mlrun 1.8.0rc43__py3-none-any.whl → 1.8.0rc44__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/common/schemas/model_monitoring/constants.py +1 -0
- mlrun/feature_store/__init__.py +2 -0
- mlrun/feature_store/api.py +0 -139
- mlrun/feature_store/feature_vector.py +91 -468
- mlrun/feature_store/feature_vector_utils.py +466 -0
- mlrun/feature_store/retrieval/base.py +1 -2
- mlrun/feature_store/retrieval/storey_merger.py +1 -1
- mlrun/model_monitoring/db/tsdb/base.py +5 -6
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +0 -1
- mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +94 -38
- mlrun/serving/states.py +40 -22
- mlrun/utils/version/version.json +2 -2
- {mlrun-1.8.0rc43.dist-info → mlrun-1.8.0rc44.dist-info}/METADATA +1 -1
- {mlrun-1.8.0rc43.dist-info → mlrun-1.8.0rc44.dist-info}/RECORD +18 -17
- {mlrun-1.8.0rc43.dist-info → mlrun-1.8.0rc44.dist-info}/WHEEL +1 -1
- {mlrun-1.8.0rc43.dist-info → mlrun-1.8.0rc44.dist-info}/LICENSE +0 -0
- {mlrun-1.8.0rc43.dist-info → mlrun-1.8.0rc44.dist-info}/entry_points.txt +0 -0
- {mlrun-1.8.0rc43.dist-info → mlrun-1.8.0rc44.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,466 @@
|
|
|
1
|
+
# Copyright 2023 Iguazio
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
import typing
|
|
15
|
+
from copy import copy
|
|
16
|
+
from typing import Union
|
|
17
|
+
|
|
18
|
+
import numpy as np
|
|
19
|
+
|
|
20
|
+
import mlrun
|
|
21
|
+
from mlrun.feature_store import FeatureSet
|
|
22
|
+
|
|
23
|
+
from ..model import ModelObj, ObjectList
|
|
24
|
+
|
|
25
|
+
# Forward reference for type annotations
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class _JoinStep(ModelObj):
|
|
29
|
+
def __init__(
|
|
30
|
+
self,
|
|
31
|
+
name: typing.Optional[str] = None,
|
|
32
|
+
left_step_name: typing.Optional[str] = None,
|
|
33
|
+
right_step_name: typing.Optional[str] = None,
|
|
34
|
+
left_feature_set_names: typing.Optional[Union[str, list[str]]] = None,
|
|
35
|
+
right_feature_set_name: typing.Optional[str] = None,
|
|
36
|
+
join_type: str = "inner",
|
|
37
|
+
asof_join: bool = False,
|
|
38
|
+
):
|
|
39
|
+
self.name = name
|
|
40
|
+
self.left_step_name = left_step_name
|
|
41
|
+
self.right_step_name = right_step_name
|
|
42
|
+
self.left_feature_set_names = (
|
|
43
|
+
left_feature_set_names
|
|
44
|
+
if left_feature_set_names is None
|
|
45
|
+
or isinstance(left_feature_set_names, list)
|
|
46
|
+
else [left_feature_set_names]
|
|
47
|
+
)
|
|
48
|
+
self.right_feature_set_name = right_feature_set_name
|
|
49
|
+
self.join_type = join_type
|
|
50
|
+
self.asof_join = asof_join
|
|
51
|
+
|
|
52
|
+
self.left_keys = []
|
|
53
|
+
self.right_keys = []
|
|
54
|
+
|
|
55
|
+
def init_join_keys(
|
|
56
|
+
self,
|
|
57
|
+
feature_set_objects: ObjectList,
|
|
58
|
+
vector,
|
|
59
|
+
entity_rows_keys: typing.Optional[list[str]] = None,
|
|
60
|
+
):
|
|
61
|
+
if feature_set_objects[self.right_feature_set_name].is_connectable_to_df(
|
|
62
|
+
entity_rows_keys
|
|
63
|
+
):
|
|
64
|
+
self.left_keys, self.right_keys = [
|
|
65
|
+
list(
|
|
66
|
+
feature_set_objects[
|
|
67
|
+
self.right_feature_set_name
|
|
68
|
+
].spec.entities.keys()
|
|
69
|
+
)
|
|
70
|
+
] * 2
|
|
71
|
+
|
|
72
|
+
if (
|
|
73
|
+
self.join_type == JoinGraph.first_join_type
|
|
74
|
+
or not self.left_feature_set_names
|
|
75
|
+
):
|
|
76
|
+
self.join_type = (
|
|
77
|
+
"inner"
|
|
78
|
+
if self.join_type == JoinGraph.first_join_type
|
|
79
|
+
else self.join_type
|
|
80
|
+
)
|
|
81
|
+
return
|
|
82
|
+
|
|
83
|
+
for left_fset in self.left_feature_set_names:
|
|
84
|
+
current_left_keys = feature_set_objects[left_fset].extract_relation_keys(
|
|
85
|
+
feature_set_objects[self.right_feature_set_name],
|
|
86
|
+
vector.get_feature_set_relations(feature_set_objects[left_fset]),
|
|
87
|
+
)
|
|
88
|
+
current_right_keys = list(
|
|
89
|
+
feature_set_objects[self.right_feature_set_name].spec.entities.keys()
|
|
90
|
+
)
|
|
91
|
+
for i in range(len(current_left_keys)):
|
|
92
|
+
if (
|
|
93
|
+
current_left_keys[i] not in self.left_keys
|
|
94
|
+
and current_right_keys[i] not in self.right_keys
|
|
95
|
+
):
|
|
96
|
+
self.left_keys.append(current_left_keys[i])
|
|
97
|
+
self.right_keys.append(current_right_keys[i])
|
|
98
|
+
|
|
99
|
+
if not self.left_keys:
|
|
100
|
+
raise mlrun.errors.MLRunRuntimeError(
|
|
101
|
+
f"{self.name} can't be preform due to undefined relation between "
|
|
102
|
+
f"{self.left_feature_set_names} to {self.right_feature_set_name}"
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
class JoinGraph(ModelObj):
|
|
107
|
+
"""
|
|
108
|
+
A class that represents a graph of data joins between feature sets
|
|
109
|
+
"""
|
|
110
|
+
|
|
111
|
+
default_graph_name = "$__join_graph_fv__$"
|
|
112
|
+
first_join_type = "first"
|
|
113
|
+
_dict_fields = ["name", "first_feature_set", "steps"]
|
|
114
|
+
|
|
115
|
+
def __init__(
|
|
116
|
+
self,
|
|
117
|
+
name: typing.Optional[str] = None,
|
|
118
|
+
first_feature_set: Union[str, FeatureSet] = None,
|
|
119
|
+
):
|
|
120
|
+
"""
|
|
121
|
+
JoinGraph is a class that represents a graph of data joins between feature sets. It allows users to define
|
|
122
|
+
data joins step by step, specifying the join type for each step. The graph can be used to build a sequence of
|
|
123
|
+
joins that will be executed in order, allowing the creation of complex join operations between feature sets.
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
Example:
|
|
127
|
+
# Create a new JoinGraph and add steps for joining feature sets.
|
|
128
|
+
join_graph = JoinGraph(name="my_join_graph", first_feature_set="featureset1")
|
|
129
|
+
join_graph.inner("featureset2")
|
|
130
|
+
join_graph.left("featureset3", asof_join=True)
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
:param name: (str, optional) The name of the join graph. If not provided,
|
|
134
|
+
a default name will be used.
|
|
135
|
+
:param first_feature_set: (str or FeatureSet, optional) The first feature set to join. It can be
|
|
136
|
+
specified either as a string representing the name of the feature set or as a
|
|
137
|
+
FeatureSet object.
|
|
138
|
+
"""
|
|
139
|
+
self.name = name or self.default_graph_name
|
|
140
|
+
self._steps: ObjectList = None
|
|
141
|
+
self._feature_sets = None
|
|
142
|
+
if first_feature_set:
|
|
143
|
+
self._start(first_feature_set)
|
|
144
|
+
|
|
145
|
+
def inner(self, other_operand: typing.Union[str, FeatureSet]):
|
|
146
|
+
"""
|
|
147
|
+
Specifies an inner join with the given feature set
|
|
148
|
+
|
|
149
|
+
:param other_operand: (str or FeatureSet) The name of the feature set or a FeatureSet object to join with.
|
|
150
|
+
|
|
151
|
+
:return: JoinGraph: The updated JoinGraph object with the specified inner join.
|
|
152
|
+
"""
|
|
153
|
+
return self._join_operands(other_operand, "inner")
|
|
154
|
+
|
|
155
|
+
def outer(self, other_operand: typing.Union[str, FeatureSet]):
|
|
156
|
+
"""
|
|
157
|
+
Specifies an outer join with the given feature set
|
|
158
|
+
|
|
159
|
+
:param other_operand: (str or FeatureSet) The name of the feature set or a FeatureSet object to join with.
|
|
160
|
+
:return: JoinGraph: The updated JoinGraph object with the specified outer join.
|
|
161
|
+
"""
|
|
162
|
+
return self._join_operands(other_operand, "outer")
|
|
163
|
+
|
|
164
|
+
def left(self, other_operand: typing.Union[str, FeatureSet], asof_join):
|
|
165
|
+
"""
|
|
166
|
+
Specifies a left join with the given feature set
|
|
167
|
+
|
|
168
|
+
:param other_operand: (str or FeatureSet) The name of the feature set or a FeatureSet object to join with.
|
|
169
|
+
:param asof_join: (bool) A flag indicating whether to perform an as-of join.
|
|
170
|
+
|
|
171
|
+
:return: JoinGraph: The updated JoinGraph object with the specified left join.
|
|
172
|
+
"""
|
|
173
|
+
return self._join_operands(other_operand, "left", asof_join=asof_join)
|
|
174
|
+
|
|
175
|
+
def right(self, other_operand: typing.Union[str, FeatureSet]):
|
|
176
|
+
"""
|
|
177
|
+
Specifies a right join with the given feature set
|
|
178
|
+
|
|
179
|
+
:param other_operand: (str or FeatureSet) The name of the feature set or a FeatureSet object to join with.
|
|
180
|
+
|
|
181
|
+
:return: JoinGraph: The updated JoinGraph object with the specified right join.
|
|
182
|
+
"""
|
|
183
|
+
return self._join_operands(other_operand, "right")
|
|
184
|
+
|
|
185
|
+
def _join_operands(
|
|
186
|
+
self,
|
|
187
|
+
other_operand: typing.Union[str, FeatureSet],
|
|
188
|
+
join_type: str,
|
|
189
|
+
asof_join: bool = False,
|
|
190
|
+
):
|
|
191
|
+
if isinstance(other_operand, FeatureSet):
|
|
192
|
+
other_operand = other_operand.metadata.name
|
|
193
|
+
|
|
194
|
+
first_key_num = len(self._steps.keys()) if self._steps else 0
|
|
195
|
+
left_last_step_name, left_all_feature_sets = (
|
|
196
|
+
self.last_step_name,
|
|
197
|
+
self.all_feature_sets_names,
|
|
198
|
+
)
|
|
199
|
+
is_first_fs = (
|
|
200
|
+
join_type == JoinGraph.first_join_type or left_all_feature_sets == self.name
|
|
201
|
+
)
|
|
202
|
+
# create_new_step
|
|
203
|
+
new_step = _JoinStep(
|
|
204
|
+
f"step_{first_key_num}",
|
|
205
|
+
left_last_step_name if not is_first_fs else "",
|
|
206
|
+
other_operand,
|
|
207
|
+
left_all_feature_sets if not is_first_fs else [],
|
|
208
|
+
other_operand,
|
|
209
|
+
join_type,
|
|
210
|
+
asof_join,
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
if self.steps is not None:
|
|
214
|
+
self.steps.update(new_step)
|
|
215
|
+
else:
|
|
216
|
+
self.steps = [new_step]
|
|
217
|
+
return self
|
|
218
|
+
|
|
219
|
+
def _start(self, other_operand: typing.Union[str, FeatureSet]):
|
|
220
|
+
return self._join_operands(other_operand, JoinGraph.first_join_type)
|
|
221
|
+
|
|
222
|
+
def _init_all_join_keys(
|
|
223
|
+
self,
|
|
224
|
+
feature_set_objects,
|
|
225
|
+
vector,
|
|
226
|
+
entity_rows_keys: typing.Optional[list[str]] = None,
|
|
227
|
+
):
|
|
228
|
+
for step in self.steps:
|
|
229
|
+
step.init_join_keys(feature_set_objects, vector, entity_rows_keys)
|
|
230
|
+
|
|
231
|
+
@property
|
|
232
|
+
def all_feature_sets_names(self):
|
|
233
|
+
"""
|
|
234
|
+
Returns a list of all feature set names included in the join graph.
|
|
235
|
+
|
|
236
|
+
:return: List[str]: A list of feature set names.
|
|
237
|
+
"""
|
|
238
|
+
if self._steps:
|
|
239
|
+
return self._steps[-1].left_feature_set_names + [
|
|
240
|
+
self._steps[-1].right_feature_set_name
|
|
241
|
+
]
|
|
242
|
+
else:
|
|
243
|
+
return self.name
|
|
244
|
+
|
|
245
|
+
@property
|
|
246
|
+
def last_step_name(self):
|
|
247
|
+
"""
|
|
248
|
+
Returns the name of the last step in the join graph.
|
|
249
|
+
|
|
250
|
+
:return: str: The name of the last step.
|
|
251
|
+
"""
|
|
252
|
+
if self._steps:
|
|
253
|
+
return self._steps[-1].name
|
|
254
|
+
else:
|
|
255
|
+
return self.name
|
|
256
|
+
|
|
257
|
+
@property
|
|
258
|
+
def steps(self):
|
|
259
|
+
"""
|
|
260
|
+
Returns the list of join steps as ObjectList, which can be used to iterate over the steps
|
|
261
|
+
or access the properties of each step.
|
|
262
|
+
:return: ObjectList: The list of join steps.
|
|
263
|
+
"""
|
|
264
|
+
return self._steps
|
|
265
|
+
|
|
266
|
+
@steps.setter
|
|
267
|
+
def steps(self, steps):
|
|
268
|
+
"""
|
|
269
|
+
Setter for the steps property. It allows updating the join steps.
|
|
270
|
+
|
|
271
|
+
:param steps: (List[_JoinStep]) The list of join steps.
|
|
272
|
+
"""
|
|
273
|
+
self._steps = ObjectList.from_list(child_class=_JoinStep, children=steps)
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
class OnlineVectorService:
|
|
277
|
+
"""get_online_feature_service response object"""
|
|
278
|
+
|
|
279
|
+
def __init__(
|
|
280
|
+
self,
|
|
281
|
+
vector,
|
|
282
|
+
graph,
|
|
283
|
+
index_columns,
|
|
284
|
+
impute_policy: typing.Optional[dict] = None,
|
|
285
|
+
requested_columns: typing.Optional[list[str]] = None,
|
|
286
|
+
):
|
|
287
|
+
self.vector = vector
|
|
288
|
+
self.impute_policy = impute_policy or {}
|
|
289
|
+
|
|
290
|
+
self._controller = graph.controller
|
|
291
|
+
self._index_columns = index_columns
|
|
292
|
+
self._impute_values = {}
|
|
293
|
+
self._requested_columns = requested_columns
|
|
294
|
+
|
|
295
|
+
def __enter__(self):
|
|
296
|
+
return self
|
|
297
|
+
|
|
298
|
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
|
299
|
+
self.close()
|
|
300
|
+
|
|
301
|
+
def initialize(self):
|
|
302
|
+
"""internal, init the feature service and prep the imputing logic"""
|
|
303
|
+
if not self.impute_policy:
|
|
304
|
+
return
|
|
305
|
+
|
|
306
|
+
impute_policy = copy(self.impute_policy)
|
|
307
|
+
vector = self.vector
|
|
308
|
+
feature_stats = vector.get_stats_table()
|
|
309
|
+
self._impute_values = {}
|
|
310
|
+
|
|
311
|
+
feature_keys = list(vector.status.features.keys())
|
|
312
|
+
if vector.status.label_column in feature_keys:
|
|
313
|
+
feature_keys.remove(vector.status.label_column)
|
|
314
|
+
|
|
315
|
+
if "*" in impute_policy:
|
|
316
|
+
value = impute_policy["*"]
|
|
317
|
+
del impute_policy["*"]
|
|
318
|
+
|
|
319
|
+
for name in feature_keys:
|
|
320
|
+
if name not in impute_policy:
|
|
321
|
+
if isinstance(value, str) and value.startswith("$"):
|
|
322
|
+
self._impute_values[name] = feature_stats.loc[name, value[1:]]
|
|
323
|
+
else:
|
|
324
|
+
self._impute_values[name] = value
|
|
325
|
+
|
|
326
|
+
for name, value in impute_policy.items():
|
|
327
|
+
if name not in feature_keys:
|
|
328
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
329
|
+
f"feature {name} in impute_policy but not in feature vector"
|
|
330
|
+
)
|
|
331
|
+
if isinstance(value, str) and value.startswith("$"):
|
|
332
|
+
self._impute_values[name] = feature_stats.loc[name, value[1:]]
|
|
333
|
+
else:
|
|
334
|
+
self._impute_values[name] = value
|
|
335
|
+
|
|
336
|
+
@property
|
|
337
|
+
def status(self):
|
|
338
|
+
"""vector merger function status (ready, running, error)"""
|
|
339
|
+
return "ready"
|
|
340
|
+
|
|
341
|
+
def get(self, entity_rows: list[Union[dict, list]], as_list=False):
|
|
342
|
+
"""get feature vector given the provided entity inputs
|
|
343
|
+
|
|
344
|
+
take a list of input vectors/rows and return a list of enriched feature vectors
|
|
345
|
+
each input and/or output vector can be a list of values or a dictionary of field names and values,
|
|
346
|
+
to return the vector as a list of values set the `as_list` to True.
|
|
347
|
+
|
|
348
|
+
if the input is a list of list (vs a list of dict), the values in the list will correspond to the
|
|
349
|
+
index/entity values, i.e. [["GOOG"], ["MSFT"]] means "GOOG" and "MSFT" are the index/entity fields.
|
|
350
|
+
|
|
351
|
+
example::
|
|
352
|
+
|
|
353
|
+
# accept list of dict, return list of dict
|
|
354
|
+
svc = fstore.get_online_feature_service(vector)
|
|
355
|
+
resp = svc.get([{"name": "joe"}, {"name": "mike"}])
|
|
356
|
+
|
|
357
|
+
# accept list of list, return list of list
|
|
358
|
+
svc = fstore.get_online_feature_service(vector, as_list=True)
|
|
359
|
+
resp = svc.get([["joe"], ["mike"]])
|
|
360
|
+
|
|
361
|
+
:param entity_rows: list of list/dict with input entity data/rows
|
|
362
|
+
:param as_list: return a list of list (list input is required by many ML frameworks)
|
|
363
|
+
"""
|
|
364
|
+
results = []
|
|
365
|
+
futures = []
|
|
366
|
+
if isinstance(entity_rows, dict):
|
|
367
|
+
entity_rows = [entity_rows]
|
|
368
|
+
|
|
369
|
+
# validate we have valid input struct
|
|
370
|
+
if (
|
|
371
|
+
not entity_rows
|
|
372
|
+
or not isinstance(entity_rows, list)
|
|
373
|
+
or not isinstance(entity_rows[0], (list, dict))
|
|
374
|
+
):
|
|
375
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
376
|
+
f"input data is of type {type(entity_rows)}. must be a list of lists or list of dicts"
|
|
377
|
+
)
|
|
378
|
+
|
|
379
|
+
# if list of list, convert to dicts (with the index columns as the dict keys)
|
|
380
|
+
if isinstance(entity_rows[0], list):
|
|
381
|
+
if not self._index_columns or len(entity_rows[0]) != len(
|
|
382
|
+
self._index_columns
|
|
383
|
+
):
|
|
384
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
385
|
+
"input list must be in the same size of the index_keys list"
|
|
386
|
+
)
|
|
387
|
+
index_range = range(len(self._index_columns))
|
|
388
|
+
entity_rows = [
|
|
389
|
+
{self._index_columns[i]: item[i] for i in index_range}
|
|
390
|
+
for item in entity_rows
|
|
391
|
+
]
|
|
392
|
+
|
|
393
|
+
for row in entity_rows:
|
|
394
|
+
futures.append(self._controller.emit(row, return_awaitable_result=True))
|
|
395
|
+
|
|
396
|
+
for future in futures:
|
|
397
|
+
result = future.await_result()
|
|
398
|
+
data = result.body
|
|
399
|
+
if data:
|
|
400
|
+
actual_columns = data.keys()
|
|
401
|
+
if all([col in self._index_columns for col in actual_columns]):
|
|
402
|
+
# didn't get any data from the graph
|
|
403
|
+
results.append(None)
|
|
404
|
+
continue
|
|
405
|
+
for column in self._requested_columns:
|
|
406
|
+
if (
|
|
407
|
+
column not in actual_columns
|
|
408
|
+
and column != self.vector.status.label_column
|
|
409
|
+
):
|
|
410
|
+
data[column] = None
|
|
411
|
+
|
|
412
|
+
if self._impute_values:
|
|
413
|
+
for name in data.keys():
|
|
414
|
+
v = data[name]
|
|
415
|
+
if v is None or (
|
|
416
|
+
isinstance(v, float) and (np.isinf(v) or np.isnan(v))
|
|
417
|
+
):
|
|
418
|
+
data[name] = self._impute_values.get(name, v)
|
|
419
|
+
if not self.vector.spec.with_indexes:
|
|
420
|
+
for name in self.vector.status.index_keys:
|
|
421
|
+
data.pop(name, None)
|
|
422
|
+
if not any(data.values()):
|
|
423
|
+
data = None
|
|
424
|
+
|
|
425
|
+
if as_list and data:
|
|
426
|
+
data = [
|
|
427
|
+
data.get(key, None)
|
|
428
|
+
for key in self._requested_columns
|
|
429
|
+
if key != self.vector.status.label_column
|
|
430
|
+
]
|
|
431
|
+
results.append(data)
|
|
432
|
+
|
|
433
|
+
return results
|
|
434
|
+
|
|
435
|
+
def close(self):
|
|
436
|
+
"""terminate the async loop"""
|
|
437
|
+
self._controller.terminate()
|
|
438
|
+
|
|
439
|
+
|
|
440
|
+
class OfflineVectorResponse:
|
|
441
|
+
"""get_offline_features response object"""
|
|
442
|
+
|
|
443
|
+
def __init__(self, merger):
|
|
444
|
+
self._merger = merger
|
|
445
|
+
self.vector = merger.vector
|
|
446
|
+
|
|
447
|
+
@property
|
|
448
|
+
def status(self):
|
|
449
|
+
"""vector prep job status (ready, running, error)"""
|
|
450
|
+
return self._merger.get_status()
|
|
451
|
+
|
|
452
|
+
def to_dataframe(self, to_pandas=True):
|
|
453
|
+
"""return result as dataframe"""
|
|
454
|
+
if self.status != "completed":
|
|
455
|
+
raise mlrun.errors.MLRunTaskNotReadyError(
|
|
456
|
+
"feature vector dataset is not ready"
|
|
457
|
+
)
|
|
458
|
+
return self._merger.get_df(to_pandas=to_pandas)
|
|
459
|
+
|
|
460
|
+
def to_parquet(self, target_path, **kw):
|
|
461
|
+
"""return results as parquet file"""
|
|
462
|
+
return self._merger.to_parquet(target_path, **kw)
|
|
463
|
+
|
|
464
|
+
def to_csv(self, target_path, **kw):
|
|
465
|
+
"""return results as csv file"""
|
|
466
|
+
return self._merger.to_csv(target_path, **kw)
|
|
@@ -21,10 +21,9 @@ import pandas as pd
|
|
|
21
21
|
import mlrun
|
|
22
22
|
from mlrun.datastore.targets import CSVTarget, ParquetTarget
|
|
23
23
|
from mlrun.feature_store.feature_set import FeatureSet
|
|
24
|
-
from mlrun.feature_store.
|
|
24
|
+
from mlrun.feature_store.feature_vector_utils import JoinGraph, OfflineVectorResponse
|
|
25
25
|
|
|
26
26
|
from ...utils import logger, str_to_timestamp
|
|
27
|
-
from ..feature_vector import OfflineVectorResponse
|
|
28
27
|
|
|
29
28
|
|
|
30
29
|
class BaseMerger(abc.ABC):
|
|
@@ -16,7 +16,7 @@ from mlrun.datastore.store_resources import ResourceCache
|
|
|
16
16
|
from mlrun.datastore.targets import get_online_target
|
|
17
17
|
from mlrun.serving.server import create_graph_server
|
|
18
18
|
|
|
19
|
-
from ..
|
|
19
|
+
from ..feature_vector_utils import OnlineVectorService
|
|
20
20
|
from .base import BaseMerger
|
|
21
21
|
|
|
22
22
|
|
|
@@ -210,8 +210,7 @@ class TSDBConnector(ABC):
|
|
|
210
210
|
endpoint_ids: Union[str, list[str]],
|
|
211
211
|
start: Optional[datetime] = None,
|
|
212
212
|
end: Optional[datetime] = None,
|
|
213
|
-
|
|
214
|
-
) -> Union[pd.DataFrame, list[v3io_frames.client.RawFrame]]:
|
|
213
|
+
) -> Union[pd.DataFrame, dict[str, float]]:
|
|
215
214
|
"""
|
|
216
215
|
Fetches data from the predictions TSDB table and returns the most recent request
|
|
217
216
|
timestamp for each specified endpoint.
|
|
@@ -219,11 +218,11 @@ class TSDBConnector(ABC):
|
|
|
219
218
|
:param endpoint_ids: A list of model endpoint identifiers.
|
|
220
219
|
:param start: The start time for the query.
|
|
221
220
|
:param end: The end time for the query.
|
|
222
|
-
:param get_raw: Whether to return the request as raw frames rather than a pandas dataframe. Defaults
|
|
223
|
-
to False. This can greatly improve performance when a dataframe isn't needed.
|
|
224
221
|
|
|
225
|
-
:return: A pd.DataFrame containing the columns [endpoint_id, last_request, last_latency]
|
|
226
|
-
|
|
222
|
+
:return: A pd.DataFrame containing the columns [endpoint_id, last_request, last_latency] or a dictionary
|
|
223
|
+
containing the endpoint_id as the key and the last request timestamp as the value.
|
|
224
|
+
if an endpoint has not been invoked within the specified time range, it will not appear in the result (relevant
|
|
225
|
+
only to non-v3io connector).
|
|
227
226
|
"""
|
|
228
227
|
|
|
229
228
|
@abstractmethod
|
|
@@ -668,7 +668,6 @@ class TDEngineConnector(TSDBConnector):
|
|
|
668
668
|
endpoint_ids: Union[str, list[str]],
|
|
669
669
|
start: Optional[datetime] = None,
|
|
670
670
|
end: Optional[datetime] = None,
|
|
671
|
-
get_raw: bool = False,
|
|
672
671
|
) -> pd.DataFrame:
|
|
673
672
|
filter_query = self._get_endpoint_filter(endpoint_id=endpoint_ids)
|
|
674
673
|
start, end = self._get_start_end(start, end)
|