → mlrun-1.8.0rc9.dist-info}/RECORD +61 -74
  58. mlrun/common/schemas/model_monitoring/model_endpoint_v2.py +0 -149
  59. mlrun/model_monitoring/db/stores/__init__.py +0 -136
  60. mlrun/model_monitoring/db/stores/base/__init__.py +0 -15
  61. mlrun/model_monitoring/db/stores/base/store.py +0 -154
  62. mlrun/model_monitoring/db/stores/sqldb/__init__.py +0 -13
  63. mlrun/model_monitoring/db/stores/sqldb/models/__init__.py +0 -46
  64. mlrun/model_monitoring/db/stores/sqldb/models/base.py +0 -93
  65. mlrun/model_monitoring/db/stores/sqldb/models/mysql.py +0 -47
  66. mlrun/model_monitoring/db/stores/sqldb/models/sqlite.py +0 -25
  67. mlrun/model_monitoring/db/stores/sqldb/sql_store.py +0 -408
  68. mlrun/model_monitoring/db/stores/v3io_kv/__init__.py +0 -13
  69. mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +0 -464
  70. mlrun/model_monitoring/model_endpoint.py +0 -120
  71. {mlrun-1.8.0rc5.dist-info → mlrun-1.8.0rc9.dist-info}/LICENSE +0 -0
  72. {mlrun-1.8.0rc5.dist-info → mlrun-1.8.0rc9.dist-info}/WHEEL +0 -0
  73. {mlrun-1.8.0rc5.dist-info → mlrun-1.8.0rc9.dist-info}/entry_points.txt +0 -0
  74. {mlrun-1.8.0rc5.dist-info → mlrun-1.8.0rc9.dist-info}/top_level.txt +0 -0
mlrun/db/httpdb.py CHANGED
@@ -28,7 +28,7 @@ from urllib.parse import urlparse
28
28
  import pydantic.v1
29
29
  import requests
30
30
  import semver
31
- from pydantic import parse_obj_as
31
+ from pydantic.v1 import parse_obj_as
32
32
 
33
33
  import mlrun
34
34
  import mlrun.common.constants
@@ -37,7 +37,6 @@ import mlrun.common.runtimes
37
37
  import mlrun.common.schemas
38
38
  import mlrun.common.schemas.model_monitoring.model_endpoints as mm_endpoints
39
39
  import mlrun.common.types
40
- import mlrun.model_monitoring.model_endpoint
41
40
  import mlrun.platforms
42
41
  import mlrun.projects
43
42
  import mlrun.runtimes.nuclio.api_gateway
@@ -49,6 +48,7 @@ from mlrun.errors import MLRunInvalidArgumentError, err_to_str
49
48
  from mlrun_pipelines.utils import compile_pipeline
50
49
 
51
50
  from ..artifacts import Artifact
51
+ from ..common.schemas import AlertActivations
52
52
  from ..config import config
53
53
  from ..datastore.datastore_profile import DatastoreProfile2Json
54
54
  from ..feature_store import FeatureSet, FeatureVector
@@ -558,10 +558,6 @@ class HTTPRunDB(RunDBInterface):
558
558
  server_cfg.get("external_platform_tracking")
559
559
  or config.external_platform_tracking
560
560
  )
561
- config.model_endpoint_monitoring.endpoint_store_connection = (
562
- server_cfg.get("model_endpoint_monitoring_endpoint_store_connection")
563
- or config.model_endpoint_monitoring.endpoint_store_connection
564
- )
565
561
  config.model_endpoint_monitoring.tsdb_connection = (
566
562
  server_cfg.get("model_monitoring_tsdb_connection")
567
563
  or config.model_endpoint_monitoring.tsdb_connection
@@ -1000,7 +996,7 @@ class HTTPRunDB(RunDBInterface):
1000
996
  tag=None,
1001
997
  project="",
1002
998
  tree=None,
1003
- ):
999
+ ) -> dict[str, str]:
1004
1000
  """Store an artifact in the DB.
1005
1001
 
1006
1002
  :param key: Identifying key of the artifact.
@@ -1012,6 +1008,7 @@ class HTTPRunDB(RunDBInterface):
1012
1008
  :param tag: Tag of the artifact.
1013
1009
  :param project: Project that the artifact belongs to.
1014
1010
  :param tree: The tree (producer id) which generated this artifact.
1011
+ :returns: The stored artifact dictionary.
1015
1012
  """
1016
1013
  if uid:
1017
1014
  warnings.warn(
@@ -1036,9 +1033,10 @@ class HTTPRunDB(RunDBInterface):
1036
1033
  params["tree"] = tree
1037
1034
 
1038
1035
  body = _as_json(artifact)
1039
- self.api_call(
1036
+ response = self.api_call(
1040
1037
  "PUT", endpoint_path, error, body=body, params=params, version="v2"
1041
1038
  )
1039
+ return response.json()
1042
1040
 
1043
1041
  def read_artifact(
1044
1042
  self,
@@ -1701,6 +1699,8 @@ class HTTPRunDB(RunDBInterface):
1701
1699
  name: Optional[str] = None,
1702
1700
  kind: mlrun.common.schemas.ScheduleKinds = None,
1703
1701
  include_last_run: bool = False,
1702
+ next_run_time_since: Optional[datetime] = None,
1703
+ next_run_time_until: Optional[datetime] = None,
1704
1704
  ) -> mlrun.common.schemas.SchedulesOutput:
1705
1705
  """Retrieve list of schedules of specific name or kind.
1706
1706
 
@@ -1709,10 +1709,18 @@ class HTTPRunDB(RunDBInterface):
1709
1709
  :param kind: Kind of schedule objects to retrieve, can be either ``job`` or ``pipeline``.
1710
1710
  :param include_last_run: Whether to return for each schedule returned also the results of the last run of
1711
1711
  that schedule.
1712
+ :param next_run_time_since: Return only schedules with next run time after this date.
1713
+ :param next_run_time_until: Return only schedules with next run time before this date.
1712
1714
  """
1713
1715
 
1714
1716
  project = project or config.default_project
1715
- params = {"kind": kind, "name": name, "include_last_run": include_last_run}
1717
+ params = {
1718
+ "kind": kind,
1719
+ "name": name,
1720
+ "include_last_run": include_last_run,
1721
+ "next_run_time_since": datetime_to_iso(next_run_time_since),
1722
+ "next_run_time_until": datetime_to_iso(next_run_time_until),
1723
+ }
1716
1724
  path = f"projects/{project}/schedules"
1717
1725
  error_message = f"Failed listing schedules for {project} ? {kind} {name}"
1718
1726
  resp = self.api_call("GET", path, error_message, params=params)
@@ -2260,6 +2268,75 @@ class HTTPRunDB(RunDBInterface):
2260
2268
 
2261
2269
  return resp.json()
2262
2270
 
2271
+ def retry_pipeline(
2272
+ self,
2273
+ run_id: str,
2274
+ namespace: Optional[str] = None,
2275
+ timeout: int = 30,
2276
+ project: Optional[str] = None,
2277
+ ):
2278
+ """
2279
+ Retry a specific pipeline run using its run ID. This function sends an API request
2280
+ to retry a pipeline run. If a project is specified, the run must belong to that
2281
+ project; otherwise, all projects are queried.
2282
+
2283
+ :param run_id: The unique ID of the pipeline run to retry.
2284
+ :param namespace: Kubernetes namespace where the pipeline is running. Optional.
2285
+ :param timeout: Timeout (in seconds) for the API call. Defaults to 30 seconds.
2286
+ :param project: Name of the MLRun project associated with the pipeline. Can be
2287
+ ``*`` to query across all projects. Optional.
2288
+
2289
+ :raises ValueError: Raised if the API response is not successful or contains an
2290
+ error.
2291
+
2292
+ :return: JSON response containing details of the retried pipeline run.
2293
+ """
2294
+
2295
+ params = {}
2296
+ if namespace:
2297
+ params["namespace"] = namespace
2298
+ project_path = project if project else "*"
2299
+
2300
+ resp_text = ""
2301
+ resp_code = None
2302
+ try:
2303
+ resp = self.api_call(
2304
+ "POST",
2305
+ f"projects/{project_path}/pipelines/{run_id}/retry",
2306
+ params=params,
2307
+ timeout=timeout,
2308
+ )
2309
+ resp_code = resp.status_code
2310
+ resp_text = resp.text
2311
+ if not resp.ok:
2312
+ raise mlrun.errors.MLRunHTTPError(
2313
+ f"Failed to retry pipeline run '{run_id}'. "
2314
+ f"HTTP {resp_code}: {resp_text}"
2315
+ )
2316
+ except Exception as exc:
2317
+ logger.error(
2318
+ "Retry pipeline API call encountered an error.",
2319
+ run_id=run_id,
2320
+ project=project_path,
2321
+ namespace=namespace,
2322
+ response_code=resp_code,
2323
+ response_text=resp_text,
2324
+ error=str(exc),
2325
+ )
2326
+ if isinstance(exc, mlrun.errors.MLRunHTTPError):
2327
+ raise exc # Re-raise known HTTP errors
2328
+ raise mlrun.errors.MLRunRuntimeError(
2329
+ f"Unexpected error while retrying pipeline run '{run_id}'."
2330
+ ) from exc
2331
+
2332
+ logger.info(
2333
+ "Successfully retried pipeline run",
2334
+ run_id=run_id,
2335
+ project=project_path,
2336
+ namespace=namespace,
2337
+ )
2338
+ return resp.json()
2339
+
2263
2340
  @staticmethod
2264
2341
  def _resolve_reference(tag, uid):
2265
2342
  if uid and tag:
@@ -3048,7 +3125,7 @@ class HTTPRunDB(RunDBInterface):
3048
3125
  for project_dict in response.json()["projects"]
3049
3126
  ]
3050
3127
 
3051
- def get_project(self, name: str) -> mlrun.projects.MlrunProject:
3128
+ def get_project(self, name: str) -> "mlrun.MlrunProject":
3052
3129
  """Get details for a specific project."""
3053
3130
 
3054
3131
  if not name:
@@ -3057,7 +3134,7 @@ class HTTPRunDB(RunDBInterface):
3057
3134
  path = f"projects/{name}"
3058
3135
  error_message = f"Failed retrieving project {name}"
3059
3136
  response = self.api_call("GET", path, error_message)
3060
- return mlrun.projects.MlrunProject.from_dict(response.json())
3137
+ return mlrun.MlrunProject.from_dict(response.json())
3061
3138
 
3062
3139
  def delete_project(
3063
3140
  self,
@@ -3504,217 +3581,205 @@ class HTTPRunDB(RunDBInterface):
3504
3581
 
3505
3582
  def create_model_endpoint(
3506
3583
  self,
3507
- project: str,
3508
- endpoint_id: str,
3509
- model_endpoint: Union[
3510
- mlrun.model_monitoring.model_endpoint.ModelEndpoint, dict
3511
- ],
3512
- ):
3584
+ model_endpoint: mlrun.common.schemas.ModelEndpoint,
3585
+ ) -> mlrun.common.schemas.ModelEndpoint:
3513
3586
  """
3514
3587
  Creates a DB record with the given model_endpoint record.
3515
3588
 
3516
- :param project: The name of the project.
3517
- :param endpoint_id: The id of the endpoint.
3518
3589
  :param model_endpoint: An object representing the model endpoint.
3519
- """
3520
3590
 
3521
- if isinstance(
3522
- model_endpoint, mlrun.model_monitoring.model_endpoint.ModelEndpoint
3523
- ):
3524
- model_endpoint = model_endpoint.to_dict()
3591
+ :return: The created model endpoint object.
3592
+ """
3525
3593
 
3526
- path = f"projects/{project}/model-endpoints/{endpoint_id}"
3527
- self.api_call(
3528
- method="POST",
3594
+ path = f"projects/{model_endpoint.metadata.project}/model-endpoints"
3595
+ response = self.api_call(
3596
+ method=mlrun.common.types.HTTPMethod.POST,
3529
3597
  path=path,
3530
- body=dict_to_json(model_endpoint),
3598
+ body=model_endpoint.json(),
3531
3599
  )
3600
+ return mlrun.common.schemas.ModelEndpoint(**response.json())
3532
3601
 
3533
3602
  def delete_model_endpoint(
3534
3603
  self,
3604
+ name: str,
3535
3605
  project: str,
3536
- endpoint_id: str,
3606
+ function_name: Optional[str] = None,
3607
+ function_tag: Optional[str] = None,
3608
+ endpoint_id: Optional[str] = None,
3537
3609
  ):
3538
3610
  """
3539
3611
  Deletes the DB record of a given model endpoint, project and endpoint_id are used for lookup
3540
3612
 
3613
+ :param name: The name of the model endpoint
3541
3614
  :param project: The name of the project
3615
+ :param function_name: The name of the function
3616
+ :param function_tag: The tag of the function
3542
3617
  :param endpoint_id: The id of the endpoint
3543
3618
  """
3544
-
3545
- path = f"projects/{project}/model-endpoints/{endpoint_id}"
3619
+ self._check_model_endpoint_representation(
3620
+ function_name, function_tag, endpoint_id
3621
+ )
3622
+ path = f"projects/{project}/model-endpoints/{name}"
3546
3623
  self.api_call(
3547
- method="DELETE",
3624
+ method=mlrun.common.types.HTTPMethod.DELETE,
3548
3625
  path=path,
3626
+ params={
3627
+ "function_name": function_name,
3628
+ "function_tag": function_tag,
3629
+ "endpoint_id": endpoint_id,
3630
+ },
3549
3631
  )
3550
3632
 
3551
3633
  def list_model_endpoints(
3552
3634
  self,
3553
3635
  project: str,
3554
- model: Optional[str] = None,
3555
- function: Optional[str] = None,
3636
+ name: Optional[str] = None,
3637
+ function_name: Optional[str] = None,
3638
+ function_tag: Optional[str] = None,
3639
+ model_name: Optional[str] = None,
3556
3640
  labels: Optional[Union[str, dict[str, Optional[str]], list[str]]] = None,
3557
- start: str = "now-1h",
3558
- end: str = "now",
3559
- metrics: Optional[list[str]] = None,
3641
+ start: Optional[datetime] = None,
3642
+ end: Optional[datetime] = None,
3643
+ tsdb_metrics: bool = True,
3560
3644
  top_level: bool = False,
3561
3645
  uids: Optional[list[str]] = None,
3562
- ) -> list[mlrun.model_monitoring.model_endpoint.ModelEndpoint]:
3646
+ latest_only: bool = False,
3647
+ ) -> mlrun.common.schemas.ModelEndpointList:
3648
+ """
3649
+ List model endpoints with optional filtering by name, function name, model name, labels, and time range.
3650
+
3651
+ :param project: The name of the project
3652
+ :param name: The name of the model endpoint
3653
+ :param function_name: The name of the function
3654
+ :param function_tag: The tag of the function
3655
+ :param model_name: The name of the model
3656
+ :param labels: A list of labels to filter by. (see mlrun.common.schemas.LabelsModel)
3657
+ :param start: The start time to filter by.Corresponding to the `created` field.
3658
+ :param end: The end time to filter by. Corresponding to the `created` field.
3659
+ :param tsdb_metrics: Whether to include metrics from the time series DB.
3660
+ :param top_level: Whether to return only top level model endpoints.
3661
+ :param uids: A list of unique ids to filter by.
3662
+ :param latest_only: Whether to return only the latest model endpoint version.
3663
+ :return: A list of model endpoints.
3563
3664
  """
3564
- Returns a list of `ModelEndpoint` objects. Each `ModelEndpoint` object represents the current state of a
3565
- model endpoint. This functions supports filtering by the following parameters:
3566
- 1) model
3567
- 2) function
3568
- 3) labels
3569
- 4) top level
3570
- 5) uids
3571
- By default, when no filters are applied, all available endpoints for the given project will be listed.
3572
-
3573
- In addition, this functions provides a facade for listing endpoint related metrics. This facade is time-based
3574
- and depends on the 'start' and 'end' parameters. By default, when the metrics parameter is None, no metrics are
3575
- added to the output of this function.
3576
-
3577
- :param project: The name of the project
3578
- :param model: The name of the model to filter by
3579
- :param function: The name of the function to filter by
3580
- :param labels: Filter model endpoints by label key-value pairs or key existence. This can be provided as:
3581
- - A dictionary in the format `{"label": "value"}` to match specific label key-value pairs,
3582
- or `{"label": None}` to check for key existence.
3583
- - A list of strings formatted as `"label=value"` to match specific label key-value pairs,
3584
- or just `"label"` for key existence.
3585
- - A comma-separated string formatted as `"label1=value1,label2"` to match entities with
3586
- the specified key-value pairs or key existence.
3587
- :param metrics: A list of metrics to return for each endpoint, read more in 'TimeMetric'
3588
- :param start: The start time of the metrics. Can be represented by a string containing an RFC 3339 time, a
3589
- Unix timestamp in milliseconds, a relative time (`'now'` or `'now-[0-9]+[mhd]'`, where
3590
- `m` = minutes, `h` = hours, `'d'` = days, and `'s'` = seconds), or 0 for the earliest time.
3591
- :param end: The end time of the metrics. Can be represented by a string containing an RFC 3339 time, a
3592
- Unix timestamp in milliseconds, a relative time (`'now'` or `'now-[0-9]+[mhd]'`, where
3593
- `m` = minutes, `h` = hours, `'d'` = days, and `'s'` = seconds), or 0 for the earliest time.
3594
- :param top_level: if true will return only routers and endpoint that are NOT children of any router
3595
- :param uids: if passed will return a list `ModelEndpoint` object with uid in uids
3596
-
3597
- :returns: Returns a list of `ModelEndpoint` objects.
3598
- """
3599
-
3600
3665
  path = f"projects/{project}/model-endpoints"
3601
3666
  labels = self._parse_labels(labels)
3602
3667
 
3603
3668
  response = self.api_call(
3604
- method="GET",
3669
+ method=mlrun.common.types.HTTPMethod.GET,
3605
3670
  path=path,
3606
3671
  params={
3607
- "model": model,
3608
- "function": function,
3672
+ "name": name,
3673
+ "model_name": model_name,
3674
+ "function_name": function_name,
3675
+ "function_tag": function_tag,
3609
3676
  "label": labels,
3610
- "start": start,
3611
- "end": end,
3612
- "metric": metrics or [],
3677
+ "start": datetime_to_iso(start),
3678
+ "end": datetime_to_iso(end),
3679
+ "tsdb_metrics": tsdb_metrics,
3613
3680
  "top-level": top_level,
3614
3681
  "uid": uids,
3682
+ "latest_only": latest_only,
3615
3683
  },
3616
3684
  )
3617
3685
 
3618
- # Generate a list of a model endpoint dictionaries
3619
- model_endpoints = response.json()["endpoints"]
3620
- if model_endpoints:
3621
- return [
3622
- mlrun.model_monitoring.model_endpoint.ModelEndpoint.from_dict(obj)
3623
- for obj in model_endpoints
3624
- ]
3625
- return []
3686
+ return mlrun.common.schemas.ModelEndpointList(**response.json())
3626
3687
 
3627
3688
  def get_model_endpoint(
3628
3689
  self,
3690
+ name: str,
3629
3691
  project: str,
3630
- endpoint_id: str,
3631
- start: Optional[str] = None,
3632
- end: Optional[str] = None,
3633
- metrics: Optional[list[str]] = None,
3692
+ function_name: Optional[str] = None,
3693
+ function_tag: Optional[str] = None,
3694
+ endpoint_id: Optional[str] = None,
3695
+ tsdb_metrics: bool = True,
3634
3696
  feature_analysis: bool = False,
3635
- ) -> mlrun.model_monitoring.model_endpoint.ModelEndpoint:
3697
+ ) -> mlrun.common.schemas.ModelEndpoint:
3636
3698
  """
3637
3699
  Returns a single `ModelEndpoint` object with additional metrics and feature related data.
3638
3700
 
3701
+ :param name: The name of the model endpoint
3639
3702
  :param project: The name of the project
3640
- :param endpoint_id: The unique id of the model endpoint.
3641
- :param start: The start time of the metrics. Can be represented by a string containing an
3642
- RFC 3339 time, a Unix timestamp in milliseconds, a relative time
3643
- (`'now'` or `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours,
3644
- `'d'` = days, and `'s'` = seconds), or 0 for the earliest time.
3645
- :param end: The end time of the metrics. Can be represented by a string containing an
3646
- RFC 3339 time, a Unix timestamp in milliseconds, a relative time
3647
- (`'now'` or `'now-[0-9]+[mhd]'`, where `m` = minutes, `h` = hours,
3648
- `'d'` = days, and `'s'` = seconds), or 0 for the earliest time.
3649
- :param metrics: A list of metrics to return for the model endpoint. There are pre-defined
3650
- metrics for model endpoints such as predictions_per_second and
3651
- latency_avg_5m but also custom metrics defined by the user. Please note that
3652
- these metrics are stored in the time series DB and the results will be
3653
- appeared under model_endpoint.spec.metrics.
3654
- :param feature_analysis: When True, the base feature statistics and current feature statistics will
3655
- be added to the output of the resulting object.
3656
-
3657
- :returns: A `ModelEndpoint` object.
3658
- """
3659
-
3660
- path = f"projects/{project}/model-endpoints/{endpoint_id}"
3703
+ :param function_name: The name of the function
3704
+ :param function_tag: The tag of the function
3705
+ :param endpoint_id: The id of the endpoint
3706
+ :param tsdb_metrics: Whether to include metrics from the time series DB.
3707
+ :param feature_analysis: Whether to include feature analysis data (feature_stats,
3708
+ current_stats & drift_measures).
3709
+
3710
+ :return: A `ModelEndpoint` object.
3711
+ """
3712
+ self._check_model_endpoint_representation(
3713
+ function_name, function_tag, endpoint_id
3714
+ )
3715
+ path = f"projects/{project}/model-endpoints/{name}"
3661
3716
  response = self.api_call(
3662
- method="GET",
3717
+ method=mlrun.common.types.HTTPMethod.GET,
3663
3718
  path=path,
3664
3719
  params={
3665
- "start": start,
3666
- "end": end,
3667
- "metric": metrics or [],
3720
+ "function_name": function_name,
3721
+ "function_tag": function_tag,
3722
+ "endpoint_id": endpoint_id,
3723
+ "tsdb_metrics": tsdb_metrics,
3668
3724
  "feature_analysis": feature_analysis,
3669
3725
  },
3670
3726
  )
3671
3727
 
3672
- return mlrun.model_monitoring.model_endpoint.ModelEndpoint.from_dict(
3673
- response.json()
3674
- )
3728
+ return mlrun.common.schemas.ModelEndpoint(**response.json())
3675
3729
 
3676
3730
  def patch_model_endpoint(
3677
3731
  self,
3732
+ name: str,
3678
3733
  project: str,
3679
- endpoint_id: str,
3680
3734
  attributes: dict,
3681
- ):
3735
+ function_name: Optional[str] = None,
3736
+ function_tag: Optional[str] = None,
3737
+ endpoint_id: Optional[str] = None,
3738
+ ) -> mlrun.common.schemas.ModelEndpoint:
3682
3739
  """
3683
- Updates model endpoint with provided attributes.
3684
-
3685
- :param project: The name of the project.
3686
- :param endpoint_id: The id of the endpoint.
3687
- :param attributes: Dictionary of attributes that will be used for update the model endpoint. The keys
3688
- of this dictionary should exist in the target table. Note that the values should be from type string or from
3689
- a valid numerical type such as int or float. More details about the model endpoint available attributes can
3690
- be found under :py:class:`~mlrun.common.schemas.ModelEndpoint`.
3691
-
3692
- Example::
3693
-
3694
- # Generate current stats for two features
3695
- current_stats = {'tvd_sum': 2.2,
3696
- 'tvd_mean': 0.5,
3697
- 'hellinger_sum': 3.6,
3698
- 'hellinger_mean': 0.9,
3699
- 'kld_sum': 24.2,
3700
- 'kld_mean': 6.0,
3701
- 'f1': {'tvd': 0.5, 'hellinger': 1.0, 'kld': 6.4},
3702
- 'f2': {'tvd': 0.5, 'hellinger': 1.0, 'kld': 6.5}}
3703
-
3704
- # Create attributes dictionary according to the required format
3705
- attributes = {`current_stats`: json.dumps(current_stats),
3706
- `drift_status`: "DRIFT_DETECTED"}
3740
+ Updates a model endpoint with the given attributes.
3707
3741
 
3708
- """
3709
-
3710
- attributes = {"attributes": _as_json(attributes)}
3711
- path = f"projects/{project}/model-endpoints/{endpoint_id}"
3712
- self.api_call(
3713
- method="PATCH",
3742
+ :param name: The name of the model endpoint
3743
+ :param project: The name of the project
3744
+ :param attributes: The attributes to update
3745
+ :param function_name: The name of the function
3746
+ :param function_tag: The tag of the function
3747
+ :param endpoint_id: The id of the endpoint
3748
+ :return: The updated `ModelEndpoint` object.
3749
+ """
3750
+ attributes_keys = list(attributes.keys())
3751
+ attributes["name"] = name
3752
+ attributes["project"] = project
3753
+ attributes["function_name"] = function_name or None
3754
+ attributes["function_tag"] = function_tag or None
3755
+ attributes["uid"] = endpoint_id or None
3756
+ model_endpoint = mlrun.common.schemas.ModelEndpoint.from_flat_dict(attributes)
3757
+ path = f"projects/{project}/model-endpoints"
3758
+ logger.info(
3759
+ "Patching model endpoint",
3760
+ attributes_keys=attributes_keys,
3761
+ model_endpoint=model_endpoint,
3762
+ )
3763
+ response = self.api_call(
3764
+ method=mlrun.common.types.HTTPMethod.PATCH,
3714
3765
  path=path,
3715
- params=attributes,
3766
+ params={
3767
+ "attribute-key": attributes_keys,
3768
+ },
3769
+ body=model_endpoint.json(),
3716
3770
  )
3717
3771
 
3772
+ return mlrun.common.schemas.ModelEndpoint(**response.json())
3773
+
3774
+ @staticmethod
3775
+ def _check_model_endpoint_representation(
3776
+ function_name: str, function_tag: str, uid: str
3777
+ ):
3778
+ if not uid and not (function_name and function_tag):
3779
+ raise MLRunInvalidArgumentError(
3780
+ "Either endpoint_uid or function_name and function_tag must be provided"
3781
+ )
3782
+
3718
3783
  def update_model_monitoring_controller(
3719
3784
  self,
3720
3785
  project: str,
@@ -4707,7 +4772,7 @@ class HTTPRunDB(RunDBInterface):
4707
4772
  Union[mlrun.common.schemas.alert.EventEntityKind, str]
4708
4773
  ] = None,
4709
4774
  event_kind: Optional[Union[mlrun.common.schemas.alert.EventKind, str]] = None,
4710
- ) -> list[mlrun.common.schemas.AlertActivation]:
4775
+ ) -> mlrun.common.schemas.AlertActivations:
4711
4776
  """
4712
4777
  Retrieve a list of all alert activations.
4713
4778
 
@@ -4743,7 +4808,7 @@ class HTTPRunDB(RunDBInterface):
4743
4808
  page_size: Optional[int] = None,
4744
4809
  page_token: Optional[str] = None,
4745
4810
  **kwargs,
4746
- ) -> tuple[list, Optional[str]]:
4811
+ ) -> tuple[AlertActivations, Optional[str]]:
4747
4812
  """List alerts activations with support for pagination and various filtering options.
4748
4813
 
4749
4814
  This method retrieves a paginated list of alert activations based on the specified filter parameters.
@@ -4799,6 +4864,22 @@ class HTTPRunDB(RunDBInterface):
4799
4864
  **kwargs,
4800
4865
  )
4801
4866
 
4867
+ def get_project_summary(
4868
+ self, project: Optional[str] = None
4869
+ ) -> mlrun.common.schemas.ProjectSummary:
4870
+ """
4871
+ Retrieve the summary of a project.
4872
+
4873
+ :param project: Project name for which the summary belongs.
4874
+ :returns: A summary of the project.
4875
+ """
4876
+ project = project or config.default_project
4877
+
4878
+ endpoint_path = f"project-summaries/{project}"
4879
+ error_message = f"Failed retrieving project summary for {project}"
4880
+ response = self.api_call("GET", endpoint_path, error_message)
4881
+ return mlrun.common.schemas.ProjectSummary(**response.json())
4882
+
4802
4883
  @staticmethod
4803
4884
  def _parse_labels(
4804
4885
  labels: Optional[Union[str, dict[str, Optional[str]], list[str]]],
@@ -5031,9 +5112,11 @@ class HTTPRunDB(RunDBInterface):
5031
5112
  "name": name,
5032
5113
  "uid": uid,
5033
5114
  "label": labels,
5034
- "state": mlrun.utils.helpers.as_list(state)
5035
- if state is not None
5036
- else states or None,
5115
+ "state": (
5116
+ mlrun.utils.helpers.as_list(state)
5117
+ if state is not None
5118
+ else states or None
5119
+ ),
5037
5120
  "sort": bool2str(sort),
5038
5121
  "iter": bool2str(iter),
5039
5122
  "start_time_from": datetime_to_iso(start_time_from),
@@ -5088,7 +5171,7 @@ class HTTPRunDB(RunDBInterface):
5088
5171
  page_size: Optional[int] = None,
5089
5172
  page_token: Optional[str] = None,
5090
5173
  return_all: bool = False,
5091
- ) -> tuple[list[mlrun.common.schemas.AlertActivation], Optional[str]]:
5174
+ ) -> tuple[mlrun.common.schemas.AlertActivations, Optional[str]]:
5092
5175
  project = project or config.default_project
5093
5176
  params = {
5094
5177
  "name": name,
@@ -5112,9 +5195,12 @@ class HTTPRunDB(RunDBInterface):
5112
5195
  paginated_responses, token = self.process_paginated_responses(
5113
5196
  responses, "activations"
5114
5197
  )
5115
- paginated_results = [
5116
- mlrun.common.schemas.AlertActivation(**item) for item in paginated_responses
5117
- ]
5198
+ paginated_results = mlrun.common.schemas.AlertActivations(
5199
+ activations=[
5200
+ mlrun.common.schemas.AlertActivation(**item)
5201
+ for item in paginated_responses
5202
+ ]
5203
+ )
5118
5204
 
5119
5205
  return paginated_results, token
5120
5206