mlrun 1.7.0rc48__py3-none-any.whl → 1.7.0rc52__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (32) hide show
  1. mlrun/common/formatters/run.py +3 -0
  2. mlrun/common/schemas/auth.py +3 -0
  3. mlrun/common/schemas/model_monitoring/constants.py +0 -7
  4. mlrun/common/schemas/workflow.py +9 -2
  5. mlrun/data_types/data_types.py +1 -1
  6. mlrun/db/httpdb.py +11 -4
  7. mlrun/execution.py +37 -6
  8. mlrun/feature_store/retrieval/spark_merger.py +0 -4
  9. mlrun/model.py +17 -0
  10. mlrun/model_monitoring/api.py +1 -12
  11. mlrun/model_monitoring/applications/__init__.py +1 -2
  12. mlrun/model_monitoring/applications/base.py +2 -182
  13. mlrun/model_monitoring/applications/context.py +2 -9
  14. mlrun/model_monitoring/applications/evidently_base.py +0 -74
  15. mlrun/model_monitoring/applications/histogram_data_drift.py +2 -2
  16. mlrun/model_monitoring/controller.py +45 -208
  17. mlrun/model_monitoring/db/tsdb/tdengine/schemas.py +10 -9
  18. mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +38 -29
  19. mlrun/projects/operations.py +11 -8
  20. mlrun/projects/pipelines.py +16 -11
  21. mlrun/projects/project.py +1 -4
  22. mlrun/runtimes/nuclio/api_gateway.py +6 -0
  23. mlrun/utils/helpers.py +40 -0
  24. mlrun/utils/version/version.json +2 -2
  25. {mlrun-1.7.0rc48.dist-info → mlrun-1.7.0rc52.dist-info}/METADATA +107 -25
  26. {mlrun-1.7.0rc48.dist-info → mlrun-1.7.0rc52.dist-info}/RECORD +30 -32
  27. mlrun/model_monitoring/application.py +0 -19
  28. mlrun/model_monitoring/evidently_application.py +0 -20
  29. {mlrun-1.7.0rc48.dist-info → mlrun-1.7.0rc52.dist-info}/LICENSE +0 -0
  30. {mlrun-1.7.0rc48.dist-info → mlrun-1.7.0rc52.dist-info}/WHEEL +0 -0
  31. {mlrun-1.7.0rc48.dist-info → mlrun-1.7.0rc52.dist-info}/entry_points.txt +0 -0
  32. {mlrun-1.7.0rc48.dist-info → mlrun-1.7.0rc52.dist-info}/top_level.txt +0 -0
@@ -27,6 +27,8 @@ import mlrun_pipelines.utils
27
27
  import mlrun
28
28
  import mlrun.common.runtimes.constants
29
29
  import mlrun.common.schemas
30
+ import mlrun.common.schemas.function
31
+ import mlrun.common.schemas.workflow
30
32
  import mlrun.utils.notifications
31
33
  from mlrun.errors import err_to_str
32
34
  from mlrun.utils import (
@@ -44,21 +46,21 @@ from ..runtimes.pod import AutoMountType
44
46
 
45
47
  def get_workflow_engine(engine_kind, local=False):
46
48
  if pipeline_context.is_run_local(local):
47
- if engine_kind == "kfp":
49
+ if engine_kind == mlrun.common.schemas.workflow.EngineType.KFP:
48
50
  logger.warning(
49
51
  "Running kubeflow pipeline locally, note some ops may not run locally!"
50
52
  )
51
- elif engine_kind == "remote":
53
+ elif engine_kind == mlrun.common.schemas.workflow.EngineType.REMOTE:
52
54
  raise mlrun.errors.MLRunInvalidArgumentError(
53
55
  "Cannot run a remote pipeline locally using `kind='remote'` and `local=True`. "
54
56
  "in order to run a local pipeline remotely, please use `engine='remote:local'` instead"
55
57
  )
56
58
  return _LocalRunner
57
- if not engine_kind or engine_kind == "kfp":
59
+ if not engine_kind or engine_kind == mlrun.common.schemas.workflow.EngineType.KFP:
58
60
  return _KFPRunner
59
- if engine_kind == "local":
61
+ if engine_kind == mlrun.common.schemas.workflow.EngineType.LOCAL:
60
62
  return _LocalRunner
61
- if engine_kind == "remote":
63
+ if engine_kind == mlrun.common.schemas.workflow.EngineType.REMOTE:
62
64
  return _RemoteRunner
63
65
  raise mlrun.errors.MLRunInvalidArgumentError(
64
66
  f"Provided workflow engine is not supported. engine_kind={engine_kind}"
@@ -313,7 +315,11 @@ def get_db_function(project, key) -> mlrun.runtimes.BaseRuntime:
313
315
 
314
316
 
315
317
  def enrich_function_object(
316
- project, function, decorator=None, copy_function=True, try_auto_mount=True
318
+ project: mlrun.common.schemas.Project,
319
+ function: mlrun.runtimes.BaseRuntime,
320
+ decorator: typing.Callable = None,
321
+ copy_function: bool = True,
322
+ try_auto_mount: bool = True,
317
323
  ) -> mlrun.runtimes.BaseRuntime:
318
324
  if hasattr(function, "_enriched"):
319
325
  return function
@@ -354,7 +360,6 @@ def enrich_function_object(
354
360
  f.enrich_runtime_spec(
355
361
  project.spec.default_function_node_selector,
356
362
  )
357
-
358
363
  if try_auto_mount:
359
364
  if (
360
365
  decorator and AutoMountType.is_auto_modifier(decorator)
@@ -592,9 +597,9 @@ class _KFPRunner(_PipelineRunner):
592
597
  )
593
598
  # for start message, fallback to old notification behavior
594
599
  for notification in notifications or []:
595
- project.notifiers.add_notification(
596
- notification.kind, notification.params
597
- )
600
+ params = notification.params
601
+ params.update(notification.secret_params)
602
+ project.notifiers.add_notification(notification.kind, params)
598
603
 
599
604
  run_id = _run_pipeline(
600
605
  workflow_handler,
@@ -1076,7 +1081,7 @@ def load_and_run(
1076
1081
  # extract "start" notification if exists
1077
1082
  start_notifications = [
1078
1083
  notification
1079
- for notification in context.get_notifications()
1084
+ for notification in context.get_notifications(unmask_secret_params=True)
1080
1085
  if "running" in notification.when
1081
1086
  ]
1082
1087
 
mlrun/projects/project.py CHANGED
@@ -708,7 +708,7 @@ def _load_project_from_db(url, secrets, user_project=False):
708
708
 
709
709
  def _delete_project_from_db(project_name, secrets, deletion_strategy):
710
710
  db = mlrun.db.get_run_db(secrets=secrets)
711
- return db.delete_project(project_name, deletion_strategy=deletion_strategy)
711
+ db.delete_project(project_name, deletion_strategy=deletion_strategy)
712
712
 
713
713
 
714
714
  def _load_project_file(url, name="", secrets=None, allow_cross_project=None):
@@ -1950,7 +1950,6 @@ class MlrunProject(ModelObj):
1950
1950
  application_class: typing.Union[
1951
1951
  str,
1952
1952
  mm_app.ModelMonitoringApplicationBase,
1953
- mm_app.ModelMonitoringApplicationBaseV2,
1954
1953
  ] = None,
1955
1954
  name: str = None,
1956
1955
  image: str = None,
@@ -2018,7 +2017,6 @@ class MlrunProject(ModelObj):
2018
2017
  application_class: typing.Union[
2019
2018
  str,
2020
2019
  mm_app.ModelMonitoringApplicationBase,
2021
- mm_app.ModelMonitoringApplicationBaseV2,
2022
2020
  ] = None,
2023
2021
  name: str = None,
2024
2022
  image: str = None,
@@ -2076,7 +2074,6 @@ class MlrunProject(ModelObj):
2076
2074
  application_class: typing.Union[
2077
2075
  str,
2078
2076
  mm_app.ModelMonitoringApplicationBase,
2079
- mm_app.ModelMonitoringApplicationBaseV2,
2080
2077
  None,
2081
2078
  ] = None,
2082
2079
  name: typing.Optional[str] = None,
@@ -22,6 +22,7 @@ from nuclio.auth import AuthKinds as NuclioAuthKinds
22
22
 
23
23
  import mlrun
24
24
  import mlrun.common.constants as mlrun_constants
25
+ import mlrun.common.helpers
25
26
  import mlrun.common.schemas as schemas
26
27
  import mlrun.common.types
27
28
  from mlrun.model import ModelObj
@@ -202,8 +203,13 @@ class APIGatewaySpec(ModelObj):
202
203
  self.project = project
203
204
  self.ports = ports
204
205
 
206
+ self.enrich()
205
207
  self.validate(project=project, functions=functions, canary=canary, ports=ports)
206
208
 
209
+ def enrich(self):
210
+ if self.path and not self.path.startswith("/"):
211
+ self.path = f"/{self.path}"
212
+
207
213
  def validate(
208
214
  self,
209
215
  project: str,
mlrun/utils/helpers.py CHANGED
@@ -1782,3 +1782,43 @@ def _reload(module, max_recursion_depth):
1782
1782
  attribute = getattr(module, attribute_name)
1783
1783
  if type(attribute) is ModuleType:
1784
1784
  _reload(attribute, max_recursion_depth - 1)
1785
+
1786
+
1787
+ def run_with_retry(
1788
+ retry_count: int,
1789
+ func: typing.Callable,
1790
+ retry_on_exceptions: typing.Union[
1791
+ type[Exception],
1792
+ tuple[type[Exception]],
1793
+ ] = None,
1794
+ *args,
1795
+ **kwargs,
1796
+ ):
1797
+ """
1798
+ Executes a function with retry logic upon encountering specified exceptions.
1799
+
1800
+ :param retry_count: The number of times to retry the function execution.
1801
+ :param func: The function to execute.
1802
+ :param retry_on_exceptions: Exception(s) that trigger a retry. Can be a single exception or a tuple of exceptions.
1803
+ :param args: Positional arguments to pass to the function.
1804
+ :param kwargs: Keyword arguments to pass to the function.
1805
+ :return: The result of the function execution if successful.
1806
+ :raises Exception: Re-raises the last exception encountered after all retries are exhausted.
1807
+ """
1808
+ if retry_on_exceptions is None:
1809
+ retry_on_exceptions = (Exception,)
1810
+ elif isinstance(retry_on_exceptions, list):
1811
+ retry_on_exceptions = tuple(retry_on_exceptions)
1812
+
1813
+ last_exception = None
1814
+ for attempt in range(retry_count + 1):
1815
+ try:
1816
+ return func(*args, **kwargs)
1817
+ except retry_on_exceptions as exc:
1818
+ last_exception = exc
1819
+ logger.warning(
1820
+ f"Attempt {{{attempt}/ {retry_count}}} failed with exception: {exc}",
1821
+ )
1822
+ if attempt == retry_count:
1823
+ raise
1824
+ raise last_exception
@@ -1,4 +1,4 @@
1
1
  {
2
- "git_commit": "ff1d6128837596f0b9c912ef334f0349232628bc",
3
- "version": "1.7.0-rc48"
2
+ "git_commit": "2c302d1e0b0ca25ab0b515fe43e3df47ebe8bd62",
3
+ "version": "1.7.0-rc52"
4
4
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mlrun
3
- Version: 1.7.0rc48
3
+ Version: 1.7.0rc52
4
4
  Summary: Tracking and config of machine learning runs
5
5
  Home-page: https://github.com/mlrun/mlrun
6
6
  Author: Yaron Haviv
@@ -50,7 +50,7 @@ Requires-Dist: setuptools ~=71.0
50
50
  Requires-Dist: deprecated ~=1.2
51
51
  Requires-Dist: jinja2 >=3.1.3,~=3.1
52
52
  Requires-Dist: orjson <4,>=3.9.15
53
- Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.7
53
+ Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.9
54
54
  Requires-Dist: mlrun-pipelines-kfp-v1-8 ~=0.1.6
55
55
  Provides-Extra: alibaba-oss
56
56
  Requires-Dist: ossfs ==2023.12.0 ; extra == 'alibaba-oss'
@@ -84,7 +84,8 @@ Requires-Dist: redis ~=4.3 ; extra == 'all'
84
84
  Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 'all'
85
85
  Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'all'
86
86
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'all'
87
- Requires-Dist: taos-ws-py ~=0.3.3 ; extra == 'all'
87
+ Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'all'
88
+ Requires-Dist: taoswswrap ~=0.1.0 ; extra == 'all'
88
89
  Provides-Extra: api
89
90
  Requires-Dist: uvicorn ~=0.27.1 ; extra == 'api'
90
91
  Requires-Dist: dask-kubernetes ~=0.11.0 ; extra == 'api'
@@ -137,7 +138,8 @@ Requires-Dist: redis ~=4.3 ; extra == 'complete'
137
138
  Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 'complete'
138
139
  Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'complete'
139
140
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'complete'
140
- Requires-Dist: taos-ws-py ~=0.3.3 ; extra == 'complete'
141
+ Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'complete'
142
+ Requires-Dist: taoswswrap ~=0.1.0 ; extra == 'complete'
141
143
  Provides-Extra: complete-api
142
144
  Requires-Dist: adlfs ==2023.9.0 ; extra == 'complete-api'
143
145
  Requires-Dist: aiobotocore <2.16,>=2.5.0 ; extra == 'complete-api'
@@ -174,7 +176,8 @@ Requires-Dist: redis ~=4.3 ; extra == 'complete-api'
174
176
  Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 'complete-api'
175
177
  Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'complete-api'
176
178
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'complete-api'
177
- Requires-Dist: taos-ws-py ~=0.3.3 ; extra == 'complete-api'
179
+ Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'complete-api'
180
+ Requires-Dist: taoswswrap ~=0.1.0 ; extra == 'complete-api'
178
181
  Requires-Dist: timelength ~=1.1 ; extra == 'complete-api'
179
182
  Requires-Dist: uvicorn ~=0.27.1 ; extra == 'complete-api'
180
183
  Requires-Dist: memray ~=1.12 ; (sys_platform != "win32") and extra == 'complete-api'
@@ -209,7 +212,8 @@ Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'snowflake'
209
212
  Provides-Extra: sqlalchemy
210
213
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'sqlalchemy'
211
214
  Provides-Extra: tdengine
212
- Requires-Dist: taos-ws-py ~=0.3.3 ; extra == 'tdengine'
215
+ Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'tdengine'
216
+ Requires-Dist: taoswswrap ~=0.1.0 ; extra == 'tdengine'
213
217
 
214
218
  <a id="top"></a>
215
219
  [![Build Status](https://github.com/mlrun/mlrun/actions/workflows/build.yaml/badge.svg?branch=development)](https://github.com/mlrun/mlrun/actions/workflows/build.yaml?query=branch%3Adevelopment)
@@ -225,19 +229,86 @@ Requires-Dist: taos-ws-py ~=0.3.3 ; extra == 'tdengine'
225
229
 
226
230
  # Using MLRun
227
231
 
228
- MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources.
232
+ MLRun is an open source AI orchestration platform for quickly building and managing continuous (gen) AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications.
233
+ MLRun significantly reduces engineering efforts, time to production, and computation resources.
229
234
  With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
230
235
 
231
- Get started with MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/latest/tutorials/index.html), [**Installation and setup guide**](https://docs.mlrun.org/en/latest/install.html), or read about [**MLRun Architecture**](https://docs.mlrun.org/en/latest/architecture.html).
236
+ Get started with the MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/stable/tutorials/index.html) and the [**Installation and setup guide**](https://docs.mlrun.org/en/stable/install.html), or read about the [**MLRun Architecture**](https://docs.mlrun.org/en/stable/architecture.html).
237
+
238
+ This page explains how MLRun addresses the [**gen AI tasks**](#genai-tasks), [**MLOps tasks**](#mlops-tasks), and presents the [**MLRun core components**](#core-components).
239
+
240
+ See the supported data stores, development tools, services, platforms, etc., supported by MLRun's open architecture in **https://docs.mlrun.org/en/stable/ecosystem.html**.
241
+
242
+ ## Gen AI tasks
243
+
244
+ <p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/ai-tasks.png" alt="ai-tasks" width="800"/></p><br>
245
+
246
+ Use MLRun to develop, scale, deploy, and monitor your AI model across your enterprise. The [**gen AI development workflow**](https://docs.mlrun.org/en/stable/genai/genai-flow.html)
247
+ section describes the different tasks and stages in detail.
248
+
249
+ ### Data management
250
+
251
+
252
+ MLRun supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
253
+ Removing inappropriate data at an early stage saves resources that would otherwise be required later on.
254
+
255
+
256
+ **Docs:**
257
+ [Using LLMs to process unstructured data](https://docs.mlrun.org/en/stable/genai/data-mgmt/unstructured-data.html)
258
+ [Vector databases](https://docs.mlrun.org/en/stable/genai/data-mgmt/vector-databases.html)
259
+ [Guardrails for data management](https://docs.mlrun.org/en/stable/genai/data-mgmt/guardrails-data.html)
260
+ **Demo:**
261
+ [Call center demo](https://github.com/mlrun/demo-call-center>`
262
+ **Video:**
263
+ [Call center](https://youtu.be/YycMbxRgLBA>`
264
+
265
+ ### Development
266
+ Use MLRun to build an automated ML pipeline to: collect data,
267
+ preprocess (prepare) the data, run the training pipeline, and evaluate the model.
268
+
269
+ **Docs:**
270
+ [Working with RAG](https://docs.mlrun.org/en/stable/genai/development/working-with-rag.html), [Evalating LLMs](https://docs.mlrun.org/en/stable/genai/development/evaluating-llms.html), [Fine tuning LLMS](https://docs.mlrun.org/en/stable/genai/development/fine-tuning-llms.html)
271
+ **Demos:**
272
+ [Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs](https://github.com/mlrun/demo-llm-bot/blob/main)
273
+ **Video:**
274
+ [Call center](https://youtu.be/YycMbxRgLBA)
275
+
276
+
277
+ ### Deployment
278
+ MLRun serving can productize the newly trained LLM as a serverless function using real-time auto-scaling Nuclio serverless functions.
279
+ The application pipeline includes all the steps from accepting events or data, contextualizing it with a state preparing the required model features,
280
+ inferring results using one or more models, and driving actions.
281
+
282
+
283
+ **Docs:**
284
+ [Serving gen AI models](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving.html), GPU utilization](https://docs.mlrun.org/en/stable/genai/deployment/gpu_utilization.html), [Gen AI realtime serving graph](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving_graph.html)
285
+ **Tutorial:**
286
+ [Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html)
287
+ **Demos:**
288
+ [Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom(fine-tuned)]LLM models and applications <https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs]<https://github.com/mlrun/demo-llm-bot/blob/main)
289
+ **Video:**
290
+ [Call center]<https://youtu.be/YycMbxRgLBA)
291
+
292
+
293
+ ### Live Ops
294
+ Monitor all resources, data, model and application metrics to ensure performance. Then identify risks, control costs, and measure business KPIs.
295
+ Collect production data, metadata, and metrics to tune the model and application further, and to enable governance and explainability.
296
+
297
+
298
+ **Docs:**
299
+ [Model monitoring <monitoring](https://docs.mlrun.org/en/stable/concepts/monitoring.html), [Alerts and notifications](https://docs.mlrun.org/en/stable/concepts/alerts-notifications.html)
300
+ **Tutorials:**
301
+ [Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html), [Model monitoring using LLM](https://docs.mlrun.org/en/stable/tutorials/genai-02-monitoring-llm.html)
302
+ **Demo:**
303
+ [Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main)
232
304
 
233
- This page explains how MLRun addresses the [**MLOps Tasks**](#mlops-tasks) and the [**MLRun core components**](#core-components).
234
305
 
235
306
  <a id="mlops-tasks"></a>
236
307
  ## MLOps tasks
237
308
 
238
309
  <p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-task.png" alt="mlrun-tasks" width="800"/></p><br>
239
310
 
240
- The [**MLOps development workflow**](https://docs.mlrun.org/en/latest/mlops-dev-flow.html) section describes the different tasks and stages in detail.
311
+ The [**MLOps development workflow**](https://docs.mlrun.org/en/stable/mlops-dev-flow.html) section describes the different tasks and stages in detail.
241
312
  MLRun can be used to automate and orchestrate all the different tasks or just specific tasks (and integrate them with what you have already deployed).
242
313
 
243
314
  ### Project management and CI/CD automation
@@ -246,32 +317,40 @@ In MLRun the assets, metadata, and services (data, functions, jobs, artifacts, m
246
317
  Projects can be imported/exported as a whole, mapped to git repositories or IDE projects (in PyCharm, VSCode, etc.), which enables versioning, collaboration, and CI/CD.
247
318
  Project access can be restricted to a set of users and roles.
248
319
 
249
- See: **Docs:** [Projects and Automation](https://docs.mlrun.org/en/latest/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/latest/projects/ci-integration.html), **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html), **Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
320
+ **Docs:** [Projects and Automation](https://docs.mlrun.org/en/stable/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/stable/projects/ci-integration.html)
321
+ **Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
322
+ **Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
250
323
 
251
324
  ### Ingest and process data
252
325
 
253
- MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/latest/store/datastore.html), supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
254
- In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/latest/feature-store/feature-store.html) automates the collection, transformation, storage, catalog, serving, and monitoring of data features across the ML lifecycle and enables feature reuse and sharing.
326
+ MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/stable/store/datastore.html), supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
327
+ In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automates the collection, transformation, storage, catalog, serving, and monitoring of data features across the ML lifecycle and enables feature reuse and sharing.
255
328
 
256
- See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/latest/data-prep/index.html), [Feature Store](https://docs.mlrun.org/en/latest/feature-store/feature-store.html), [Data & Artifacts](https://docs.mlrun.org/en/latest/concepts/data.html); **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Feature Store](https://docs.mlrun.org/en/latest/feature-store/basic-demo.html).
329
+ See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/stable/data-prep/index.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/feature-store.html), [Data & Artifacts](https://docs.mlrun.org/en/stable/concepts/data.html)
330
+ **Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/basic-demo.html).
257
331
 
258
332
  ### Develop and train models
259
333
 
260
334
  MLRun allows you to easily build ML pipelines that take data from various sources or the Feature Store and process it, train models at scale with multiple parameters, test models, tracks each experiments, register, version and deploy models, etc. MLRun provides scalable built-in or custom model training services, integrate with any framework and can work with 3rd party training/auto-ML services. You can also bring your own pre-trained model and use it in the pipeline.
261
335
 
262
- See: **Docs:** [Develop and train models](https://docs.mlrun.org/en/latest/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/latest/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html); **Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/latest/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html); **Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
336
+ **Docs:** [Develop and train models](https://docs.mlrun.org/en/stable/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/stable/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html)
337
+ **Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/stable/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
338
+ **Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
263
339
 
264
340
  ### Deploy models and applications
265
341
 
266
342
  MLRun rapidly deploys and manages production-grade real-time or batch application pipelines using elastic and resilient serverless functions. MLRun addresses the entire ML application: intercepting application/user requests, running data processing tasks, inferencing using one or more models, driving actions, and integrating with the application logic.
267
343
 
268
- See: **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/latest/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/latest/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/latest/deployment/batch_inference.html), **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/latest/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html); **Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
344
+ **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/stable/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/stable/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/stable/deployment/batch_inference.html)
345
+ **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/stable/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html)
346
+ **Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
269
347
 
270
- ### Monitor and alert
348
+ ### Model Monitoring
271
349
 
272
350
  Observability is built into the different MLRun objects (data, functions, jobs, models, pipelines, etc.), eliminating the need for complex integrations and code instrumentation. With MLRun, you can observe the application/model resource usage and model behavior (drift, performance, etc.), define custom app metrics, and trigger alerts or retraining jobs.
273
351
 
274
- See: **Docs:** [Monitor and alert](https://docs.mlrun.org/en/latest/monitoring/index.html), [Model Monitoring Overview](https://docs.mlrun.org/en/latest/monitoring/model-monitoring-deployment.html), **Tutorials:** [Model Monitoring & Drift Detection](https://docs.mlrun.org/en/latest/tutorials/05-model-monitoring.html).
352
+ **Docs:** [Model monitoring](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html), [Model Monitoring Overview](https://docs.mlrun.org/en/stable/monitoring/model-monitoring-deployment.html)
353
+ **Tutorials:** [Model Monitoring & Drift Detection](https://docs.mlrun.org/en/stable/tutorials/05-model-monitoring.html).
275
354
 
276
355
 
277
356
  <a id="core-components"></a>
@@ -279,18 +358,21 @@ See: **Docs:** [Monitor and alert](https://docs.mlrun.org/en/latest/monitoring/i
279
358
 
280
359
  <p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-core.png" alt="mlrun-core" width="800"/></p><br>
281
360
 
361
+
282
362
  MLRun includes the following major components:
283
363
 
284
- [**Project Management:**](https://docs.mlrun.org/en/latest/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
364
+ [**Project Management:**](https://docs.mlrun.org/en/stable/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
365
+
366
+ [**Functions:**](https://docs.mlrun.org/en/stable/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
285
367
 
286
- [**Functions:**](https://docs.mlrun.org/en/latest/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
368
+ [**Data & Artifacts:**](https://docs.mlrun.org/en/stable/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
287
369
 
288
- [**Data & Artifacts:**](https://docs.mlrun.org/en/latest/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
370
+ [**Batch Runs & Workflows:**](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html) Execute one or more functions with specific parameters and collect, track, and compare all their results and artifacts.
289
371
 
290
- [**Feature Store:**](https://docs.mlrun.org/en/latest/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
372
+ [**Real-Time Serving Pipeline:**](https://docs.mlrun.org/en/stable/serving/serving-graph.html) Rapid deployment of scalable data and ML pipelines using real-time serverless technology, including API handling, data preparation/enrichment, model serving, ensembles, driving and measuring actions, etc.
291
373
 
292
- [**Batch Runs & Workflows:**](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html) Execute one or more functions with specific parameters and collect, track, and compare all their results and artifacts.
374
+ [**Model monitoring:**](https://docs.mlrun.org/en/stable/monitoring/index.html) monitors data, models, resources, and production components and provides a feedback loop for exploring production data, identifying drift, alerting on anomalies or data quality issues, triggering retraining jobs, measuring business impact, etc.
293
375
 
294
- [**Real-Time Serving Pipeline:**](https://docs.mlrun.org/en/latest/serving/serving-graph.html) Rapid deployment of scalable data and ML pipelines using real-time serverless technology, including API handling, data preparation/enrichment, model serving, ensembles, driving and measuring actions, etc.
376
+ [**Alerts and notifications:**](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html) Use alerts to identify and inform you of possible problem situations. Use notifications to report status on runs and pipelines.
295
377
 
296
- [**Real-Time monitoring:**](https://docs.mlrun.org/en/latest/monitoring/index.html) monitors data, models, resources, and production components and provides a feedback loop for exploring production data, identifying drift, alerting on anomalies or data quality issues, triggering retraining jobs, measuring business impact, etc.
378
+ [**Feature Store:**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
@@ -2,11 +2,11 @@ mlrun/__init__.py,sha256=y08M1JcKXy5-9_5WaI9fn5aV5BxIQ5QkbduJK0OxWbA,7470
2
2
  mlrun/__main__.py,sha256=mC_Izs4kuHUHQi88QJFLN22n1kbygGM0wAirjNt7uj4,45938
3
3
  mlrun/config.py,sha256=NJG59Rl_5-mwgCdPDboRhjHD1ujW9ITYL7gtCbSMkM8,67308
4
4
  mlrun/errors.py,sha256=nY23dns_kTzbOrelJf0FyxLw5mglv7jo4Sx3efKS9Fs,7798
5
- mlrun/execution.py,sha256=EGsEeSqOFnSxYFL4_YVKv8DEx2YsmJ9aA1gXBAV5W5A,42563
5
+ mlrun/execution.py,sha256=nXvvN8euzjuxhJouJD8VxfK0keTTA6UoMrcD_17AL-4,44252
6
6
  mlrun/features.py,sha256=m17K_3l9Jktwb9dOwlHLTAPTlemsWrRF7dJhXUX0iJU,15429
7
7
  mlrun/k8s_utils.py,sha256=mRQMs6NzPq36vx1n5_2BfFapXysc8wv3NcrZ77_2ANA,8949
8
8
  mlrun/lists.py,sha256=3PqBdcajdwhTe1XuFsAaHTuFVM2kjwepf31qqE82apg,8384
9
- mlrun/model.py,sha256=pWE8L9SIaNu3pAgoqVTea5i-MRXcWqorOWvL0AiwM5E,81226
9
+ mlrun/model.py,sha256=S6CKiRrYfgVNALA9TLy4lsXZCox4FpD-TAnR5CU51cQ,82035
10
10
  mlrun/render.py,sha256=940H9fBBFeghH4dlifbURvtjlvw4GlWdAXezN6ky4rI,13275
11
11
  mlrun/run.py,sha256=hNxV-TnixbH8MCos2jqz8jdTDlK7dBSvJMil_QoGKQI,43616
12
12
  mlrun/secrets.py,sha256=ibtCK79u7JVBZF6F0SP1-xXXF5MyrLEUs_TCWiJAnlc,7798
@@ -33,7 +33,7 @@ mlrun/common/formatters/feature_set.py,sha256=lH5RL9Mo6weRexHrruUnmL1qqv_mZocBOQ
33
33
  mlrun/common/formatters/function.py,sha256=fGa5m5aI_XvQdvrUr73dmUwrEJrE_8wM4_P4q8RgBTg,1477
34
34
  mlrun/common/formatters/pipeline.py,sha256=hGUV_3wcTEMa-JouspbjgJ1JGKa2Wc5cXSaH2XhOdMc,1763
35
35
  mlrun/common/formatters/project.py,sha256=rdGf7fq_CfwFwd8iKWl8sW-tqTJilK3gJtV5oLdaY-M,1756
36
- mlrun/common/formatters/run.py,sha256=eEBy1NEwGT9b98TWS2OetEbDnDrnHBIBVMrlXsxveo4,920
36
+ mlrun/common/formatters/run.py,sha256=Gcf9lVDqxPMNfWcPX0RJasjTC_N_U0yTBkQ02jOPJ7A,1062
37
37
  mlrun/common/model_monitoring/__init__.py,sha256=x0EMEvxVjHsm858J1t6IEA9dtKTdFpJ9sKhss10ld8A,721
38
38
  mlrun/common/model_monitoring/helpers.py,sha256=1CpxIDQPumFnpUB1eqcvCpLlyPFVeW2sL6prM-N5A1A,4405
39
39
  mlrun/common/runtimes/constants.py,sha256=Rl0Sd8n_L7Imo-uF1LL9CJ5Szi0W1gUm36yrF8PXfSc,10989
@@ -41,7 +41,7 @@ mlrun/common/schemas/__init__.py,sha256=QZMyVHjIoa88JmyVy45JGkNGz5K39XX7A72TUnXr
41
41
  mlrun/common/schemas/alert.py,sha256=qWYCISNYMdkgAARVQNxshVr9d-s8LGscfLKpczkTBms,6749
42
42
  mlrun/common/schemas/api_gateway.py,sha256=9ilorgLOiWxFZbv89-dbPNfVdaChlGOIdC4SLTxQwNI,7118
43
43
  mlrun/common/schemas/artifact.py,sha256=V3ngobnzI1v2eoOroWBEedjAZu0ntCSIQ-LzsOK1Z9k,3570
44
- mlrun/common/schemas/auth.py,sha256=faxZeVCmIRchMnDCaiIhwTdGTtRc7u1ImbZQvxm6FJ4,6500
44
+ mlrun/common/schemas/auth.py,sha256=7XpEXICjDhHHkAppOp0mHvEtCwG68L3mhgSHPqqTBMk,6584
45
45
  mlrun/common/schemas/background_task.py,sha256=2qZxib2qrF_nPZj0ncitCG-2jxz2hg1qj0hFc8eswWQ,1707
46
46
  mlrun/common/schemas/client_spec.py,sha256=wqzQ5R4Zc7FL-8lV_BRN6nLrD0jK1kon05-JQ3fy2KY,2892
47
47
  mlrun/common/schemas/clusterization_spec.py,sha256=aeaFJZms7r7h2HDv6ML_GDAT6gboW-PxBbc3GKPalGk,888
@@ -67,13 +67,13 @@ mlrun/common/schemas/runtime_resource.py,sha256=2rSuYL-9JkESSomlnU91mYDbfV-IkqZe
67
67
  mlrun/common/schemas/schedule.py,sha256=nD9kxH2KjXkbGZPNfzVNlNSxbyFZmZUlwtT04_z2xCw,4289
68
68
  mlrun/common/schemas/secret.py,sha256=51tCN1F8DFTq4y_XdHIMDy3I1TnMEBX8kO8BHKavYF4,1484
69
69
  mlrun/common/schemas/tag.py,sha256=OAn9Qt6z8ibqw8uU8WQSvuwY8irUv45Dhx2Ko5FzUss,884
70
- mlrun/common/schemas/workflow.py,sha256=WxmlwtwrzwL4lfHYjQTOp03uv6PWYMpZ4cNBMOA6N6E,1897
70
+ mlrun/common/schemas/workflow.py,sha256=K5kZdbdKMg21pqwJyTRn41p3Ws220Sjhn0Xl4Z5iDRg,2063
71
71
  mlrun/common/schemas/model_monitoring/__init__.py,sha256=q2icasMdgI7OG-p5eVwCu6sBuPrBMpRxByC6rxYk0DM,1813
72
- mlrun/common/schemas/model_monitoring/constants.py,sha256=KD6gaw24EAKFow5LPl0JkMlSXHUMca3DS-S41sWAre8,10158
72
+ mlrun/common/schemas/model_monitoring/constants.py,sha256=Wha21Iev3Nr9ugB1Ms_wrmcY42YzWTQqLKPYZD2dRHA,9896
73
73
  mlrun/common/schemas/model_monitoring/grafana.py,sha256=SG13MFUUz_tk6-mWeSx17qcdEW4ekicxqNtnMSwRTCY,1559
74
74
  mlrun/common/schemas/model_monitoring/model_endpoints.py,sha256=5vvjNX1bV98VSGdT4jwHr5ArKC9v_c1iHlaTf82fSUY,13198
75
75
  mlrun/data_types/__init__.py,sha256=EkxfkFoHb91zz3Aymq-KZfCHlPMzEc3bBqgzPUwmHWY,1087
76
- mlrun/data_types/data_types.py,sha256=3dmmIxJ2_uKzf-dbbgOwbYJx8cvUYrPiQan40vcSqJo,4948
76
+ mlrun/data_types/data_types.py,sha256=uB9qJusSvPRK2PTvrFBXrS5jcDXMuwqXokJGToDg4VA,4953
77
77
  mlrun/data_types/infer.py,sha256=z2EbSpR6xWEE5-HRUtDZkapHQld3xMbzXtTX83K-690,6134
78
78
  mlrun/data_types/spark.py,sha256=xfcr6lcaLcHepnrHavx_vacMJK7BC8FWsUKjwrjjn6w,9509
79
79
  mlrun/data_types/to_pandas.py,sha256=-ZbJBg00x4xxyqqqu3AVbEh-HaO2--DrChyPuedRhHA,11215
@@ -105,7 +105,7 @@ mlrun/db/__init__.py,sha256=WqJ4x8lqJ7ZoKbhEyFqkYADd9P6E3citckx9e9ZLcIU,1163
105
105
  mlrun/db/auth_utils.py,sha256=hpg8D2r82oN0BWabuWN04BTNZ7jYMAF242YSUpK7LFM,5211
106
106
  mlrun/db/base.py,sha256=lUfJrCWbuRUErIrUUXAKI2sSlrwfB-dHDz-Ck_cnZHU,24297
107
107
  mlrun/db/factory.py,sha256=ibIrE5QkIIyzDU1FXKrfbc31cZiRLYKDZb8dqCpQwyU,2397
108
- mlrun/db/httpdb.py,sha256=5-xdym1Ls6iaR_5DD4Iv805fQAKH0Zx-4oc4n9Z6p8Y,184623
108
+ mlrun/db/httpdb.py,sha256=SaJT3OkxBqBJvwvGVMnYqd7yKf1vbfHV5If0bYPiX-Y,184934
109
109
  mlrun/db/nopdb.py,sha256=1oCZR2EmQQDkwXUgmyI3SB76zvOwA6Ml3Lk_xvuwHfc,21620
110
110
  mlrun/feature_store/__init__.py,sha256=FhHRc8NdqL_HWpCs7A8dKruxJS5wEm55Gs3dcgBiRUg,1522
111
111
  mlrun/feature_store/api.py,sha256=SWBbFD4KU2U4TUaAbD2hRLSquFWxX46mZGCToI0GfFQ,49994
@@ -119,7 +119,7 @@ mlrun/feature_store/retrieval/base.py,sha256=zgDsRsYQz8eqReKBEeTP0O4UoLoVYjWpO1o
119
119
  mlrun/feature_store/retrieval/dask_merger.py,sha256=t60xciYp6StUQLEyFyI4JK5NpWkdBy2MGCs6beimaWU,5575
120
120
  mlrun/feature_store/retrieval/job.py,sha256=xNIe3fAZ-wQ_sVLG2iTMLrnWSRIJ3EbDR10mnUUiSKE,8593
121
121
  mlrun/feature_store/retrieval/local_merger.py,sha256=jM-8ta44PeNUc1cKMPs-TxrO9t8pXbwu_Tw8MZrLxUY,4513
122
- mlrun/feature_store/retrieval/spark_merger.py,sha256=PM7BXSfhAngcMGN8Vjhbnw6TSes63nGPg2IlNaBlC_A,10662
122
+ mlrun/feature_store/retrieval/spark_merger.py,sha256=XTMK40Y0bUli1Z9KwtYmMSQ8a4WOHEHzIq9uzk1mfc4,10548
123
123
  mlrun/feature_store/retrieval/storey_merger.py,sha256=5YM0UPrLjGOobulHkowRO-1LuvFD2cm_0GxcpnTdu0I,6314
124
124
  mlrun/frameworks/__init__.py,sha256=qRHe_nUfxpoLaSASAkIxcW6IyunMtxq5LXhjzZMO_1E,743
125
125
  mlrun/frameworks/parallel_coordinates.py,sha256=XY2C1Q29VWxcWIsIhcluUivpEHglr8PcZHCMs2MH4GM,11485
@@ -212,22 +212,20 @@ mlrun/launcher/factory.py,sha256=RW7mfzEFi8fR0M-4W1JQg1iq3_muUU6OTqT_3l4Ubrk,233
212
212
  mlrun/launcher/local.py,sha256=pP9-ZrNL8OnNDEiXTAKAZQnmLpS_mCc2v-mJw329eks,11269
213
213
  mlrun/launcher/remote.py,sha256=tGICSfWtvUHeR31mbzy6gqHejmDxjPUgjtxXTWhRubg,7699
214
214
  mlrun/model_monitoring/__init__.py,sha256=dm5_j0_pwqrdzFwTaEtGnKfv2nVpNaM56nBI-oqLbNU,879
215
- mlrun/model_monitoring/api.py,sha256=L5f4mum-zv-4kMTqJDHWWzNnVcoGYDxf3zvpS-U4rQc,28596
216
- mlrun/model_monitoring/application.py,sha256=RJ8HeAPfGO3P2A_dEZYNg60c1wKTADh2YSv8BQ5embg,745
217
- mlrun/model_monitoring/controller.py,sha256=ZKp3mWMhj6irCuREs-OH1MYYh5DzqNEDe04kVPVrZzw,27971
218
- mlrun/model_monitoring/evidently_application.py,sha256=iOc42IVjj8m6PDBmVcKIMWm46Bu0EdO9SDcH40Eqhyo,769
215
+ mlrun/model_monitoring/api.py,sha256=2EHCzB_5sCDgalYPkrFbI01cSO7LVWBv9yWoooJ-a0g,28106
216
+ mlrun/model_monitoring/controller.py,sha256=dvqEyoE-iCd2jqDeoUpcrQFUeoTME58i3Wa2MhYi57k,20444
219
217
  mlrun/model_monitoring/features_drift_table.py,sha256=c6GpKtpOJbuT1u5uMWDL_S-6N4YPOmlktWMqPme3KFY,25308
220
218
  mlrun/model_monitoring/helpers.py,sha256=KsbSH0kEjCPajvLUpv3q5GWyvx0bZj-JkghGJlzbLZI,12757
221
219
  mlrun/model_monitoring/model_endpoint.py,sha256=7VX0cBATqLsA4sSinDzouf41ndxqh2mf5bO9BW0G5Z4,4017
222
220
  mlrun/model_monitoring/stream_processing.py,sha256=0eu1Gq1Obq87LFno6eIZ55poXoFaeloqYTLiQgyfd0k,38687
223
221
  mlrun/model_monitoring/tracking_policy.py,sha256=sQq956akAQpntkrJwIgFWcEq-JpyVcg0FxgNa4h3V70,5502
224
222
  mlrun/model_monitoring/writer.py,sha256=TrBwngRmdwr67De71UCcCFsJOfcqQe8jDp0vkBvGf0o,10177
225
- mlrun/model_monitoring/applications/__init__.py,sha256=i793GqYee01mRh_KD6GShvX7UbPBgdJDO4qf9Z3BXEQ,970
223
+ mlrun/model_monitoring/applications/__init__.py,sha256=QYvzgCutFdAkzqKPD3mvkX_3c1X4tzd-kW8ojUOE9ic,889
226
224
  mlrun/model_monitoring/applications/_application_steps.py,sha256=fvZbtat7eXe5mo927_jyhq4BqWCapKZn7OVjptepIAI,7055
227
- mlrun/model_monitoring/applications/base.py,sha256=snr3xYdqv6Po19yS0Z1VktyoLrbl88lljSFQyjnKjR0,11616
228
- mlrun/model_monitoring/applications/context.py,sha256=jTZaRdPZBc2m8-rcC3gKFkSsaQByWn6ZCQuqCOOWdWo,12747
229
- mlrun/model_monitoring/applications/evidently_base.py,sha256=6hzfO6s0jEVHj4R_pujcn_p6LvdkKUDb9S4B6j2XEUY,8024
230
- mlrun/model_monitoring/applications/histogram_data_drift.py,sha256=OOPojE-KIP9rAPZ6va6uJOjqJOb3c8K_VAmITXZd918,13341
225
+ mlrun/model_monitoring/applications/base.py,sha256=uzc14lFlwTJnL0p2VBCzmp-CNoHd73cK_Iz0YHC1KAs,4380
226
+ mlrun/model_monitoring/applications/context.py,sha256=vOZ_ZgUuy5UsNe22-puJSt7TB32HiZtqBdN1hegykuQ,12436
227
+ mlrun/model_monitoring/applications/evidently_base.py,sha256=FSzmoDZP8EiSQ3tq5RmU7kJ6edh8bWaKQh0rBORjODY,5099
228
+ mlrun/model_monitoring/applications/histogram_data_drift.py,sha256=wRCttgK1H4eRDiAJJ7Aid2hPuQPzUoBY3hSHlVkdE5w,13337
231
229
  mlrun/model_monitoring/applications/results.py,sha256=B0YuLig4rgBzBs3OAh01yLavhtNgj8Oz1RD8UfEkENU,3590
232
230
  mlrun/model_monitoring/db/__init__.py,sha256=6Ic-X3Fh9XLPYMytmevGNSs-Hii1rAjLLoFTSPwTguw,736
233
231
  mlrun/model_monitoring/db/stores/__init__.py,sha256=m6Z6rPQyaufq5oXF3HVUYGDN34biAX1JE1F6OxLN9B8,4752
@@ -245,9 +243,9 @@ mlrun/model_monitoring/db/tsdb/__init__.py,sha256=Zqh_27I2YAEHk9nl0Z6lUxP7VEfrgr
245
243
  mlrun/model_monitoring/db/tsdb/base.py,sha256=X89X763sDrShfRXE1N-p8k97E8NBs7O1QJFiO-CffLM,18583
246
244
  mlrun/model_monitoring/db/tsdb/helpers.py,sha256=0oUXc4aUkYtP2SGP6jTb3uPPKImIUsVsrb9otX9a7O4,1189
247
245
  mlrun/model_monitoring/db/tsdb/tdengine/__init__.py,sha256=vgBdsKaXUURKqIf3M0y4sRatmSVA4CQiJs7J5dcVBkQ,620
248
- mlrun/model_monitoring/db/tsdb/tdengine/schemas.py,sha256=7yZFn42sF597TBumVM-xhh1bjIQCbIo6qIvMK5WpWO0,10503
246
+ mlrun/model_monitoring/db/tsdb/tdengine/schemas.py,sha256=LqWJebDXrXo0mteKVG6LnvPYlWBYh2lMCXEcv-lWoKA,10551
249
247
  mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py,sha256=Hb0vcCBP-o0ET78mU4P32fnhUL65QZv-pMuv2lnCby4,1586
250
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py,sha256=L4cDFfuGOVyF_bnPbUJ_xhMEt_DGwY6FWwoO4VEXSW4,18671
248
+ mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py,sha256=drNq_EpERU4lUNr_HyKBHVE4gB3CTz34Oi49XcO64EQ,18990
251
249
  mlrun/model_monitoring/db/tsdb/v3io/__init__.py,sha256=aL3bfmQsUQ-sbvKGdNihFj8gLCK3mSys0qDcXtYOwgc,616
252
250
  mlrun/model_monitoring/db/tsdb/v3io/stream_graph_steps.py,sha256=mbmhN4f_F58ptVjhwoMF6ifZSdnZWhK7x8eNsWS39IA,6217
253
251
  mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py,sha256=1H-IBXPNJPRAaxDMGWpUU25QqfR87LpZbJ03vaJkICs,32858
@@ -273,9 +271,9 @@ mlrun/package/utils/type_hint_utils.py,sha256=JYrek6vuN3z7e6MGUD3qBLDfQ03C4puZXN
273
271
  mlrun/platforms/__init__.py,sha256=ggSGF7inITs6S-vj9u4S9X_5psgbA0G3GVqf7zu8qYc,2406
274
272
  mlrun/platforms/iguazio.py,sha256=1h5BpdAEQJBg2vIt7ySjUADU0ip5OkaMYr0_VREi9ys,13084
275
273
  mlrun/projects/__init__.py,sha256=Lv5rfxyXJrw6WGOWJKhBz66M6t3_zsNMCfUD6waPwx4,1153
276
- mlrun/projects/operations.py,sha256=UEpiW4bDscth4pwWcLWF1xz-IU7bnZfckPR7sXp3O-g,19441
277
- mlrun/projects/pipelines.py,sha256=bumAbKDYPLbMkWW1CyHvUpEclKzX63dImCuG7qf3s1s,40496
278
- mlrun/projects/project.py,sha256=vbtgNpbldOFXEMkYDQlktYl80tjrO_TD8oast7lylGg,190935
274
+ mlrun/projects/operations.py,sha256=gtqSU9OvYOV-b681uQtWgnW7YSnX6qfa1Mt1Xm4f1ZI,19752
275
+ mlrun/projects/pipelines.py,sha256=9IZjfm9ccBO5xPW6FFY0em9w2ETNBP0hTvzfUf_YDjM,40951
276
+ mlrun/projects/project.py,sha256=FjgkBBBP6geuxOGGp1Es5EFqsrs3M6PNWejBdoM08ng,190769
279
277
  mlrun/runtimes/__init__.py,sha256=egLM94cDMUyQ1GVABdFGXUQcDhU70lP3k7qSnM_UnHY,9008
280
278
  mlrun/runtimes/base.py,sha256=JXWmTIcm3b0klGUOHDlyFNa3bUgsNzQIgWhUQpSZoE0,37692
281
279
  mlrun/runtimes/daskjob.py,sha256=Ka_xqim8LkCYjp-M_WgteJy6ZN_3qfmLLHvXs7N6pa4,19411
@@ -295,7 +293,7 @@ mlrun/runtimes/mpijob/__init__.py,sha256=V_1gQD1VHa0Qvjqgyv8RLouH27Sy9YTwj2ZG62o
295
293
  mlrun/runtimes/mpijob/abstract.py,sha256=kDWo-IY1FKLZhI30j38Xx9HMhlUvHezfd1DT2ShoxZY,9161
296
294
  mlrun/runtimes/mpijob/v1.py,sha256=1XQZC7AIMGX_AQCbApcwpH8I7y39-v0v2O35MvxjXoo,3213
297
295
  mlrun/runtimes/nuclio/__init__.py,sha256=gx1kizzKv8pGT5TNloN1js1hdbxqDw3rM90sLVYVffY,794
298
- mlrun/runtimes/nuclio/api_gateway.py,sha256=2sHtkVHSS3L1DuV2KNWatJJRxvoGSBOjB6tnqv6SA5w,26730
296
+ mlrun/runtimes/nuclio/api_gateway.py,sha256=oQRSOvqtODKCzT2LqlqSXZbq2vcZ7epsFZwO9jvarhc,26899
299
297
  mlrun/runtimes/nuclio/function.py,sha256=TQt6RyxK_iyzNJr2r57BRtVXuy2GMrhdeFOlFjb2AZg,52106
300
298
  mlrun/runtimes/nuclio/nuclio.py,sha256=sLK8KdGO1LbftlL3HqPZlFOFTAAuxJACZCVl1c0Ha6E,2942
301
299
  mlrun/runtimes/nuclio/serving.py,sha256=Tsv-MssXJPe4di9stVOAyCj2MTMI7zQxvtFbAgdAtu0,29717
@@ -325,7 +323,7 @@ mlrun/utils/azure_vault.py,sha256=IEFizrDGDbAaoWwDr1WoA88S_EZ0T--vjYtY-i0cvYQ,34
325
323
  mlrun/utils/clones.py,sha256=mJpx4nyFiY6jlBCvFABsNuyi_mr1mvfPWn81vlafpOU,7361
326
324
  mlrun/utils/condition_evaluator.py,sha256=-nGfRmZzivn01rHTroiGY4rqEv8T1irMyhzxEei-sKc,1897
327
325
  mlrun/utils/db.py,sha256=blQgkWMfFH9lcN4sgJQcPQgEETz2Dl_zwbVA0SslpFg,2186
328
- mlrun/utils/helpers.py,sha256=112XTi14zIQwqyb0KeDcwLa4vAIm8kG1rBaypjXCffY,59716
326
+ mlrun/utils/helpers.py,sha256=F2hrR3748PTbFCzvckakACSjzL2ZypqEekTMldizxr0,61146
329
327
  mlrun/utils/http.py,sha256=t6FrXQstZm9xVVjxqIGiLzrwZNCR4CSienSOuVgNIcI,8706
330
328
  mlrun/utils/logger.py,sha256=cag2J30-jynIHmHZ2J8RYmVMNhYBGgAoimc5sbk-A1U,10016
331
329
  mlrun/utils/regex.py,sha256=b0AUa2THS-ELzJj0grl5b8Stq609F2XomTZkD9SB1fQ,4900
@@ -343,11 +341,11 @@ mlrun/utils/notifications/notification/ipython.py,sha256=ZtVL30B_Ha0VGoo4LxO-voT
343
341
  mlrun/utils/notifications/notification/slack.py,sha256=wqpFGr5BTvFO5KuUSzFfxsgmyU1Ohq7fbrGeNe9TXOk,7006
344
342
  mlrun/utils/notifications/notification/webhook.py,sha256=cb9w1Mc8ENfJBdgan7iiVHK9eVls4-R3tUxmXM-P-8I,4746
345
343
  mlrun/utils/version/__init__.py,sha256=7kkrB7hEZ3cLXoWj1kPoDwo4MaswsI2JVOBpbKgPAgc,614
346
- mlrun/utils/version/version.json,sha256=Rom-5CPmSdKkRsWq_4v5tZavypVtZmD18LJ9U3Yog38,89
344
+ mlrun/utils/version/version.json,sha256=aebwGt4rZOROuMZJhVbQLjSTK6WxjEeI0k5kbplPv10,89
347
345
  mlrun/utils/version/version.py,sha256=eEW0tqIAkU9Xifxv8Z9_qsYnNhn3YH7NRAfM-pPLt1g,1878
348
- mlrun-1.7.0rc48.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
349
- mlrun-1.7.0rc48.dist-info/METADATA,sha256=8KpQXwToJDR-fYaWs37jtvCWddahifC4ZyMLvxf7Qmw,19943
350
- mlrun-1.7.0rc48.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
351
- mlrun-1.7.0rc48.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
352
- mlrun-1.7.0rc48.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
353
- mlrun-1.7.0rc48.dist-info/RECORD,,
346
+ mlrun-1.7.0rc52.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
347
+ mlrun-1.7.0rc52.dist-info/METADATA,sha256=4xKf0fr7nekI1lzBspdArputjtfZNMTiXwjBWx0dQHo,24485
348
+ mlrun-1.7.0rc52.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
349
+ mlrun-1.7.0rc52.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
350
+ mlrun-1.7.0rc52.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
351
+ mlrun-1.7.0rc52.dist-info/RECORD,,
@@ -1,19 +0,0 @@
1
- # Copyright 2023 Iguazio
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # TODO : delete this file in 1.9.0
16
- from mlrun.model_monitoring.applications import ( # noqa: F401
17
- ModelMonitoringApplicationBase,
18
- ModelMonitoringApplicationResult,
19
- )