mlrun 1.7.0rc4__py3-none-any.whl → 1.7.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/__init__.py +11 -1
- mlrun/__main__.py +39 -121
- mlrun/{datastore/helpers.py → alerts/__init__.py} +2 -5
- mlrun/alerts/alert.py +248 -0
- mlrun/api/schemas/__init__.py +4 -3
- mlrun/artifacts/__init__.py +8 -3
- mlrun/artifacts/base.py +39 -254
- mlrun/artifacts/dataset.py +9 -190
- mlrun/artifacts/manager.py +73 -46
- mlrun/artifacts/model.py +30 -158
- mlrun/artifacts/plots.py +23 -380
- mlrun/common/constants.py +73 -1
- mlrun/common/db/sql_session.py +3 -2
- mlrun/common/formatters/__init__.py +21 -0
- mlrun/common/formatters/artifact.py +46 -0
- mlrun/common/formatters/base.py +113 -0
- mlrun/common/formatters/feature_set.py +44 -0
- mlrun/common/formatters/function.py +46 -0
- mlrun/common/formatters/pipeline.py +53 -0
- mlrun/common/formatters/project.py +51 -0
- mlrun/common/formatters/run.py +29 -0
- mlrun/common/helpers.py +11 -1
- mlrun/{runtimes → common/runtimes}/constants.py +32 -4
- mlrun/common/schemas/__init__.py +31 -4
- mlrun/common/schemas/alert.py +202 -0
- mlrun/common/schemas/api_gateway.py +196 -0
- mlrun/common/schemas/artifact.py +28 -1
- mlrun/common/schemas/auth.py +13 -2
- mlrun/common/schemas/client_spec.py +2 -1
- mlrun/common/schemas/common.py +7 -4
- mlrun/common/schemas/constants.py +3 -0
- mlrun/common/schemas/feature_store.py +58 -28
- mlrun/common/schemas/frontend_spec.py +8 -0
- mlrun/common/schemas/function.py +11 -0
- mlrun/common/schemas/hub.py +7 -9
- mlrun/common/schemas/model_monitoring/__init__.py +21 -4
- mlrun/common/schemas/model_monitoring/constants.py +136 -42
- mlrun/common/schemas/model_monitoring/grafana.py +9 -5
- mlrun/common/schemas/model_monitoring/model_endpoints.py +89 -41
- mlrun/common/schemas/notification.py +69 -12
- mlrun/{runtimes/mpijob/v1alpha1.py → common/schemas/pagination.py} +10 -13
- mlrun/common/schemas/pipeline.py +7 -0
- mlrun/common/schemas/project.py +67 -16
- mlrun/common/schemas/runs.py +17 -0
- mlrun/common/schemas/schedule.py +1 -1
- mlrun/common/schemas/workflow.py +10 -2
- mlrun/common/types.py +14 -1
- mlrun/config.py +233 -58
- mlrun/data_types/data_types.py +11 -1
- mlrun/data_types/spark.py +5 -4
- mlrun/data_types/to_pandas.py +75 -34
- mlrun/datastore/__init__.py +8 -10
- mlrun/datastore/alibaba_oss.py +131 -0
- mlrun/datastore/azure_blob.py +131 -43
- mlrun/datastore/base.py +107 -47
- mlrun/datastore/datastore.py +17 -7
- mlrun/datastore/datastore_profile.py +91 -7
- mlrun/datastore/dbfs_store.py +3 -7
- mlrun/datastore/filestore.py +1 -3
- mlrun/datastore/google_cloud_storage.py +92 -32
- mlrun/datastore/hdfs.py +5 -0
- mlrun/datastore/inmem.py +6 -3
- mlrun/datastore/redis.py +3 -2
- mlrun/datastore/s3.py +30 -12
- mlrun/datastore/snowflake_utils.py +45 -0
- mlrun/datastore/sources.py +274 -59
- mlrun/datastore/spark_utils.py +30 -0
- mlrun/datastore/store_resources.py +9 -7
- mlrun/datastore/storeytargets.py +151 -0
- mlrun/datastore/targets.py +387 -119
- mlrun/datastore/utils.py +68 -5
- mlrun/datastore/v3io.py +28 -50
- mlrun/db/auth_utils.py +152 -0
- mlrun/db/base.py +245 -20
- mlrun/db/factory.py +1 -4
- mlrun/db/httpdb.py +909 -231
- mlrun/db/nopdb.py +279 -14
- mlrun/errors.py +35 -5
- mlrun/execution.py +111 -38
- mlrun/feature_store/__init__.py +0 -2
- mlrun/feature_store/api.py +46 -53
- mlrun/feature_store/common.py +6 -11
- mlrun/feature_store/feature_set.py +48 -23
- mlrun/feature_store/feature_vector.py +13 -2
- mlrun/feature_store/ingestion.py +7 -6
- mlrun/feature_store/retrieval/base.py +9 -4
- mlrun/feature_store/retrieval/dask_merger.py +2 -0
- mlrun/feature_store/retrieval/job.py +13 -4
- mlrun/feature_store/retrieval/local_merger.py +2 -0
- mlrun/feature_store/retrieval/spark_merger.py +24 -32
- mlrun/feature_store/steps.py +38 -19
- mlrun/features.py +6 -14
- mlrun/frameworks/_common/plan.py +3 -3
- mlrun/frameworks/_dl_common/loggers/tensorboard_logger.py +7 -12
- mlrun/frameworks/_ml_common/plan.py +1 -1
- mlrun/frameworks/auto_mlrun/auto_mlrun.py +2 -2
- mlrun/frameworks/lgbm/__init__.py +1 -1
- mlrun/frameworks/lgbm/callbacks/callback.py +2 -4
- mlrun/frameworks/lgbm/model_handler.py +1 -1
- mlrun/frameworks/parallel_coordinates.py +4 -4
- mlrun/frameworks/pytorch/__init__.py +2 -2
- mlrun/frameworks/sklearn/__init__.py +1 -1
- mlrun/frameworks/sklearn/mlrun_interface.py +13 -3
- mlrun/frameworks/tf_keras/__init__.py +5 -2
- mlrun/frameworks/tf_keras/callbacks/logging_callback.py +1 -1
- mlrun/frameworks/tf_keras/mlrun_interface.py +2 -2
- mlrun/frameworks/xgboost/__init__.py +1 -1
- mlrun/k8s_utils.py +57 -12
- mlrun/launcher/__init__.py +1 -1
- mlrun/launcher/base.py +6 -5
- mlrun/launcher/client.py +13 -11
- mlrun/launcher/factory.py +1 -1
- mlrun/launcher/local.py +15 -5
- mlrun/launcher/remote.py +10 -3
- mlrun/lists.py +6 -2
- mlrun/model.py +297 -48
- mlrun/model_monitoring/__init__.py +1 -1
- mlrun/model_monitoring/api.py +152 -357
- mlrun/model_monitoring/applications/__init__.py +10 -0
- mlrun/model_monitoring/applications/_application_steps.py +190 -0
- mlrun/model_monitoring/applications/base.py +108 -0
- mlrun/model_monitoring/applications/context.py +341 -0
- mlrun/model_monitoring/{evidently_application.py → applications/evidently_base.py} +27 -22
- mlrun/model_monitoring/applications/histogram_data_drift.py +227 -91
- mlrun/model_monitoring/applications/results.py +99 -0
- mlrun/model_monitoring/controller.py +130 -303
- mlrun/model_monitoring/{stores/models/sqlite.py → db/__init__.py} +5 -10
- mlrun/model_monitoring/db/stores/__init__.py +136 -0
- mlrun/model_monitoring/db/stores/base/__init__.py +15 -0
- mlrun/model_monitoring/db/stores/base/store.py +213 -0
- mlrun/model_monitoring/db/stores/sqldb/__init__.py +13 -0
- mlrun/model_monitoring/db/stores/sqldb/models/__init__.py +71 -0
- mlrun/model_monitoring/db/stores/sqldb/models/base.py +190 -0
- mlrun/model_monitoring/db/stores/sqldb/models/mysql.py +103 -0
- mlrun/model_monitoring/{stores/models/mysql.py → db/stores/sqldb/models/sqlite.py} +19 -13
- mlrun/model_monitoring/db/stores/sqldb/sql_store.py +659 -0
- mlrun/model_monitoring/db/stores/v3io_kv/__init__.py +13 -0
- mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +726 -0
- mlrun/model_monitoring/db/tsdb/__init__.py +105 -0
- mlrun/model_monitoring/db/tsdb/base.py +448 -0
- mlrun/model_monitoring/db/tsdb/helpers.py +30 -0
- mlrun/model_monitoring/db/tsdb/tdengine/__init__.py +15 -0
- mlrun/model_monitoring/db/tsdb/tdengine/schemas.py +298 -0
- mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py +42 -0
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +522 -0
- mlrun/model_monitoring/db/tsdb/v3io/__init__.py +15 -0
- mlrun/model_monitoring/db/tsdb/v3io/stream_graph_steps.py +158 -0
- mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +849 -0
- mlrun/model_monitoring/features_drift_table.py +34 -22
- mlrun/model_monitoring/helpers.py +177 -39
- mlrun/model_monitoring/model_endpoint.py +3 -2
- mlrun/model_monitoring/stream_processing.py +165 -398
- mlrun/model_monitoring/tracking_policy.py +7 -1
- mlrun/model_monitoring/writer.py +161 -125
- mlrun/package/packagers/default_packager.py +2 -2
- mlrun/package/packagers_manager.py +1 -0
- mlrun/package/utils/_formatter.py +2 -2
- mlrun/platforms/__init__.py +11 -10
- mlrun/platforms/iguazio.py +67 -228
- mlrun/projects/__init__.py +6 -1
- mlrun/projects/operations.py +47 -20
- mlrun/projects/pipelines.py +396 -249
- mlrun/projects/project.py +1176 -406
- mlrun/render.py +28 -22
- mlrun/run.py +208 -181
- mlrun/runtimes/__init__.py +76 -11
- mlrun/runtimes/base.py +54 -24
- mlrun/runtimes/daskjob.py +9 -2
- mlrun/runtimes/databricks_job/databricks_runtime.py +1 -0
- mlrun/runtimes/databricks_job/databricks_wrapper.py +1 -1
- mlrun/runtimes/funcdoc.py +1 -29
- mlrun/runtimes/kubejob.py +34 -128
- mlrun/runtimes/local.py +39 -10
- mlrun/runtimes/mpijob/__init__.py +0 -20
- mlrun/runtimes/mpijob/abstract.py +8 -8
- mlrun/runtimes/mpijob/v1.py +1 -1
- mlrun/runtimes/nuclio/__init__.py +1 -0
- mlrun/runtimes/nuclio/api_gateway.py +769 -0
- mlrun/runtimes/nuclio/application/__init__.py +15 -0
- mlrun/runtimes/nuclio/application/application.py +758 -0
- mlrun/runtimes/nuclio/application/reverse_proxy.go +95 -0
- mlrun/runtimes/nuclio/function.py +188 -68
- mlrun/runtimes/nuclio/serving.py +57 -60
- mlrun/runtimes/pod.py +191 -58
- mlrun/runtimes/remotesparkjob.py +11 -8
- mlrun/runtimes/sparkjob/spark3job.py +17 -18
- mlrun/runtimes/utils.py +40 -73
- mlrun/secrets.py +6 -2
- mlrun/serving/__init__.py +8 -1
- mlrun/serving/remote.py +2 -3
- mlrun/serving/routers.py +89 -64
- mlrun/serving/server.py +54 -26
- mlrun/serving/states.py +187 -56
- mlrun/serving/utils.py +19 -11
- mlrun/serving/v2_serving.py +136 -63
- mlrun/track/tracker.py +2 -1
- mlrun/track/trackers/mlflow_tracker.py +5 -0
- mlrun/utils/async_http.py +26 -6
- mlrun/utils/db.py +18 -0
- mlrun/utils/helpers.py +375 -105
- mlrun/utils/http.py +2 -2
- mlrun/utils/logger.py +75 -9
- mlrun/utils/notifications/notification/__init__.py +14 -10
- mlrun/utils/notifications/notification/base.py +48 -0
- mlrun/utils/notifications/notification/console.py +2 -0
- mlrun/utils/notifications/notification/git.py +24 -1
- mlrun/utils/notifications/notification/ipython.py +2 -0
- mlrun/utils/notifications/notification/slack.py +96 -21
- mlrun/utils/notifications/notification/webhook.py +63 -2
- mlrun/utils/notifications/notification_pusher.py +146 -16
- mlrun/utils/regex.py +9 -0
- mlrun/utils/retryer.py +3 -2
- mlrun/utils/v3io_clients.py +2 -3
- mlrun/utils/version/version.json +2 -2
- mlrun-1.7.2.dist-info/METADATA +390 -0
- mlrun-1.7.2.dist-info/RECORD +351 -0
- {mlrun-1.7.0rc4.dist-info → mlrun-1.7.2.dist-info}/WHEEL +1 -1
- mlrun/feature_store/retrieval/conversion.py +0 -271
- mlrun/kfpops.py +0 -868
- mlrun/model_monitoring/application.py +0 -310
- mlrun/model_monitoring/batch.py +0 -974
- mlrun/model_monitoring/controller_handler.py +0 -37
- mlrun/model_monitoring/prometheus.py +0 -216
- mlrun/model_monitoring/stores/__init__.py +0 -111
- mlrun/model_monitoring/stores/kv_model_endpoint_store.py +0 -574
- mlrun/model_monitoring/stores/model_endpoint_store.py +0 -145
- mlrun/model_monitoring/stores/models/__init__.py +0 -27
- mlrun/model_monitoring/stores/models/base.py +0 -84
- mlrun/model_monitoring/stores/sql_model_endpoint_store.py +0 -382
- mlrun/platforms/other.py +0 -305
- mlrun-1.7.0rc4.dist-info/METADATA +0 -269
- mlrun-1.7.0rc4.dist-info/RECORD +0 -321
- {mlrun-1.7.0rc4.dist-info → mlrun-1.7.2.dist-info}/LICENSE +0 -0
- {mlrun-1.7.0rc4.dist-info → mlrun-1.7.2.dist-info}/entry_points.txt +0 -0
- {mlrun-1.7.0rc4.dist-info → mlrun-1.7.2.dist-info}/top_level.txt +0 -0
|
@@ -24,11 +24,11 @@ import mlrun
|
|
|
24
24
|
import mlrun.common.model_monitoring.helpers
|
|
25
25
|
import mlrun.config
|
|
26
26
|
import mlrun.datastore.targets
|
|
27
|
+
import mlrun.feature_store as fstore
|
|
27
28
|
import mlrun.feature_store.steps
|
|
28
|
-
import mlrun.model_monitoring.
|
|
29
|
+
import mlrun.model_monitoring.db
|
|
29
30
|
import mlrun.serving.states
|
|
30
31
|
import mlrun.utils
|
|
31
|
-
import mlrun.utils.v3io_clients
|
|
32
32
|
from mlrun.common.schemas.model_monitoring.constants import (
|
|
33
33
|
EventFieldType,
|
|
34
34
|
EventKeyMetrics,
|
|
@@ -37,6 +37,7 @@ from mlrun.common.schemas.model_monitoring.constants import (
|
|
|
37
37
|
ModelEndpointTarget,
|
|
38
38
|
ProjectSecretKeys,
|
|
39
39
|
)
|
|
40
|
+
from mlrun.model_monitoring.db import StoreBase, TSDBConnector
|
|
40
41
|
from mlrun.utils import logger
|
|
41
42
|
|
|
42
43
|
|
|
@@ -48,14 +49,12 @@ class EventStreamProcessor:
|
|
|
48
49
|
parquet_batching_max_events: int,
|
|
49
50
|
parquet_batching_timeout_secs: int,
|
|
50
51
|
parquet_target: str,
|
|
51
|
-
sample_window: int = 10,
|
|
52
52
|
aggregate_windows: typing.Optional[list[str]] = None,
|
|
53
|
-
aggregate_period: str = "
|
|
53
|
+
aggregate_period: str = "5m",
|
|
54
54
|
model_monitoring_access_key: str = None,
|
|
55
55
|
):
|
|
56
56
|
# General configurations, mainly used for the storey steps in the future serving graph
|
|
57
57
|
self.project = project
|
|
58
|
-
self.sample_window = sample_window
|
|
59
58
|
self.aggregate_windows = aggregate_windows or ["5m", "1h"]
|
|
60
59
|
self.aggregate_period = aggregate_period
|
|
61
60
|
|
|
@@ -64,10 +63,6 @@ class EventStreamProcessor:
|
|
|
64
63
|
self.parquet_batching_max_events = parquet_batching_max_events
|
|
65
64
|
self.parquet_batching_timeout_secs = parquet_batching_timeout_secs
|
|
66
65
|
|
|
67
|
-
self.model_endpoint_store_target = (
|
|
68
|
-
mlrun.mlconf.model_endpoint_monitoring.store_type
|
|
69
|
-
)
|
|
70
|
-
|
|
71
66
|
logger.info(
|
|
72
67
|
"Initializing model monitoring event stream processor",
|
|
73
68
|
parquet_path=self.parquet_path,
|
|
@@ -75,6 +70,7 @@ class EventStreamProcessor:
|
|
|
75
70
|
)
|
|
76
71
|
|
|
77
72
|
self.storage_options = None
|
|
73
|
+
self.tsdb_configurations = {}
|
|
78
74
|
if not mlrun.mlconf.is_ce_mode():
|
|
79
75
|
self._initialize_v3io_configurations(
|
|
80
76
|
model_monitoring_access_key=model_monitoring_access_key
|
|
@@ -133,78 +129,83 @@ class EventStreamProcessor:
|
|
|
133
129
|
self.tsdb_batching_max_events = tsdb_batching_max_events
|
|
134
130
|
self.tsdb_batching_timeout_secs = tsdb_batching_timeout_secs
|
|
135
131
|
|
|
136
|
-
def apply_monitoring_serving_graph(
|
|
132
|
+
def apply_monitoring_serving_graph(
|
|
133
|
+
self,
|
|
134
|
+
fn: mlrun.runtimes.ServingRuntime,
|
|
135
|
+
tsdb_connector: TSDBConnector,
|
|
136
|
+
endpoint_store: StoreBase,
|
|
137
|
+
) -> None:
|
|
137
138
|
"""
|
|
138
|
-
Apply monitoring serving graph to a given serving function. The following serving graph includes about
|
|
139
|
-
of different operations that are executed on the events from
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
139
|
+
Apply monitoring serving graph to a given serving function. The following serving graph includes about 4 main
|
|
140
|
+
parts that each one them includes several steps of different operations that are executed on the events from
|
|
141
|
+
the model server.
|
|
142
|
+
Each event has metadata (function_uri, timestamp, class, etc.) but also inputs, predictions and optional
|
|
143
|
+
metrics from the model server.
|
|
144
|
+
In ths first part, the serving graph processes the event and splits it into sub-events. This part also includes
|
|
145
|
+
validation of the event data and adding important details to the event such as endpoint_id.
|
|
146
|
+
In the next parts, the serving graph stores data to 3 different targets:
|
|
147
|
+
1. KV/SQL: Metadata and basic stats about the average latency and the amount of predictions over
|
|
148
|
+
time per endpoint. for example the amount of predictions of endpoint x in the last 5 min. The model
|
|
149
|
+
endpoints table also contains data on the model endpoint from other processes, such as feature_stats that
|
|
150
|
+
represents sample statistics from the training data. If the target is from type KV, then the model endpoints
|
|
151
|
+
table can be found under v3io:///users/pipelines/project-name/model-endpoints/endpoints/. If the target is
|
|
152
|
+
SQL, then the table is stored within the database that was defined in the provided connection string.
|
|
153
|
+
2. TSDB: live data of different key metric dictionaries in tsdb target.
|
|
154
|
+
This data is being used by the monitoring dashboards in grafana. If using V3IO TSDB, results
|
|
152
155
|
can be found under v3io:///users/pipelines/project-name/model-endpoints/events/. In that case, we generate
|
|
153
156
|
3 different key metric dictionaries: base_metrics (average latency and predictions over time),
|
|
154
157
|
endpoint_features (Prediction and feature names and values), and custom_metrics (user-defined metrics).
|
|
155
|
-
|
|
156
|
-
|
|
157
|
-
|
|
158
|
-
|
|
159
|
-
mlrun.mlconf.model_endpoint_monitoring.offline. Otherwise, the default parquet path is under
|
|
160
|
-
mlrun.mlconf.model_endpoint_monitoring.user_space.
|
|
158
|
+
3. Parquet: This Parquet file includes the required data for the model monitoring applications. If defined,
|
|
159
|
+
the parquet target path can be found under mlrun.mlconf.model_endpoint_monitoring.offline. Otherwise,
|
|
160
|
+
the default parquet path is under mlrun.mlconf.model_endpoint_monitoring.user_space. Note that if you are
|
|
161
|
+
using CE, the parquet target path is based on the defined MLRun artifact path.
|
|
161
162
|
|
|
162
163
|
:param fn: A serving function.
|
|
164
|
+
:param tsdb_connector: Time series database connector.
|
|
165
|
+
:param endpoint_store: KV/SQL store used for endpoint data.
|
|
163
166
|
"""
|
|
164
167
|
|
|
165
168
|
graph = typing.cast(
|
|
166
169
|
mlrun.serving.states.RootFlowStep,
|
|
167
170
|
fn.set_topology(mlrun.serving.states.StepKinds.flow),
|
|
168
171
|
)
|
|
172
|
+
graph.add_step(
|
|
173
|
+
"ExtractEndpointID",
|
|
174
|
+
"extract_endpoint",
|
|
175
|
+
full_event=True,
|
|
176
|
+
)
|
|
169
177
|
|
|
170
|
-
#
|
|
171
|
-
|
|
172
|
-
|
|
173
|
-
|
|
174
|
-
|
|
175
|
-
|
|
176
|
-
|
|
177
|
-
project=self.project,
|
|
178
|
-
),
|
|
179
|
-
).respond()
|
|
180
|
-
|
|
181
|
-
apply_event_routing()
|
|
178
|
+
# split the graph between event with error vs valid event
|
|
179
|
+
graph.add_step(
|
|
180
|
+
"storey.Filter",
|
|
181
|
+
"FilterError",
|
|
182
|
+
after="extract_endpoint",
|
|
183
|
+
_fn="(event.get('error') is None)",
|
|
184
|
+
)
|
|
182
185
|
|
|
183
|
-
|
|
184
|
-
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
|
|
188
|
-
|
|
189
|
-
"filter_stream_event",
|
|
190
|
-
_fn="('-' not in event.path.split('/')[-1])",
|
|
191
|
-
full_event=True,
|
|
192
|
-
)
|
|
186
|
+
graph.add_step(
|
|
187
|
+
"storey.Filter",
|
|
188
|
+
"ForwardError",
|
|
189
|
+
after="extract_endpoint",
|
|
190
|
+
_fn="(event.get('error') is not None)",
|
|
191
|
+
)
|
|
193
192
|
|
|
194
|
-
|
|
193
|
+
tsdb_connector.handle_model_error(
|
|
194
|
+
graph,
|
|
195
|
+
)
|
|
195
196
|
|
|
196
|
-
#
|
|
197
|
+
# Process endpoint event: splitting into sub-events and validate event data
|
|
197
198
|
def apply_process_endpoint_event():
|
|
198
199
|
graph.add_step(
|
|
199
200
|
"ProcessEndpointEvent",
|
|
201
|
+
after="extract_endpoint", # TODO: change this to FilterError in ML-7456
|
|
200
202
|
full_event=True,
|
|
201
203
|
project=self.project,
|
|
202
|
-
after="filter_stream_event",
|
|
203
204
|
)
|
|
204
205
|
|
|
205
206
|
apply_process_endpoint_event()
|
|
206
207
|
|
|
207
|
-
#
|
|
208
|
+
# Applying Storey operations of filtering and flatten
|
|
208
209
|
def apply_storey_filter_and_flatmap():
|
|
209
210
|
# Remove none values from each event
|
|
210
211
|
graph.add_step(
|
|
@@ -221,7 +222,7 @@ class EventStreamProcessor:
|
|
|
221
222
|
|
|
222
223
|
apply_storey_filter_and_flatmap()
|
|
223
224
|
|
|
224
|
-
#
|
|
225
|
+
# Validating feature names and map each feature to its value
|
|
225
226
|
def apply_map_feature_names():
|
|
226
227
|
graph.add_step(
|
|
227
228
|
"MapFeatureNames",
|
|
@@ -233,9 +234,9 @@ class EventStreamProcessor:
|
|
|
233
234
|
|
|
234
235
|
apply_map_feature_names()
|
|
235
236
|
|
|
236
|
-
#
|
|
237
|
+
# Calculate number of predictions and average latency
|
|
237
238
|
def apply_storey_aggregations():
|
|
238
|
-
#
|
|
239
|
+
# Calculate number of predictions for each window (5 min and 1 hour by default)
|
|
239
240
|
graph.add_step(
|
|
240
241
|
class_name="storey.AggregateByKey",
|
|
241
242
|
aggregates=[
|
|
@@ -253,7 +254,7 @@ class EventStreamProcessor:
|
|
|
253
254
|
table=".",
|
|
254
255
|
key_field=EventFieldType.ENDPOINT_ID,
|
|
255
256
|
)
|
|
256
|
-
#
|
|
257
|
+
# Calculate average latency time for each window (5 min and 1 hour by default)
|
|
257
258
|
graph.add_step(
|
|
258
259
|
class_name="storey.Rename",
|
|
259
260
|
mapping={
|
|
@@ -266,8 +267,8 @@ class EventStreamProcessor:
|
|
|
266
267
|
|
|
267
268
|
apply_storey_aggregations()
|
|
268
269
|
|
|
269
|
-
#
|
|
270
|
-
#
|
|
270
|
+
# KV/SQL branch
|
|
271
|
+
# Filter relevant keys from the event before writing the data into the database table
|
|
271
272
|
def apply_process_before_endpoint_update():
|
|
272
273
|
graph.add_step(
|
|
273
274
|
"ProcessBeforeEndpointUpdate",
|
|
@@ -277,7 +278,7 @@ class EventStreamProcessor:
|
|
|
277
278
|
|
|
278
279
|
apply_process_before_endpoint_update()
|
|
279
280
|
|
|
280
|
-
#
|
|
281
|
+
# Write the filtered event to KV/SQL table. At this point, the serving graph updates the stats
|
|
281
282
|
# about average latency and the amount of predictions over time
|
|
282
283
|
def apply_update_endpoint():
|
|
283
284
|
graph.add_step(
|
|
@@ -285,12 +286,11 @@ class EventStreamProcessor:
|
|
|
285
286
|
name="UpdateEndpoint",
|
|
286
287
|
after="ProcessBeforeEndpointUpdate",
|
|
287
288
|
project=self.project,
|
|
288
|
-
model_endpoint_store_target=self.model_endpoint_store_target,
|
|
289
289
|
)
|
|
290
290
|
|
|
291
291
|
apply_update_endpoint()
|
|
292
292
|
|
|
293
|
-
#
|
|
293
|
+
# (only for V3IO KV target) - Apply infer_schema on the model endpoints table for generating schema file
|
|
294
294
|
# which will be used by Grafana monitoring dashboards
|
|
295
295
|
def apply_infer_schema():
|
|
296
296
|
graph.add_step(
|
|
@@ -302,120 +302,13 @@ class EventStreamProcessor:
|
|
|
302
302
|
table=self.kv_path,
|
|
303
303
|
)
|
|
304
304
|
|
|
305
|
-
if
|
|
305
|
+
if endpoint_store.type == ModelEndpointTarget.V3IO_NOSQL:
|
|
306
306
|
apply_infer_schema()
|
|
307
307
|
|
|
308
|
-
|
|
309
|
-
def apply_storey_sample_window():
|
|
310
|
-
graph.add_step(
|
|
311
|
-
"storey.steps.SampleWindow",
|
|
312
|
-
name="sample",
|
|
313
|
-
after="Rename",
|
|
314
|
-
window_size=self.sample_window,
|
|
315
|
-
key=EventFieldType.ENDPOINT_ID,
|
|
316
|
-
)
|
|
317
|
-
|
|
318
|
-
apply_storey_sample_window()
|
|
319
|
-
|
|
320
|
-
# Steps 12-19 - TSDB branch (skip to Prometheus if in CE env)
|
|
321
|
-
# Steps 20-21 - Prometheus branch
|
|
322
|
-
if not mlrun.mlconf.is_ce_mode():
|
|
323
|
-
# TSDB branch
|
|
324
|
-
|
|
325
|
-
# Step 12 - Before writing data to TSDB, create dictionary of 2-3 dictionaries that contains
|
|
326
|
-
# stats and details about the events
|
|
327
|
-
def apply_process_before_tsdb():
|
|
328
|
-
graph.add_step(
|
|
329
|
-
"ProcessBeforeTSDB", name="ProcessBeforeTSDB", after="sample"
|
|
330
|
-
)
|
|
331
|
-
|
|
332
|
-
apply_process_before_tsdb()
|
|
333
|
-
|
|
334
|
-
# Steps 13-19: - Unpacked keys from each dictionary and write to TSDB target
|
|
335
|
-
def apply_filter_and_unpacked_keys(name, keys):
|
|
336
|
-
graph.add_step(
|
|
337
|
-
"FilterAndUnpackKeys",
|
|
338
|
-
name=name,
|
|
339
|
-
after="ProcessBeforeTSDB",
|
|
340
|
-
keys=[keys],
|
|
341
|
-
)
|
|
342
|
-
|
|
343
|
-
def apply_tsdb_target(name, after):
|
|
344
|
-
graph.add_step(
|
|
345
|
-
"storey.TSDBTarget",
|
|
346
|
-
name=name,
|
|
347
|
-
after=after,
|
|
348
|
-
path=self.tsdb_path,
|
|
349
|
-
rate="10/m",
|
|
350
|
-
time_col=EventFieldType.TIMESTAMP,
|
|
351
|
-
container=self.tsdb_container,
|
|
352
|
-
access_key=self.v3io_access_key,
|
|
353
|
-
v3io_frames=self.v3io_framesd,
|
|
354
|
-
infer_columns_from_data=True,
|
|
355
|
-
index_cols=[
|
|
356
|
-
EventFieldType.ENDPOINT_ID,
|
|
357
|
-
EventFieldType.RECORD_TYPE,
|
|
358
|
-
EventFieldType.ENDPOINT_TYPE,
|
|
359
|
-
],
|
|
360
|
-
max_events=self.tsdb_batching_max_events,
|
|
361
|
-
flush_after_seconds=self.tsdb_batching_timeout_secs,
|
|
362
|
-
key=EventFieldType.ENDPOINT_ID,
|
|
363
|
-
)
|
|
364
|
-
|
|
365
|
-
# Steps 13-14 - unpacked base_metrics dictionary
|
|
366
|
-
apply_filter_and_unpacked_keys(
|
|
367
|
-
name="FilterAndUnpackKeys1",
|
|
368
|
-
keys=EventKeyMetrics.BASE_METRICS,
|
|
369
|
-
)
|
|
370
|
-
apply_tsdb_target(name="tsdb1", after="FilterAndUnpackKeys1")
|
|
371
|
-
|
|
372
|
-
# Steps 15-16 - unpacked endpoint_features dictionary
|
|
373
|
-
apply_filter_and_unpacked_keys(
|
|
374
|
-
name="FilterAndUnpackKeys2",
|
|
375
|
-
keys=EventKeyMetrics.ENDPOINT_FEATURES,
|
|
376
|
-
)
|
|
377
|
-
apply_tsdb_target(name="tsdb2", after="FilterAndUnpackKeys2")
|
|
378
|
-
|
|
379
|
-
# Steps 17-19 - unpacked custom_metrics dictionary. In addition, use storey.Filter remove none values
|
|
380
|
-
apply_filter_and_unpacked_keys(
|
|
381
|
-
name="FilterAndUnpackKeys3",
|
|
382
|
-
keys=EventKeyMetrics.CUSTOM_METRICS,
|
|
383
|
-
)
|
|
384
|
-
|
|
385
|
-
def apply_storey_filter():
|
|
386
|
-
graph.add_step(
|
|
387
|
-
"storey.Filter",
|
|
388
|
-
"FilterNotNone",
|
|
389
|
-
after="FilterAndUnpackKeys3",
|
|
390
|
-
_fn="(event is not None)",
|
|
391
|
-
)
|
|
392
|
-
|
|
393
|
-
apply_storey_filter()
|
|
394
|
-
apply_tsdb_target(name="tsdb3", after="FilterNotNone")
|
|
395
|
-
else:
|
|
396
|
-
# Prometheus branch
|
|
397
|
-
|
|
398
|
-
# Step 20 - Increase the prediction counter by 1 and update the latency value
|
|
399
|
-
graph.add_step(
|
|
400
|
-
"IncCounter",
|
|
401
|
-
name="IncCounter",
|
|
402
|
-
after="MapFeatureNames",
|
|
403
|
-
project=self.project,
|
|
404
|
-
)
|
|
405
|
-
|
|
406
|
-
# Step 21 - Record a sample of features and labels
|
|
407
|
-
def apply_record_features_to_prometheus():
|
|
408
|
-
graph.add_step(
|
|
409
|
-
"RecordFeatures",
|
|
410
|
-
name="RecordFeaturesToPrometheus",
|
|
411
|
-
after="sample",
|
|
412
|
-
project=self.project,
|
|
413
|
-
)
|
|
414
|
-
|
|
415
|
-
apply_record_features_to_prometheus()
|
|
308
|
+
tsdb_connector.apply_monitoring_stream_steps(graph=graph)
|
|
416
309
|
|
|
417
|
-
#
|
|
418
|
-
#
|
|
310
|
+
# Parquet branch
|
|
311
|
+
# Filter and validate different keys before writing the data to Parquet target
|
|
419
312
|
def apply_process_before_parquet():
|
|
420
313
|
graph.add_step(
|
|
421
314
|
"ProcessBeforeParquet",
|
|
@@ -426,7 +319,7 @@ class EventStreamProcessor:
|
|
|
426
319
|
|
|
427
320
|
apply_process_before_parquet()
|
|
428
321
|
|
|
429
|
-
#
|
|
322
|
+
# Write the Parquet target file, partitioned by key (endpoint_id) and time.
|
|
430
323
|
def apply_parquet_target():
|
|
431
324
|
graph.add_step(
|
|
432
325
|
"storey.ParquetTarget",
|
|
@@ -441,6 +334,7 @@ class EventStreamProcessor:
|
|
|
441
334
|
index_cols=[EventFieldType.ENDPOINT_ID],
|
|
442
335
|
key_bucketing_number=0,
|
|
443
336
|
time_partitioning_granularity="hour",
|
|
337
|
+
time_field=EventFieldType.TIMESTAMP,
|
|
444
338
|
partition_cols=["$key", "$year", "$month", "$day", "$hour"],
|
|
445
339
|
)
|
|
446
340
|
|
|
@@ -500,74 +394,36 @@ class ProcessBeforeEndpointUpdate(mlrun.feature_store.steps.MapClass):
|
|
|
500
394
|
return e
|
|
501
395
|
|
|
502
396
|
|
|
503
|
-
class
|
|
504
|
-
def __init__(self, **kwargs):
|
|
397
|
+
class ExtractEndpointID(mlrun.feature_store.steps.MapClass):
|
|
398
|
+
def __init__(self, **kwargs) -> None:
|
|
505
399
|
"""
|
|
506
|
-
|
|
507
|
-
that each one of them contains important details and stats about the events:
|
|
508
|
-
1. base_metrics: stats about the average latency and the amount of predictions over time. It is based on
|
|
509
|
-
storey.AggregateByKey which was executed in step 5.
|
|
510
|
-
2. endpoint_features: feature names and values along with the prediction names and value.
|
|
511
|
-
3. custom_metric (opt): optional metrics provided by the user.
|
|
512
|
-
|
|
513
|
-
:returns: Dictionary of 2-3 dictionaries that contains stats and details about the events.
|
|
514
|
-
|
|
400
|
+
Generate the model endpoint ID based on the event parameters and attach it to the event.
|
|
515
401
|
"""
|
|
516
402
|
super().__init__(**kwargs)
|
|
517
403
|
|
|
518
|
-
def do(self,
|
|
519
|
-
#
|
|
520
|
-
|
|
521
|
-
|
|
522
|
-
)
|
|
523
|
-
|
|
524
|
-
EventFieldType.TIMESTAMP,
|
|
525
|
-
EventFieldType.ENDPOINT_ID,
|
|
526
|
-
EventFieldType.ENDPOINT_TYPE,
|
|
527
|
-
]
|
|
404
|
+
def do(self, full_event) -> typing.Union[storey.Event, None]:
|
|
405
|
+
# Getting model version and function uri from event
|
|
406
|
+
# and use them for retrieving the endpoint_id
|
|
407
|
+
function_uri = full_event.body.get(EventFieldType.FUNCTION_URI)
|
|
408
|
+
if not is_not_none(function_uri, [EventFieldType.FUNCTION_URI]):
|
|
409
|
+
return None
|
|
528
410
|
|
|
529
|
-
|
|
530
|
-
|
|
531
|
-
|
|
532
|
-
# base_metrics includes the stats about the average latency and the amount of predictions over time
|
|
533
|
-
base_metrics = {
|
|
534
|
-
EventFieldType.RECORD_TYPE: EventKeyMetrics.BASE_METRICS,
|
|
535
|
-
EventLiveStats.PREDICTIONS_PER_SECOND: event[
|
|
536
|
-
EventLiveStats.PREDICTIONS_PER_SECOND
|
|
537
|
-
],
|
|
538
|
-
EventLiveStats.PREDICTIONS_COUNT_5M: event[
|
|
539
|
-
EventLiveStats.PREDICTIONS_COUNT_5M
|
|
540
|
-
],
|
|
541
|
-
EventLiveStats.PREDICTIONS_COUNT_1H: event[
|
|
542
|
-
EventLiveStats.PREDICTIONS_COUNT_1H
|
|
543
|
-
],
|
|
544
|
-
EventLiveStats.LATENCY_AVG_5M: event[EventLiveStats.LATENCY_AVG_5M],
|
|
545
|
-
EventLiveStats.LATENCY_AVG_1H: event[EventLiveStats.LATENCY_AVG_1H],
|
|
546
|
-
**base_event,
|
|
547
|
-
}
|
|
411
|
+
model = full_event.body.get(EventFieldType.MODEL)
|
|
412
|
+
if not is_not_none(model, [EventFieldType.MODEL]):
|
|
413
|
+
return None
|
|
548
414
|
|
|
549
|
-
|
|
550
|
-
|
|
551
|
-
EventFieldType.RECORD_TYPE: EventKeyMetrics.ENDPOINT_FEATURES,
|
|
552
|
-
**event[EventFieldType.NAMED_PREDICTIONS],
|
|
553
|
-
**event[EventFieldType.NAMED_FEATURES],
|
|
554
|
-
**base_event,
|
|
555
|
-
}
|
|
556
|
-
# Create a dictionary that includes both base_metrics and endpoint_features
|
|
557
|
-
processed = {
|
|
558
|
-
EventKeyMetrics.BASE_METRICS: base_metrics,
|
|
559
|
-
EventKeyMetrics.ENDPOINT_FEATURES: endpoint_features,
|
|
560
|
-
}
|
|
415
|
+
version = full_event.body.get(EventFieldType.VERSION)
|
|
416
|
+
versioned_model = f"{model}:{version}" if version else f"{model}:latest"
|
|
561
417
|
|
|
562
|
-
|
|
563
|
-
|
|
564
|
-
|
|
565
|
-
|
|
566
|
-
**event[EventFieldType.METRICS],
|
|
567
|
-
**base_event,
|
|
568
|
-
}
|
|
418
|
+
endpoint_id = mlrun.common.model_monitoring.create_model_endpoint_uid(
|
|
419
|
+
function_uri=function_uri,
|
|
420
|
+
versioned_model=versioned_model,
|
|
421
|
+
)
|
|
569
422
|
|
|
570
|
-
|
|
423
|
+
endpoint_id = str(endpoint_id)
|
|
424
|
+
full_event.body[EventFieldType.ENDPOINT_ID] = endpoint_id
|
|
425
|
+
full_event.body[EventFieldType.VERSIONED_MODEL] = versioned_model
|
|
426
|
+
return full_event
|
|
571
427
|
|
|
572
428
|
|
|
573
429
|
class ProcessBeforeParquet(mlrun.feature_store.steps.MapClass):
|
|
@@ -587,6 +443,8 @@ class ProcessBeforeParquet(mlrun.feature_store.steps.MapClass):
|
|
|
587
443
|
for key in [
|
|
588
444
|
EventFieldType.FEATURES,
|
|
589
445
|
EventFieldType.NAMED_FEATURES,
|
|
446
|
+
EventFieldType.PREDICTION,
|
|
447
|
+
EventFieldType.NAMED_PREDICTIONS,
|
|
590
448
|
]:
|
|
591
449
|
event.pop(key, None)
|
|
592
450
|
|
|
@@ -641,28 +499,9 @@ class ProcessEndpointEvent(mlrun.feature_store.steps.MapClass):
|
|
|
641
499
|
def do(self, full_event):
|
|
642
500
|
event = full_event.body
|
|
643
501
|
|
|
644
|
-
|
|
645
|
-
|
|
646
|
-
function_uri = event
|
|
647
|
-
if not is_not_none(function_uri, [EventFieldType.FUNCTION_URI]):
|
|
648
|
-
return None
|
|
649
|
-
|
|
650
|
-
model = event.get(EventFieldType.MODEL)
|
|
651
|
-
if not is_not_none(model, [EventFieldType.MODEL]):
|
|
652
|
-
return None
|
|
653
|
-
|
|
654
|
-
version = event.get(EventFieldType.VERSION)
|
|
655
|
-
versioned_model = f"{model}:{version}" if version else f"{model}:latest"
|
|
656
|
-
|
|
657
|
-
endpoint_id = mlrun.common.model_monitoring.create_model_endpoint_uid(
|
|
658
|
-
function_uri=function_uri,
|
|
659
|
-
versioned_model=versioned_model,
|
|
660
|
-
)
|
|
661
|
-
|
|
662
|
-
endpoint_id = str(endpoint_id)
|
|
663
|
-
|
|
664
|
-
event[EventFieldType.VERSIONED_MODEL] = versioned_model
|
|
665
|
-
event[EventFieldType.ENDPOINT_ID] = endpoint_id
|
|
502
|
+
versioned_model = event[EventFieldType.VERSIONED_MODEL]
|
|
503
|
+
endpoint_id = event[EventFieldType.ENDPOINT_ID]
|
|
504
|
+
function_uri = event[EventFieldType.FUNCTION_URI]
|
|
666
505
|
|
|
667
506
|
# In case this process fails, resume state from existing record
|
|
668
507
|
self.resume_state(endpoint_id)
|
|
@@ -670,13 +509,8 @@ class ProcessEndpointEvent(mlrun.feature_store.steps.MapClass):
|
|
|
670
509
|
# If error key has been found in the current event,
|
|
671
510
|
# increase the error counter by 1 and raise the error description
|
|
672
511
|
error = event.get("error")
|
|
673
|
-
if error:
|
|
512
|
+
if error: # TODO: delete this in ML-7456
|
|
674
513
|
self.error_count[endpoint_id] += 1
|
|
675
|
-
mlrun.model_monitoring.prometheus.write_errors(
|
|
676
|
-
project=self.project,
|
|
677
|
-
endpoint_id=event["endpoint_id"],
|
|
678
|
-
model_name=event["model"],
|
|
679
|
-
)
|
|
680
514
|
raise mlrun.errors.MLRunInvalidArgumentError(str(error))
|
|
681
515
|
|
|
682
516
|
# Validate event fields
|
|
@@ -743,6 +577,26 @@ class ProcessEndpointEvent(mlrun.feature_store.steps.MapClass):
|
|
|
743
577
|
|
|
744
578
|
# Separate each model invocation into sub events that will be stored as dictionary
|
|
745
579
|
# in list of events. This list will be used as the body for the storey event.
|
|
580
|
+
if not isinstance(features, list):
|
|
581
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
582
|
+
"Model's inputs must be a list"
|
|
583
|
+
)
|
|
584
|
+
features = (
|
|
585
|
+
features
|
|
586
|
+
if not any(not isinstance(feat, list) for feat in features)
|
|
587
|
+
else [features]
|
|
588
|
+
)
|
|
589
|
+
if not isinstance(predictions, list):
|
|
590
|
+
predictions = [[predictions]]
|
|
591
|
+
elif isinstance(predictions, list) and len(predictions) == len(features):
|
|
592
|
+
pass # predictions are already in the right format
|
|
593
|
+
else:
|
|
594
|
+
predictions = (
|
|
595
|
+
predictions
|
|
596
|
+
if not any(not isinstance(pred, list) for pred in predictions)
|
|
597
|
+
else [predictions]
|
|
598
|
+
)
|
|
599
|
+
|
|
746
600
|
events = []
|
|
747
601
|
for i, (feature, prediction) in enumerate(zip(features, predictions)):
|
|
748
602
|
if not isinstance(prediction, list):
|
|
@@ -764,6 +618,9 @@ class ProcessEndpointEvent(mlrun.feature_store.steps.MapClass):
|
|
|
764
618
|
EventFieldType.PREDICTION: prediction,
|
|
765
619
|
EventFieldType.FIRST_REQUEST: self.first_request[endpoint_id],
|
|
766
620
|
EventFieldType.LAST_REQUEST: self.last_request[endpoint_id],
|
|
621
|
+
EventFieldType.LAST_REQUEST_TIMESTAMP: mlrun.utils.enrich_datetime_with_tz_info(
|
|
622
|
+
self.last_request[endpoint_id]
|
|
623
|
+
).timestamp(),
|
|
767
624
|
EventFieldType.ERROR_COUNT: self.error_count[endpoint_id],
|
|
768
625
|
EventFieldType.LABELS: event.get(EventFieldType.LABELS, {}),
|
|
769
626
|
EventFieldType.METRICS: event.get(EventFieldType.METRICS, {}),
|
|
@@ -802,7 +659,7 @@ class ProcessEndpointEvent(mlrun.feature_store.steps.MapClass):
|
|
|
802
659
|
# left them
|
|
803
660
|
if endpoint_id not in self.endpoints:
|
|
804
661
|
logger.info("Trying to resume state", endpoint_id=endpoint_id)
|
|
805
|
-
endpoint_record = get_endpoint_record(
|
|
662
|
+
endpoint_record = mlrun.model_monitoring.helpers.get_endpoint_record(
|
|
806
663
|
project=self.project,
|
|
807
664
|
endpoint_id=endpoint_id,
|
|
808
665
|
)
|
|
@@ -848,36 +705,6 @@ def is_not_none(field: typing.Any, dict_path: list[str]):
|
|
|
848
705
|
return False
|
|
849
706
|
|
|
850
707
|
|
|
851
|
-
class FilterAndUnpackKeys(mlrun.feature_store.steps.MapClass):
|
|
852
|
-
def __init__(self, keys, **kwargs):
|
|
853
|
-
"""
|
|
854
|
-
Create unpacked event dictionary based on provided key metrics (base_metrics, endpoint_features,
|
|
855
|
-
or custom_metric). Please note that the next step of the TSDB target requires an unpacked dictionary.
|
|
856
|
-
|
|
857
|
-
:param keys: list of key metrics.
|
|
858
|
-
|
|
859
|
-
:returns: An unpacked dictionary of event filtered by the provided key metrics.
|
|
860
|
-
"""
|
|
861
|
-
super().__init__(**kwargs)
|
|
862
|
-
self.keys = keys
|
|
863
|
-
|
|
864
|
-
def do(self, event):
|
|
865
|
-
# Keep only the relevant dictionary based on the provided keys
|
|
866
|
-
new_event = {}
|
|
867
|
-
for key in self.keys:
|
|
868
|
-
if key in event:
|
|
869
|
-
new_event[key] = event[key]
|
|
870
|
-
|
|
871
|
-
# Create unpacked dictionary
|
|
872
|
-
unpacked = {}
|
|
873
|
-
for key in new_event.keys():
|
|
874
|
-
if key in self.keys:
|
|
875
|
-
unpacked = {**unpacked, **new_event[key]}
|
|
876
|
-
else:
|
|
877
|
-
unpacked[key] = new_event[key]
|
|
878
|
-
return unpacked if unpacked else None
|
|
879
|
-
|
|
880
|
-
|
|
881
708
|
class MapFeatureNames(mlrun.feature_store.steps.MapClass):
|
|
882
709
|
def __init__(
|
|
883
710
|
self,
|
|
@@ -931,9 +758,17 @@ class MapFeatureNames(mlrun.feature_store.steps.MapClass):
|
|
|
931
758
|
def do(self, event: dict):
|
|
932
759
|
endpoint_id = event[EventFieldType.ENDPOINT_ID]
|
|
933
760
|
|
|
761
|
+
feature_values = event[EventFieldType.FEATURES]
|
|
762
|
+
label_values = event[EventFieldType.PREDICTION]
|
|
763
|
+
|
|
764
|
+
for index in range(len(feature_values)):
|
|
765
|
+
feature_value = feature_values[index]
|
|
766
|
+
if isinstance(feature_value, int):
|
|
767
|
+
feature_values[index] = float(feature_value)
|
|
768
|
+
|
|
934
769
|
# Get feature names and label columns
|
|
935
770
|
if endpoint_id not in self.feature_names:
|
|
936
|
-
endpoint_record = get_endpoint_record(
|
|
771
|
+
endpoint_record = mlrun.model_monitoring.helpers.get_endpoint_record(
|
|
937
772
|
project=self.project,
|
|
938
773
|
endpoint_id=endpoint_id,
|
|
939
774
|
)
|
|
@@ -966,6 +801,12 @@ class MapFeatureNames(mlrun.feature_store.steps.MapClass):
|
|
|
966
801
|
},
|
|
967
802
|
)
|
|
968
803
|
|
|
804
|
+
update_monitoring_feature_set(
|
|
805
|
+
endpoint_record=endpoint_record,
|
|
806
|
+
feature_names=feature_names,
|
|
807
|
+
feature_values=feature_values,
|
|
808
|
+
)
|
|
809
|
+
|
|
969
810
|
# Similar process with label columns
|
|
970
811
|
if not label_columns and self._infer_columns_from_data:
|
|
971
812
|
label_columns = self._infer_label_columns_from_data(event)
|
|
@@ -984,6 +825,11 @@ class MapFeatureNames(mlrun.feature_store.steps.MapClass):
|
|
|
984
825
|
endpoint_id=endpoint_id,
|
|
985
826
|
attributes={EventFieldType.LABEL_NAMES: json.dumps(label_columns)},
|
|
986
827
|
)
|
|
828
|
+
update_monitoring_feature_set(
|
|
829
|
+
endpoint_record=endpoint_record,
|
|
830
|
+
feature_names=label_columns,
|
|
831
|
+
feature_values=label_values,
|
|
832
|
+
)
|
|
987
833
|
|
|
988
834
|
self.label_columns[endpoint_id] = label_columns
|
|
989
835
|
self.feature_names[endpoint_id] = feature_names
|
|
@@ -1001,7 +847,6 @@ class MapFeatureNames(mlrun.feature_store.steps.MapClass):
|
|
|
1001
847
|
|
|
1002
848
|
# Add feature_name:value pairs along with a mapping dictionary of all of these pairs
|
|
1003
849
|
feature_names = self.feature_names[endpoint_id]
|
|
1004
|
-
feature_values = event[EventFieldType.FEATURES]
|
|
1005
850
|
self._map_dictionary_values(
|
|
1006
851
|
event=event,
|
|
1007
852
|
named_iters=feature_names,
|
|
@@ -1011,7 +856,6 @@ class MapFeatureNames(mlrun.feature_store.steps.MapClass):
|
|
|
1011
856
|
|
|
1012
857
|
# Add label_name:value pairs along with a mapping dictionary of all of these pairs
|
|
1013
858
|
label_names = self.label_columns[endpoint_id]
|
|
1014
|
-
label_values = event[EventFieldType.PREDICTION]
|
|
1015
859
|
self._map_dictionary_values(
|
|
1016
860
|
event=event,
|
|
1017
861
|
named_iters=label_names,
|
|
@@ -1052,7 +896,7 @@ class MapFeatureNames(mlrun.feature_store.steps.MapClass):
|
|
|
1052
896
|
|
|
1053
897
|
|
|
1054
898
|
class UpdateEndpoint(mlrun.feature_store.steps.MapClass):
|
|
1055
|
-
def __init__(self, project: str,
|
|
899
|
+
def __init__(self, project: str, **kwargs):
|
|
1056
900
|
"""
|
|
1057
901
|
Update the model endpoint record in the DB. Note that the event at this point includes metadata and stats about
|
|
1058
902
|
the average latency and the amount of predictions over time. This data will be used in the monitoring dashboards
|
|
@@ -1062,9 +906,11 @@ class UpdateEndpoint(mlrun.feature_store.steps.MapClass):
|
|
|
1062
906
|
"""
|
|
1063
907
|
super().__init__(**kwargs)
|
|
1064
908
|
self.project = project
|
|
1065
|
-
self.model_endpoint_store_target = model_endpoint_store_target
|
|
1066
909
|
|
|
1067
910
|
def do(self, event: dict):
|
|
911
|
+
# Remove labels from the event
|
|
912
|
+
event.pop(EventFieldType.LABELS)
|
|
913
|
+
|
|
1068
914
|
update_endpoint_record(
|
|
1069
915
|
project=self.project,
|
|
1070
916
|
endpoint_id=event.pop(EventFieldType.ENDPOINT_ID),
|
|
@@ -1102,6 +948,8 @@ class InferSchema(mlrun.feature_store.steps.MapClass):
|
|
|
1102
948
|
def do(self, event: dict):
|
|
1103
949
|
key_set = set(event.keys())
|
|
1104
950
|
if not key_set.issubset(self.keys):
|
|
951
|
+
import mlrun.utils.v3io_clients
|
|
952
|
+
|
|
1105
953
|
self.keys.update(key_set)
|
|
1106
954
|
# Apply infer_schema on the kv table for generating the schema file
|
|
1107
955
|
mlrun.utils.v3io_clients.get_frames_client(
|
|
@@ -1112,104 +960,12 @@ class InferSchema(mlrun.feature_store.steps.MapClass):
|
|
|
1112
960
|
return event
|
|
1113
961
|
|
|
1114
962
|
|
|
1115
|
-
class EventRouting(mlrun.feature_store.steps.MapClass):
|
|
1116
|
-
"""
|
|
1117
|
-
Router the event according to the configured path under event.path. Please note that this step returns the result
|
|
1118
|
-
to the caller. At the moment there are several paths:
|
|
1119
|
-
|
|
1120
|
-
- /model-monitoring-metrics (GET): return Prometheus registry results as a text. Will be used by Prometheus client
|
|
1121
|
-
to scrape the results from the monitoring stream memory.
|
|
1122
|
-
|
|
1123
|
-
- /monitoring-batch-metrics (POST): update the Prometheus registry with the provided statistical metrics such as the
|
|
1124
|
-
statistical metrics from the monitoring batch job. Note that the event body is a list of dictionaries of different
|
|
1125
|
-
metrics.
|
|
1126
|
-
|
|
1127
|
-
- /monitoring-drift-status (POST): update the Prometheus registry with the provided model drift status.
|
|
1128
|
-
|
|
1129
|
-
"""
|
|
1130
|
-
|
|
1131
|
-
def __init__(
|
|
1132
|
-
self,
|
|
1133
|
-
project: str,
|
|
1134
|
-
**kwargs,
|
|
1135
|
-
):
|
|
1136
|
-
super().__init__(**kwargs)
|
|
1137
|
-
self.project: str = project
|
|
1138
|
-
|
|
1139
|
-
def do(self, event):
|
|
1140
|
-
if event.path == "/model-monitoring-metrics":
|
|
1141
|
-
# Return a parsed Prometheus registry file
|
|
1142
|
-
event.body = mlrun.model_monitoring.prometheus.get_registry()
|
|
1143
|
-
elif event.path == "/monitoring-batch-metrics":
|
|
1144
|
-
# Update statistical metrics
|
|
1145
|
-
for event_metric in event.body:
|
|
1146
|
-
mlrun.model_monitoring.prometheus.write_drift_metrics(
|
|
1147
|
-
project=self.project,
|
|
1148
|
-
endpoint_id=event_metric[EventFieldType.ENDPOINT_ID],
|
|
1149
|
-
metric=event_metric[EventFieldType.METRIC],
|
|
1150
|
-
value=event_metric[EventFieldType.VALUE],
|
|
1151
|
-
)
|
|
1152
|
-
elif event.path == "/monitoring-drift-status":
|
|
1153
|
-
# Update drift status
|
|
1154
|
-
mlrun.model_monitoring.prometheus.write_drift_status(
|
|
1155
|
-
project=self.project,
|
|
1156
|
-
endpoint_id=event.body[EventFieldType.ENDPOINT_ID],
|
|
1157
|
-
drift_status=event.body[EventFieldType.DRIFT_STATUS],
|
|
1158
|
-
)
|
|
1159
|
-
|
|
1160
|
-
return event
|
|
1161
|
-
|
|
1162
|
-
|
|
1163
|
-
class IncCounter(mlrun.feature_store.steps.MapClass):
|
|
1164
|
-
"""Increase prediction counter by 1 and update the total latency value"""
|
|
1165
|
-
|
|
1166
|
-
def __init__(self, project: str, **kwargs):
|
|
1167
|
-
super().__init__(**kwargs)
|
|
1168
|
-
self.project: str = project
|
|
1169
|
-
|
|
1170
|
-
def do(self, event):
|
|
1171
|
-
# Compute prediction per second
|
|
1172
|
-
|
|
1173
|
-
mlrun.model_monitoring.prometheus.write_predictions_and_latency_metrics(
|
|
1174
|
-
project=self.project,
|
|
1175
|
-
endpoint_id=event[EventFieldType.ENDPOINT_ID],
|
|
1176
|
-
latency=event[EventFieldType.LATENCY],
|
|
1177
|
-
model_name=event[EventFieldType.MODEL],
|
|
1178
|
-
endpoint_type=event[EventFieldType.ENDPOINT_TYPE],
|
|
1179
|
-
)
|
|
1180
|
-
|
|
1181
|
-
return event
|
|
1182
|
-
|
|
1183
|
-
|
|
1184
|
-
class RecordFeatures(mlrun.feature_store.steps.MapClass):
|
|
1185
|
-
"""Record a sample of features and labels in Prometheus registry"""
|
|
1186
|
-
|
|
1187
|
-
def __init__(self, project: str, **kwargs):
|
|
1188
|
-
super().__init__(**kwargs)
|
|
1189
|
-
self.project: str = project
|
|
1190
|
-
|
|
1191
|
-
def do(self, event):
|
|
1192
|
-
# Generate a dictionary of features and predictions
|
|
1193
|
-
features = {
|
|
1194
|
-
**event[EventFieldType.NAMED_PREDICTIONS],
|
|
1195
|
-
**event[EventFieldType.NAMED_FEATURES],
|
|
1196
|
-
}
|
|
1197
|
-
|
|
1198
|
-
mlrun.model_monitoring.prometheus.write_income_features(
|
|
1199
|
-
project=self.project,
|
|
1200
|
-
endpoint_id=event[EventFieldType.ENDPOINT_ID],
|
|
1201
|
-
features=features,
|
|
1202
|
-
)
|
|
1203
|
-
|
|
1204
|
-
return event
|
|
1205
|
-
|
|
1206
|
-
|
|
1207
963
|
def update_endpoint_record(
|
|
1208
964
|
project: str,
|
|
1209
965
|
endpoint_id: str,
|
|
1210
966
|
attributes: dict,
|
|
1211
967
|
):
|
|
1212
|
-
model_endpoint_store = mlrun.model_monitoring.
|
|
968
|
+
model_endpoint_store = mlrun.model_monitoring.get_store_object(
|
|
1213
969
|
project=project,
|
|
1214
970
|
)
|
|
1215
971
|
|
|
@@ -1218,8 +974,19 @@ def update_endpoint_record(
|
|
|
1218
974
|
)
|
|
1219
975
|
|
|
1220
976
|
|
|
1221
|
-
def
|
|
1222
|
-
|
|
1223
|
-
|
|
977
|
+
def update_monitoring_feature_set(
|
|
978
|
+
endpoint_record: dict[str, typing.Any],
|
|
979
|
+
feature_names: list[str],
|
|
980
|
+
feature_values: list[typing.Any],
|
|
981
|
+
):
|
|
982
|
+
monitoring_feature_set = fstore.get_feature_set(
|
|
983
|
+
endpoint_record[
|
|
984
|
+
mlrun.common.schemas.model_monitoring.EventFieldType.FEATURE_SET_URI
|
|
985
|
+
]
|
|
1224
986
|
)
|
|
1225
|
-
|
|
987
|
+
for name, val in zip(feature_names, feature_values):
|
|
988
|
+
monitoring_feature_set.add_feature(
|
|
989
|
+
fstore.Feature(name=name, value_type=type(val))
|
|
990
|
+
)
|
|
991
|
+
|
|
992
|
+
monitoring_feature_set.save()
|