mlrun 1.7.0rc47__py3-none-any.whl → 1.7.0rc50__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (30) hide show
  1. mlrun/common/formatters/run.py +3 -0
  2. mlrun/common/schemas/auth.py +3 -0
  3. mlrun/common/schemas/model_monitoring/constants.py +0 -7
  4. mlrun/common/schemas/notification.py +12 -2
  5. mlrun/common/schemas/workflow.py +9 -2
  6. mlrun/data_types/data_types.py +1 -1
  7. mlrun/db/httpdb.py +11 -4
  8. mlrun/execution.py +7 -1
  9. mlrun/feature_store/retrieval/spark_merger.py +0 -4
  10. mlrun/model_monitoring/api.py +1 -12
  11. mlrun/model_monitoring/applications/__init__.py +1 -2
  12. mlrun/model_monitoring/applications/base.py +2 -182
  13. mlrun/model_monitoring/applications/context.py +2 -9
  14. mlrun/model_monitoring/applications/evidently_base.py +0 -74
  15. mlrun/model_monitoring/applications/histogram_data_drift.py +2 -2
  16. mlrun/model_monitoring/controller.py +45 -208
  17. mlrun/projects/operations.py +11 -8
  18. mlrun/projects/pipelines.py +28 -11
  19. mlrun/projects/project.py +9 -5
  20. mlrun/runtimes/nuclio/api_gateway.py +6 -0
  21. mlrun/runtimes/nuclio/serving.py +2 -2
  22. mlrun/utils/version/version.json +2 -2
  23. {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/METADATA +99 -21
  24. {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/RECORD +28 -30
  25. mlrun/model_monitoring/application.py +0 -19
  26. mlrun/model_monitoring/evidently_application.py +0 -20
  27. {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/LICENSE +0 -0
  28. {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/WHEEL +0 -0
  29. {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/entry_points.txt +0 -0
  30. {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mlrun
3
- Version: 1.7.0rc47
3
+ Version: 1.7.0rc50
4
4
  Summary: Tracking and config of machine learning runs
5
5
  Home-page: https://github.com/mlrun/mlrun
6
6
  Author: Yaron Haviv
@@ -50,7 +50,7 @@ Requires-Dist: setuptools ~=71.0
50
50
  Requires-Dist: deprecated ~=1.2
51
51
  Requires-Dist: jinja2 >=3.1.3,~=3.1
52
52
  Requires-Dist: orjson <4,>=3.9.15
53
- Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.7
53
+ Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.8
54
54
  Requires-Dist: mlrun-pipelines-kfp-v1-8 ~=0.1.6
55
55
  Provides-Extra: alibaba-oss
56
56
  Requires-Dist: ossfs ==2023.12.0 ; extra == 'alibaba-oss'
@@ -225,19 +225,86 @@ Requires-Dist: taos-ws-py ~=0.3.3 ; extra == 'tdengine'
225
225
 
226
226
  # Using MLRun
227
227
 
228
- MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources.
228
+ MLRun is an open source AI orchestration platform for quickly building and managing continuous (gen) AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications.
229
+ MLRun significantly reduces engineering efforts, time to production, and computation resources.
229
230
  With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
230
231
 
231
- Get started with MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/latest/tutorials/index.html), [**Installation and setup guide**](https://docs.mlrun.org/en/latest/install.html), or read about [**MLRun Architecture**](https://docs.mlrun.org/en/latest/architecture.html).
232
+ Get started with the MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/stable/tutorials/index.html) and the [**Installation and setup guide**](https://docs.mlrun.org/en/stable/install.html), or read about the [**MLRun Architecture**](https://docs.mlrun.org/en/stable/architecture.html).
233
+
234
+ This page explains how MLRun addresses the [**gen AI tasks**](#genai-tasks), [**MLOps tasks**](#mlops-tasks), and presents the [**MLRun core components**](#core-components).
235
+
236
+ See the supported data stores, development tools, services, platforms, etc., supported by MLRun's open architecture in **https://docs.mlrun.org/en/stable/ecosystem.html**.
237
+
238
+ ## Gen AI tasks
239
+
240
+ <p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/ai-tasks.png" alt="ai-tasks" width="800"/></p><br>
241
+
242
+ Use MLRun to develop, scale, deploy, and monitor your AI model across your enterprise. The [**gen AI development workflow**](https://docs.mlrun.org/en/stable/genai/genai-flow.html)
243
+ section describes the different tasks and stages in detail.
244
+
245
+ ### Data management
246
+
247
+
248
+ MLRun supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
249
+ Removing inappropriate data at an early stage saves resources that would otherwise be required later on.
250
+
251
+
252
+ **Docs:**
253
+ [Using LLMs to process unstructured data](https://docs.mlrun.org/en/stable/genai/data-mgmt/unstructured-data.html)
254
+ [Vector databases](https://docs.mlrun.org/en/stable/genai/data-mgmt/vector-databases.html)
255
+ [Guardrails for data management](https://docs.mlrun.org/en/stable/genai/data-mgmt/guardrails-data.html)
256
+ **Demo:**
257
+ [Call center demo](https://github.com/mlrun/demo-call-center>`
258
+ **Video:**
259
+ [Call center](https://youtu.be/YycMbxRgLBA>`
260
+
261
+ ### Development
262
+ Use MLRun to build an automated ML pipeline to: collect data,
263
+ preprocess (prepare) the data, run the training pipeline, and evaluate the model.
264
+
265
+ **Docs:**
266
+ [Working with RAG](https://docs.mlrun.org/en/stable/genai/development/working-with-rag.html), [Evalating LLMs](https://docs.mlrun.org/en/stable/genai/development/evaluating-llms.html), [Fine tuning LLMS](https://docs.mlrun.org/en/stable/genai/development/fine-tuning-llms.html)
267
+ **Demos:**
268
+ [Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs](https://github.com/mlrun/demo-llm-bot/blob/main)
269
+ **Video:**
270
+ [Call center](https://youtu.be/YycMbxRgLBA)
271
+
272
+
273
+ ### Deployment
274
+ MLRun serving can productize the newly trained LLM as a serverless function using real-time auto-scaling Nuclio serverless functions.
275
+ The application pipeline includes all the steps from accepting events or data, contextualizing it with a state preparing the required model features,
276
+ inferring results using one or more models, and driving actions.
277
+
278
+
279
+ **Docs:**
280
+ [Serving gen AI models](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving.html), GPU utilization](https://docs.mlrun.org/en/stable/genai/deployment/gpu_utilization.html), [Gen AI realtime serving graph](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving_graph.html)
281
+ **Tutorial:**
282
+ [Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html)
283
+ **Demos:**
284
+ [Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom(fine-tuned)]LLM models and applications <https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs]<https://github.com/mlrun/demo-llm-bot/blob/main)
285
+ **Video:**
286
+ [Call center]<https://youtu.be/YycMbxRgLBA)
287
+
288
+
289
+ ### Live Ops
290
+ Monitor all resources, data, model and application metrics to ensure performance. Then identify risks, control costs, and measure business KPIs.
291
+ Collect production data, metadata, and metrics to tune the model and application further, and to enable governance and explainability.
292
+
293
+
294
+ **Docs:**
295
+ [Model monitoring <monitoring](https://docs.mlrun.org/en/stable/concepts/monitoring.html), [Alerts and notifications](https://docs.mlrun.org/en/stable/concepts/alerts-notifications.html)
296
+ **Tutorials:**
297
+ [Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html), [Model monitoring using LLM](https://docs.mlrun.org/en/stable/tutorials/genai-02-monitoring-llm.html)
298
+ **Demo:**
299
+ [Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main)
232
300
 
233
- This page explains how MLRun addresses the [**MLOps Tasks**](#mlops-tasks) and the [**MLRun core components**](#core-components).
234
301
 
235
302
  <a id="mlops-tasks"></a>
236
303
  ## MLOps tasks
237
304
 
238
305
  <p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-task.png" alt="mlrun-tasks" width="800"/></p><br>
239
306
 
240
- The [**MLOps development workflow**](https://docs.mlrun.org/en/latest/mlops-dev-flow.html) section describes the different tasks and stages in detail.
307
+ The [**MLOps development workflow**](https://docs.mlrun.org/en/stable/mlops-dev-flow.html) section describes the different tasks and stages in detail.
241
308
  MLRun can be used to automate and orchestrate all the different tasks or just specific tasks (and integrate them with what you have already deployed).
242
309
 
243
310
  ### Project management and CI/CD automation
@@ -246,32 +313,40 @@ In MLRun the assets, metadata, and services (data, functions, jobs, artifacts, m
246
313
  Projects can be imported/exported as a whole, mapped to git repositories or IDE projects (in PyCharm, VSCode, etc.), which enables versioning, collaboration, and CI/CD.
247
314
  Project access can be restricted to a set of users and roles.
248
315
 
249
- See: **Docs:** [Projects and Automation](https://docs.mlrun.org/en/latest/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/latest/projects/ci-integration.html), **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html), **Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
316
+ **Docs:** [Projects and Automation](https://docs.mlrun.org/en/stable/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/stable/projects/ci-integration.html)
317
+ **Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
318
+ **Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
250
319
 
251
320
  ### Ingest and process data
252
321
 
253
- MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/latest/store/datastore.html), supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
254
- In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/latest/feature-store/feature-store.html) automates the collection, transformation, storage, catalog, serving, and monitoring of data features across the ML lifecycle and enables feature reuse and sharing.
322
+ MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/stable/store/datastore.html), supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
323
+ In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automates the collection, transformation, storage, catalog, serving, and monitoring of data features across the ML lifecycle and enables feature reuse and sharing.
255
324
 
256
- See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/latest/data-prep/index.html), [Feature Store](https://docs.mlrun.org/en/latest/feature-store/feature-store.html), [Data & Artifacts](https://docs.mlrun.org/en/latest/concepts/data.html); **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Feature Store](https://docs.mlrun.org/en/latest/feature-store/basic-demo.html).
325
+ See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/stable/data-prep/index.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/feature-store.html), [Data & Artifacts](https://docs.mlrun.org/en/stable/concepts/data.html)
326
+ **Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/basic-demo.html).
257
327
 
258
328
  ### Develop and train models
259
329
 
260
330
  MLRun allows you to easily build ML pipelines that take data from various sources or the Feature Store and process it, train models at scale with multiple parameters, test models, tracks each experiments, register, version and deploy models, etc. MLRun provides scalable built-in or custom model training services, integrate with any framework and can work with 3rd party training/auto-ML services. You can also bring your own pre-trained model and use it in the pipeline.
261
331
 
262
- See: **Docs:** [Develop and train models](https://docs.mlrun.org/en/latest/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/latest/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html); **Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/latest/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html); **Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
332
+ **Docs:** [Develop and train models](https://docs.mlrun.org/en/stable/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/stable/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html)
333
+ **Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/stable/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
334
+ **Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
263
335
 
264
336
  ### Deploy models and applications
265
337
 
266
338
  MLRun rapidly deploys and manages production-grade real-time or batch application pipelines using elastic and resilient serverless functions. MLRun addresses the entire ML application: intercepting application/user requests, running data processing tasks, inferencing using one or more models, driving actions, and integrating with the application logic.
267
339
 
268
- See: **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/latest/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/latest/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/latest/deployment/batch_inference.html), **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/latest/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html); **Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
340
+ **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/stable/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/stable/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/stable/deployment/batch_inference.html)
341
+ **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/stable/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html)
342
+ **Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
269
343
 
270
- ### Monitor and alert
344
+ ### Model Monitoring
271
345
 
272
346
  Observability is built into the different MLRun objects (data, functions, jobs, models, pipelines, etc.), eliminating the need for complex integrations and code instrumentation. With MLRun, you can observe the application/model resource usage and model behavior (drift, performance, etc.), define custom app metrics, and trigger alerts or retraining jobs.
273
347
 
274
- See: **Docs:** [Monitor and alert](https://docs.mlrun.org/en/latest/monitoring/index.html), [Model Monitoring Overview](https://docs.mlrun.org/en/latest/monitoring/model-monitoring-deployment.html), **Tutorials:** [Model Monitoring & Drift Detection](https://docs.mlrun.org/en/latest/tutorials/05-model-monitoring.html).
348
+ **Docs:** [Model monitoring](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html), [Model Monitoring Overview](https://docs.mlrun.org/en/stable/monitoring/model-monitoring-deployment.html)
349
+ **Tutorials:** [Model Monitoring & Drift Detection](https://docs.mlrun.org/en/stable/tutorials/05-model-monitoring.html).
275
350
 
276
351
 
277
352
  <a id="core-components"></a>
@@ -279,18 +354,21 @@ See: **Docs:** [Monitor and alert](https://docs.mlrun.org/en/latest/monitoring/i
279
354
 
280
355
  <p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-core.png" alt="mlrun-core" width="800"/></p><br>
281
356
 
357
+
282
358
  MLRun includes the following major components:
283
359
 
284
- [**Project Management:**](https://docs.mlrun.org/en/latest/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
360
+ [**Project Management:**](https://docs.mlrun.org/en/stable/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
361
+
362
+ [**Functions:**](https://docs.mlrun.org/en/stable/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
285
363
 
286
- [**Functions:**](https://docs.mlrun.org/en/latest/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
364
+ [**Data & Artifacts:**](https://docs.mlrun.org/en/stable/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
287
365
 
288
- [**Data & Artifacts:**](https://docs.mlrun.org/en/latest/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
366
+ [**Batch Runs & Workflows:**](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html) Execute one or more functions with specific parameters and collect, track, and compare all their results and artifacts.
289
367
 
290
- [**Feature Store:**](https://docs.mlrun.org/en/latest/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
368
+ [**Real-Time Serving Pipeline:**](https://docs.mlrun.org/en/stable/serving/serving-graph.html) Rapid deployment of scalable data and ML pipelines using real-time serverless technology, including API handling, data preparation/enrichment, model serving, ensembles, driving and measuring actions, etc.
291
369
 
292
- [**Batch Runs & Workflows:**](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html) Execute one or more functions with specific parameters and collect, track, and compare all their results and artifacts.
370
+ [**Model monitoring:**](https://docs.mlrun.org/en/stable/monitoring/index.html) monitors data, models, resources, and production components and provides a feedback loop for exploring production data, identifying drift, alerting on anomalies or data quality issues, triggering retraining jobs, measuring business impact, etc.
293
371
 
294
- [**Real-Time Serving Pipeline:**](https://docs.mlrun.org/en/latest/serving/serving-graph.html) Rapid deployment of scalable data and ML pipelines using real-time serverless technology, including API handling, data preparation/enrichment, model serving, ensembles, driving and measuring actions, etc.
372
+ [**Alerts and notifications:**](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html) Use alerts to identify and inform you of possible problem situations. Use notifications to report status on runs and pipelines.
295
373
 
296
- [**Real-Time monitoring:**](https://docs.mlrun.org/en/latest/monitoring/index.html) monitors data, models, resources, and production components and provides a feedback loop for exploring production data, identifying drift, alerting on anomalies or data quality issues, triggering retraining jobs, measuring business impact, etc.
374
+ [**Feature Store:**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
@@ -2,7 +2,7 @@ mlrun/__init__.py,sha256=y08M1JcKXy5-9_5WaI9fn5aV5BxIQ5QkbduJK0OxWbA,7470
2
2
  mlrun/__main__.py,sha256=mC_Izs4kuHUHQi88QJFLN22n1kbygGM0wAirjNt7uj4,45938
3
3
  mlrun/config.py,sha256=NJG59Rl_5-mwgCdPDboRhjHD1ujW9ITYL7gtCbSMkM8,67308
4
4
  mlrun/errors.py,sha256=nY23dns_kTzbOrelJf0FyxLw5mglv7jo4Sx3efKS9Fs,7798
5
- mlrun/execution.py,sha256=EGsEeSqOFnSxYFL4_YVKv8DEx2YsmJ9aA1gXBAV5W5A,42563
5
+ mlrun/execution.py,sha256=u1nDWc7X3_B_w6-8AFuG52t11B9nd3ee5rLLGbalRDI,42843
6
6
  mlrun/features.py,sha256=m17K_3l9Jktwb9dOwlHLTAPTlemsWrRF7dJhXUX0iJU,15429
7
7
  mlrun/k8s_utils.py,sha256=mRQMs6NzPq36vx1n5_2BfFapXysc8wv3NcrZ77_2ANA,8949
8
8
  mlrun/lists.py,sha256=3PqBdcajdwhTe1XuFsAaHTuFVM2kjwepf31qqE82apg,8384
@@ -33,7 +33,7 @@ mlrun/common/formatters/feature_set.py,sha256=lH5RL9Mo6weRexHrruUnmL1qqv_mZocBOQ
33
33
  mlrun/common/formatters/function.py,sha256=fGa5m5aI_XvQdvrUr73dmUwrEJrE_8wM4_P4q8RgBTg,1477
34
34
  mlrun/common/formatters/pipeline.py,sha256=hGUV_3wcTEMa-JouspbjgJ1JGKa2Wc5cXSaH2XhOdMc,1763
35
35
  mlrun/common/formatters/project.py,sha256=rdGf7fq_CfwFwd8iKWl8sW-tqTJilK3gJtV5oLdaY-M,1756
36
- mlrun/common/formatters/run.py,sha256=eEBy1NEwGT9b98TWS2OetEbDnDrnHBIBVMrlXsxveo4,920
36
+ mlrun/common/formatters/run.py,sha256=Gcf9lVDqxPMNfWcPX0RJasjTC_N_U0yTBkQ02jOPJ7A,1062
37
37
  mlrun/common/model_monitoring/__init__.py,sha256=x0EMEvxVjHsm858J1t6IEA9dtKTdFpJ9sKhss10ld8A,721
38
38
  mlrun/common/model_monitoring/helpers.py,sha256=1CpxIDQPumFnpUB1eqcvCpLlyPFVeW2sL6prM-N5A1A,4405
39
39
  mlrun/common/runtimes/constants.py,sha256=Rl0Sd8n_L7Imo-uF1LL9CJ5Szi0W1gUm36yrF8PXfSc,10989
@@ -41,7 +41,7 @@ mlrun/common/schemas/__init__.py,sha256=QZMyVHjIoa88JmyVy45JGkNGz5K39XX7A72TUnXr
41
41
  mlrun/common/schemas/alert.py,sha256=qWYCISNYMdkgAARVQNxshVr9d-s8LGscfLKpczkTBms,6749
42
42
  mlrun/common/schemas/api_gateway.py,sha256=9ilorgLOiWxFZbv89-dbPNfVdaChlGOIdC4SLTxQwNI,7118
43
43
  mlrun/common/schemas/artifact.py,sha256=V3ngobnzI1v2eoOroWBEedjAZu0ntCSIQ-LzsOK1Z9k,3570
44
- mlrun/common/schemas/auth.py,sha256=faxZeVCmIRchMnDCaiIhwTdGTtRc7u1ImbZQvxm6FJ4,6500
44
+ mlrun/common/schemas/auth.py,sha256=7XpEXICjDhHHkAppOp0mHvEtCwG68L3mhgSHPqqTBMk,6584
45
45
  mlrun/common/schemas/background_task.py,sha256=2qZxib2qrF_nPZj0ncitCG-2jxz2hg1qj0hFc8eswWQ,1707
46
46
  mlrun/common/schemas/client_spec.py,sha256=wqzQ5R4Zc7FL-8lV_BRN6nLrD0jK1kon05-JQ3fy2KY,2892
47
47
  mlrun/common/schemas/clusterization_spec.py,sha256=aeaFJZms7r7h2HDv6ML_GDAT6gboW-PxBbc3GKPalGk,888
@@ -56,7 +56,7 @@ mlrun/common/schemas/http.py,sha256=1PtYFhF6sqLSBRcuPMtYcUGmroBhaleqLmYidSdL9LM,
56
56
  mlrun/common/schemas/hub.py,sha256=cuv_vpkO27XNCZzfytnUyi0k0ZA4wf_QRn5B0ZPoK-Y,4116
57
57
  mlrun/common/schemas/k8s.py,sha256=nmMnhgjVMLem5jyumoG2eQKioGK9eUVhQnOSb3hG7yw,1395
58
58
  mlrun/common/schemas/memory_reports.py,sha256=tpS3fpvxa6VcBpzCRzcZTt0fCF0h6ReUetYs7j6kdps,892
59
- mlrun/common/schemas/notification.py,sha256=BsDjHHH1k8OW2bTi49ww77LIfvjVFde7Btv9vILxcvs,4404
59
+ mlrun/common/schemas/notification.py,sha256=ZZi5uIcpKdijRCAsW7Xq8Mld2D-NsVgnmHgae3fs1J0,4930
60
60
  mlrun/common/schemas/object.py,sha256=VleJSUmDJMl92knLgaDE8SWCi3ky0UaHcwcwOIapPQ8,1980
61
61
  mlrun/common/schemas/pagination.py,sha256=q7nk6bipkDiE7HExIVqhy5ANl-zv0x8QC9Kg6AkLtDA,887
62
62
  mlrun/common/schemas/pipeline.py,sha256=MhH07_fAQXNAnmf5j6oXZp8qh9cxGcZlReMdt-ZJf40,1429
@@ -67,13 +67,13 @@ mlrun/common/schemas/runtime_resource.py,sha256=2rSuYL-9JkESSomlnU91mYDbfV-IkqZe
67
67
  mlrun/common/schemas/schedule.py,sha256=nD9kxH2KjXkbGZPNfzVNlNSxbyFZmZUlwtT04_z2xCw,4289
68
68
  mlrun/common/schemas/secret.py,sha256=51tCN1F8DFTq4y_XdHIMDy3I1TnMEBX8kO8BHKavYF4,1484
69
69
  mlrun/common/schemas/tag.py,sha256=OAn9Qt6z8ibqw8uU8WQSvuwY8irUv45Dhx2Ko5FzUss,884
70
- mlrun/common/schemas/workflow.py,sha256=WxmlwtwrzwL4lfHYjQTOp03uv6PWYMpZ4cNBMOA6N6E,1897
70
+ mlrun/common/schemas/workflow.py,sha256=K5kZdbdKMg21pqwJyTRn41p3Ws220Sjhn0Xl4Z5iDRg,2063
71
71
  mlrun/common/schemas/model_monitoring/__init__.py,sha256=q2icasMdgI7OG-p5eVwCu6sBuPrBMpRxByC6rxYk0DM,1813
72
- mlrun/common/schemas/model_monitoring/constants.py,sha256=KD6gaw24EAKFow5LPl0JkMlSXHUMca3DS-S41sWAre8,10158
72
+ mlrun/common/schemas/model_monitoring/constants.py,sha256=Wha21Iev3Nr9ugB1Ms_wrmcY42YzWTQqLKPYZD2dRHA,9896
73
73
  mlrun/common/schemas/model_monitoring/grafana.py,sha256=SG13MFUUz_tk6-mWeSx17qcdEW4ekicxqNtnMSwRTCY,1559
74
74
  mlrun/common/schemas/model_monitoring/model_endpoints.py,sha256=5vvjNX1bV98VSGdT4jwHr5ArKC9v_c1iHlaTf82fSUY,13198
75
75
  mlrun/data_types/__init__.py,sha256=EkxfkFoHb91zz3Aymq-KZfCHlPMzEc3bBqgzPUwmHWY,1087
76
- mlrun/data_types/data_types.py,sha256=3dmmIxJ2_uKzf-dbbgOwbYJx8cvUYrPiQan40vcSqJo,4948
76
+ mlrun/data_types/data_types.py,sha256=uB9qJusSvPRK2PTvrFBXrS5jcDXMuwqXokJGToDg4VA,4953
77
77
  mlrun/data_types/infer.py,sha256=z2EbSpR6xWEE5-HRUtDZkapHQld3xMbzXtTX83K-690,6134
78
78
  mlrun/data_types/spark.py,sha256=xfcr6lcaLcHepnrHavx_vacMJK7BC8FWsUKjwrjjn6w,9509
79
79
  mlrun/data_types/to_pandas.py,sha256=-ZbJBg00x4xxyqqqu3AVbEh-HaO2--DrChyPuedRhHA,11215
@@ -105,7 +105,7 @@ mlrun/db/__init__.py,sha256=WqJ4x8lqJ7ZoKbhEyFqkYADd9P6E3citckx9e9ZLcIU,1163
105
105
  mlrun/db/auth_utils.py,sha256=hpg8D2r82oN0BWabuWN04BTNZ7jYMAF242YSUpK7LFM,5211
106
106
  mlrun/db/base.py,sha256=lUfJrCWbuRUErIrUUXAKI2sSlrwfB-dHDz-Ck_cnZHU,24297
107
107
  mlrun/db/factory.py,sha256=ibIrE5QkIIyzDU1FXKrfbc31cZiRLYKDZb8dqCpQwyU,2397
108
- mlrun/db/httpdb.py,sha256=5-xdym1Ls6iaR_5DD4Iv805fQAKH0Zx-4oc4n9Z6p8Y,184623
108
+ mlrun/db/httpdb.py,sha256=SaJT3OkxBqBJvwvGVMnYqd7yKf1vbfHV5If0bYPiX-Y,184934
109
109
  mlrun/db/nopdb.py,sha256=1oCZR2EmQQDkwXUgmyI3SB76zvOwA6Ml3Lk_xvuwHfc,21620
110
110
  mlrun/feature_store/__init__.py,sha256=FhHRc8NdqL_HWpCs7A8dKruxJS5wEm55Gs3dcgBiRUg,1522
111
111
  mlrun/feature_store/api.py,sha256=SWBbFD4KU2U4TUaAbD2hRLSquFWxX46mZGCToI0GfFQ,49994
@@ -119,7 +119,7 @@ mlrun/feature_store/retrieval/base.py,sha256=zgDsRsYQz8eqReKBEeTP0O4UoLoVYjWpO1o
119
119
  mlrun/feature_store/retrieval/dask_merger.py,sha256=t60xciYp6StUQLEyFyI4JK5NpWkdBy2MGCs6beimaWU,5575
120
120
  mlrun/feature_store/retrieval/job.py,sha256=xNIe3fAZ-wQ_sVLG2iTMLrnWSRIJ3EbDR10mnUUiSKE,8593
121
121
  mlrun/feature_store/retrieval/local_merger.py,sha256=jM-8ta44PeNUc1cKMPs-TxrO9t8pXbwu_Tw8MZrLxUY,4513
122
- mlrun/feature_store/retrieval/spark_merger.py,sha256=PM7BXSfhAngcMGN8Vjhbnw6TSes63nGPg2IlNaBlC_A,10662
122
+ mlrun/feature_store/retrieval/spark_merger.py,sha256=XTMK40Y0bUli1Z9KwtYmMSQ8a4WOHEHzIq9uzk1mfc4,10548
123
123
  mlrun/feature_store/retrieval/storey_merger.py,sha256=5YM0UPrLjGOobulHkowRO-1LuvFD2cm_0GxcpnTdu0I,6314
124
124
  mlrun/frameworks/__init__.py,sha256=qRHe_nUfxpoLaSASAkIxcW6IyunMtxq5LXhjzZMO_1E,743
125
125
  mlrun/frameworks/parallel_coordinates.py,sha256=XY2C1Q29VWxcWIsIhcluUivpEHglr8PcZHCMs2MH4GM,11485
@@ -212,22 +212,20 @@ mlrun/launcher/factory.py,sha256=RW7mfzEFi8fR0M-4W1JQg1iq3_muUU6OTqT_3l4Ubrk,233
212
212
  mlrun/launcher/local.py,sha256=pP9-ZrNL8OnNDEiXTAKAZQnmLpS_mCc2v-mJw329eks,11269
213
213
  mlrun/launcher/remote.py,sha256=tGICSfWtvUHeR31mbzy6gqHejmDxjPUgjtxXTWhRubg,7699
214
214
  mlrun/model_monitoring/__init__.py,sha256=dm5_j0_pwqrdzFwTaEtGnKfv2nVpNaM56nBI-oqLbNU,879
215
- mlrun/model_monitoring/api.py,sha256=L5f4mum-zv-4kMTqJDHWWzNnVcoGYDxf3zvpS-U4rQc,28596
216
- mlrun/model_monitoring/application.py,sha256=RJ8HeAPfGO3P2A_dEZYNg60c1wKTADh2YSv8BQ5embg,745
217
- mlrun/model_monitoring/controller.py,sha256=ZKp3mWMhj6irCuREs-OH1MYYh5DzqNEDe04kVPVrZzw,27971
218
- mlrun/model_monitoring/evidently_application.py,sha256=iOc42IVjj8m6PDBmVcKIMWm46Bu0EdO9SDcH40Eqhyo,769
215
+ mlrun/model_monitoring/api.py,sha256=2EHCzB_5sCDgalYPkrFbI01cSO7LVWBv9yWoooJ-a0g,28106
216
+ mlrun/model_monitoring/controller.py,sha256=dvqEyoE-iCd2jqDeoUpcrQFUeoTME58i3Wa2MhYi57k,20444
219
217
  mlrun/model_monitoring/features_drift_table.py,sha256=c6GpKtpOJbuT1u5uMWDL_S-6N4YPOmlktWMqPme3KFY,25308
220
218
  mlrun/model_monitoring/helpers.py,sha256=KsbSH0kEjCPajvLUpv3q5GWyvx0bZj-JkghGJlzbLZI,12757
221
219
  mlrun/model_monitoring/model_endpoint.py,sha256=7VX0cBATqLsA4sSinDzouf41ndxqh2mf5bO9BW0G5Z4,4017
222
220
  mlrun/model_monitoring/stream_processing.py,sha256=0eu1Gq1Obq87LFno6eIZ55poXoFaeloqYTLiQgyfd0k,38687
223
221
  mlrun/model_monitoring/tracking_policy.py,sha256=sQq956akAQpntkrJwIgFWcEq-JpyVcg0FxgNa4h3V70,5502
224
222
  mlrun/model_monitoring/writer.py,sha256=TrBwngRmdwr67De71UCcCFsJOfcqQe8jDp0vkBvGf0o,10177
225
- mlrun/model_monitoring/applications/__init__.py,sha256=i793GqYee01mRh_KD6GShvX7UbPBgdJDO4qf9Z3BXEQ,970
223
+ mlrun/model_monitoring/applications/__init__.py,sha256=QYvzgCutFdAkzqKPD3mvkX_3c1X4tzd-kW8ojUOE9ic,889
226
224
  mlrun/model_monitoring/applications/_application_steps.py,sha256=fvZbtat7eXe5mo927_jyhq4BqWCapKZn7OVjptepIAI,7055
227
- mlrun/model_monitoring/applications/base.py,sha256=snr3xYdqv6Po19yS0Z1VktyoLrbl88lljSFQyjnKjR0,11616
228
- mlrun/model_monitoring/applications/context.py,sha256=jTZaRdPZBc2m8-rcC3gKFkSsaQByWn6ZCQuqCOOWdWo,12747
229
- mlrun/model_monitoring/applications/evidently_base.py,sha256=6hzfO6s0jEVHj4R_pujcn_p6LvdkKUDb9S4B6j2XEUY,8024
230
- mlrun/model_monitoring/applications/histogram_data_drift.py,sha256=OOPojE-KIP9rAPZ6va6uJOjqJOb3c8K_VAmITXZd918,13341
225
+ mlrun/model_monitoring/applications/base.py,sha256=uzc14lFlwTJnL0p2VBCzmp-CNoHd73cK_Iz0YHC1KAs,4380
226
+ mlrun/model_monitoring/applications/context.py,sha256=vOZ_ZgUuy5UsNe22-puJSt7TB32HiZtqBdN1hegykuQ,12436
227
+ mlrun/model_monitoring/applications/evidently_base.py,sha256=FSzmoDZP8EiSQ3tq5RmU7kJ6edh8bWaKQh0rBORjODY,5099
228
+ mlrun/model_monitoring/applications/histogram_data_drift.py,sha256=wRCttgK1H4eRDiAJJ7Aid2hPuQPzUoBY3hSHlVkdE5w,13337
231
229
  mlrun/model_monitoring/applications/results.py,sha256=B0YuLig4rgBzBs3OAh01yLavhtNgj8Oz1RD8UfEkENU,3590
232
230
  mlrun/model_monitoring/db/__init__.py,sha256=6Ic-X3Fh9XLPYMytmevGNSs-Hii1rAjLLoFTSPwTguw,736
233
231
  mlrun/model_monitoring/db/stores/__init__.py,sha256=m6Z6rPQyaufq5oXF3HVUYGDN34biAX1JE1F6OxLN9B8,4752
@@ -273,9 +271,9 @@ mlrun/package/utils/type_hint_utils.py,sha256=JYrek6vuN3z7e6MGUD3qBLDfQ03C4puZXN
273
271
  mlrun/platforms/__init__.py,sha256=ggSGF7inITs6S-vj9u4S9X_5psgbA0G3GVqf7zu8qYc,2406
274
272
  mlrun/platforms/iguazio.py,sha256=1h5BpdAEQJBg2vIt7ySjUADU0ip5OkaMYr0_VREi9ys,13084
275
273
  mlrun/projects/__init__.py,sha256=Lv5rfxyXJrw6WGOWJKhBz66M6t3_zsNMCfUD6waPwx4,1153
276
- mlrun/projects/operations.py,sha256=UEpiW4bDscth4pwWcLWF1xz-IU7bnZfckPR7sXp3O-g,19441
277
- mlrun/projects/pipelines.py,sha256=tFqmE_diKiGURwZPCHVPZmwEKza_gyfpr7F8bLS3plA,40173
278
- mlrun/projects/project.py,sha256=rw0QQ2XtBUevW3cv8baCGDGsqISxsHYYziPcOABLOpg,190604
274
+ mlrun/projects/operations.py,sha256=gtqSU9OvYOV-b681uQtWgnW7YSnX6qfa1Mt1Xm4f1ZI,19752
275
+ mlrun/projects/pipelines.py,sha256=RP9lTRuRRCuA4Vf0Z2-NwuPL9XRJ28S2v6tfLzmD9B0,40874
276
+ mlrun/projects/project.py,sha256=FjgkBBBP6geuxOGGp1Es5EFqsrs3M6PNWejBdoM08ng,190769
279
277
  mlrun/runtimes/__init__.py,sha256=egLM94cDMUyQ1GVABdFGXUQcDhU70lP3k7qSnM_UnHY,9008
280
278
  mlrun/runtimes/base.py,sha256=JXWmTIcm3b0klGUOHDlyFNa3bUgsNzQIgWhUQpSZoE0,37692
281
279
  mlrun/runtimes/daskjob.py,sha256=Ka_xqim8LkCYjp-M_WgteJy6ZN_3qfmLLHvXs7N6pa4,19411
@@ -295,10 +293,10 @@ mlrun/runtimes/mpijob/__init__.py,sha256=V_1gQD1VHa0Qvjqgyv8RLouH27Sy9YTwj2ZG62o
295
293
  mlrun/runtimes/mpijob/abstract.py,sha256=kDWo-IY1FKLZhI30j38Xx9HMhlUvHezfd1DT2ShoxZY,9161
296
294
  mlrun/runtimes/mpijob/v1.py,sha256=1XQZC7AIMGX_AQCbApcwpH8I7y39-v0v2O35MvxjXoo,3213
297
295
  mlrun/runtimes/nuclio/__init__.py,sha256=gx1kizzKv8pGT5TNloN1js1hdbxqDw3rM90sLVYVffY,794
298
- mlrun/runtimes/nuclio/api_gateway.py,sha256=2sHtkVHSS3L1DuV2KNWatJJRxvoGSBOjB6tnqv6SA5w,26730
296
+ mlrun/runtimes/nuclio/api_gateway.py,sha256=oQRSOvqtODKCzT2LqlqSXZbq2vcZ7epsFZwO9jvarhc,26899
299
297
  mlrun/runtimes/nuclio/function.py,sha256=TQt6RyxK_iyzNJr2r57BRtVXuy2GMrhdeFOlFjb2AZg,52106
300
298
  mlrun/runtimes/nuclio/nuclio.py,sha256=sLK8KdGO1LbftlL3HqPZlFOFTAAuxJACZCVl1c0Ha6E,2942
301
- mlrun/runtimes/nuclio/serving.py,sha256=X0fYJnidH0S5xrupoTC74OhZz7Tym34iw6hFSzahMCk,29720
299
+ mlrun/runtimes/nuclio/serving.py,sha256=Tsv-MssXJPe4di9stVOAyCj2MTMI7zQxvtFbAgdAtu0,29717
302
300
  mlrun/runtimes/nuclio/application/__init__.py,sha256=rRs5vasy_G9IyoTpYIjYDafGoL6ifFBKgBtsXn31Atw,614
303
301
  mlrun/runtimes/nuclio/application/application.py,sha256=5XFIg7tgU9kKWwGdMFwB1OJpw79BWwlWUdGiHlDo4AY,29055
304
302
  mlrun/runtimes/nuclio/application/reverse_proxy.go,sha256=JIIYae6bXzCLf3jXuu49KWPQYoXr_FDQ2Rbo1OWKAd0,3150
@@ -343,11 +341,11 @@ mlrun/utils/notifications/notification/ipython.py,sha256=ZtVL30B_Ha0VGoo4LxO-voT
343
341
  mlrun/utils/notifications/notification/slack.py,sha256=wqpFGr5BTvFO5KuUSzFfxsgmyU1Ohq7fbrGeNe9TXOk,7006
344
342
  mlrun/utils/notifications/notification/webhook.py,sha256=cb9w1Mc8ENfJBdgan7iiVHK9eVls4-R3tUxmXM-P-8I,4746
345
343
  mlrun/utils/version/__init__.py,sha256=7kkrB7hEZ3cLXoWj1kPoDwo4MaswsI2JVOBpbKgPAgc,614
346
- mlrun/utils/version/version.json,sha256=q5cEJlSDRoZA0OSLYB_pHTa6NDst7rvigtmJRxEHYLw,89
344
+ mlrun/utils/version/version.json,sha256=slRKoCCm9V9GXOEcyhpf1FNyOfO-3lk6SydAW7BkmVg,89
347
345
  mlrun/utils/version/version.py,sha256=eEW0tqIAkU9Xifxv8Z9_qsYnNhn3YH7NRAfM-pPLt1g,1878
348
- mlrun-1.7.0rc47.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
349
- mlrun-1.7.0rc47.dist-info/METADATA,sha256=mFz9Rh9j0hxTRo8fwrTziz_722E5JijvBB8K32E3X7s,19943
350
- mlrun-1.7.0rc47.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
351
- mlrun-1.7.0rc47.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
352
- mlrun-1.7.0rc47.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
353
- mlrun-1.7.0rc47.dist-info/RECORD,,
346
+ mlrun-1.7.0rc50.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
347
+ mlrun-1.7.0rc50.dist-info/METADATA,sha256=0FpVzUdgaF0PueIufozDnrdMySc9QYVTznJOkgnEEjw,24262
348
+ mlrun-1.7.0rc50.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
349
+ mlrun-1.7.0rc50.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
350
+ mlrun-1.7.0rc50.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
351
+ mlrun-1.7.0rc50.dist-info/RECORD,,
@@ -1,19 +0,0 @@
1
- # Copyright 2023 Iguazio
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # TODO : delete this file in 1.9.0
16
- from mlrun.model_monitoring.applications import ( # noqa: F401
17
- ModelMonitoringApplicationBase,
18
- ModelMonitoringApplicationResult,
19
- )
@@ -1,20 +0,0 @@
1
- # Copyright 2023 Iguazio
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- # TODO : delete this file in 1.9.0
16
- from mlrun.model_monitoring.applications import ( # noqa: F401
17
- _HAS_EVIDENTLY,
18
- SUPPORTED_EVIDENTLY_VERSION,
19
- EvidentlyModelMonitoringApplicationBase,
20
- )