mlrun 1.7.0rc47__py3-none-any.whl → 1.7.0rc50__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/common/formatters/run.py +3 -0
- mlrun/common/schemas/auth.py +3 -0
- mlrun/common/schemas/model_monitoring/constants.py +0 -7
- mlrun/common/schemas/notification.py +12 -2
- mlrun/common/schemas/workflow.py +9 -2
- mlrun/data_types/data_types.py +1 -1
- mlrun/db/httpdb.py +11 -4
- mlrun/execution.py +7 -1
- mlrun/feature_store/retrieval/spark_merger.py +0 -4
- mlrun/model_monitoring/api.py +1 -12
- mlrun/model_monitoring/applications/__init__.py +1 -2
- mlrun/model_monitoring/applications/base.py +2 -182
- mlrun/model_monitoring/applications/context.py +2 -9
- mlrun/model_monitoring/applications/evidently_base.py +0 -74
- mlrun/model_monitoring/applications/histogram_data_drift.py +2 -2
- mlrun/model_monitoring/controller.py +45 -208
- mlrun/projects/operations.py +11 -8
- mlrun/projects/pipelines.py +28 -11
- mlrun/projects/project.py +9 -5
- mlrun/runtimes/nuclio/api_gateway.py +6 -0
- mlrun/runtimes/nuclio/serving.py +2 -2
- mlrun/utils/version/version.json +2 -2
- {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/METADATA +99 -21
- {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/RECORD +28 -30
- mlrun/model_monitoring/application.py +0 -19
- mlrun/model_monitoring/evidently_application.py +0 -20
- {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/LICENSE +0 -0
- {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/WHEEL +0 -0
- {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/entry_points.txt +0 -0
- {mlrun-1.7.0rc47.dist-info → mlrun-1.7.0rc50.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mlrun
|
|
3
|
-
Version: 1.7.
|
|
3
|
+
Version: 1.7.0rc50
|
|
4
4
|
Summary: Tracking and config of machine learning runs
|
|
5
5
|
Home-page: https://github.com/mlrun/mlrun
|
|
6
6
|
Author: Yaron Haviv
|
|
@@ -50,7 +50,7 @@ Requires-Dist: setuptools ~=71.0
|
|
|
50
50
|
Requires-Dist: deprecated ~=1.2
|
|
51
51
|
Requires-Dist: jinja2 >=3.1.3,~=3.1
|
|
52
52
|
Requires-Dist: orjson <4,>=3.9.15
|
|
53
|
-
Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.
|
|
53
|
+
Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.8
|
|
54
54
|
Requires-Dist: mlrun-pipelines-kfp-v1-8 ~=0.1.6
|
|
55
55
|
Provides-Extra: alibaba-oss
|
|
56
56
|
Requires-Dist: ossfs ==2023.12.0 ; extra == 'alibaba-oss'
|
|
@@ -225,19 +225,86 @@ Requires-Dist: taos-ws-py ~=0.3.3 ; extra == 'tdengine'
|
|
|
225
225
|
|
|
226
226
|
# Using MLRun
|
|
227
227
|
|
|
228
|
-
MLRun is an open
|
|
228
|
+
MLRun is an open source AI orchestration platform for quickly building and managing continuous (gen) AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications.
|
|
229
|
+
MLRun significantly reduces engineering efforts, time to production, and computation resources.
|
|
229
230
|
With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
|
|
230
231
|
|
|
231
|
-
Get started with MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/
|
|
232
|
+
Get started with the MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/stable/tutorials/index.html) and the [**Installation and setup guide**](https://docs.mlrun.org/en/stable/install.html), or read about the [**MLRun Architecture**](https://docs.mlrun.org/en/stable/architecture.html).
|
|
233
|
+
|
|
234
|
+
This page explains how MLRun addresses the [**gen AI tasks**](#genai-tasks), [**MLOps tasks**](#mlops-tasks), and presents the [**MLRun core components**](#core-components).
|
|
235
|
+
|
|
236
|
+
See the supported data stores, development tools, services, platforms, etc., supported by MLRun's open architecture in **https://docs.mlrun.org/en/stable/ecosystem.html**.
|
|
237
|
+
|
|
238
|
+
## Gen AI tasks
|
|
239
|
+
|
|
240
|
+
<p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/ai-tasks.png" alt="ai-tasks" width="800"/></p><br>
|
|
241
|
+
|
|
242
|
+
Use MLRun to develop, scale, deploy, and monitor your AI model across your enterprise. The [**gen AI development workflow**](https://docs.mlrun.org/en/stable/genai/genai-flow.html)
|
|
243
|
+
section describes the different tasks and stages in detail.
|
|
244
|
+
|
|
245
|
+
### Data management
|
|
246
|
+
|
|
247
|
+
|
|
248
|
+
MLRun supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
|
|
249
|
+
Removing inappropriate data at an early stage saves resources that would otherwise be required later on.
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
**Docs:**
|
|
253
|
+
[Using LLMs to process unstructured data](https://docs.mlrun.org/en/stable/genai/data-mgmt/unstructured-data.html)
|
|
254
|
+
[Vector databases](https://docs.mlrun.org/en/stable/genai/data-mgmt/vector-databases.html)
|
|
255
|
+
[Guardrails for data management](https://docs.mlrun.org/en/stable/genai/data-mgmt/guardrails-data.html)
|
|
256
|
+
**Demo:**
|
|
257
|
+
[Call center demo](https://github.com/mlrun/demo-call-center>`
|
|
258
|
+
**Video:**
|
|
259
|
+
[Call center](https://youtu.be/YycMbxRgLBA>`
|
|
260
|
+
|
|
261
|
+
### Development
|
|
262
|
+
Use MLRun to build an automated ML pipeline to: collect data,
|
|
263
|
+
preprocess (prepare) the data, run the training pipeline, and evaluate the model.
|
|
264
|
+
|
|
265
|
+
**Docs:**
|
|
266
|
+
[Working with RAG](https://docs.mlrun.org/en/stable/genai/development/working-with-rag.html), [Evalating LLMs](https://docs.mlrun.org/en/stable/genai/development/evaluating-llms.html), [Fine tuning LLMS](https://docs.mlrun.org/en/stable/genai/development/fine-tuning-llms.html)
|
|
267
|
+
**Demos:**
|
|
268
|
+
[Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs](https://github.com/mlrun/demo-llm-bot/blob/main)
|
|
269
|
+
**Video:**
|
|
270
|
+
[Call center](https://youtu.be/YycMbxRgLBA)
|
|
271
|
+
|
|
272
|
+
|
|
273
|
+
### Deployment
|
|
274
|
+
MLRun serving can productize the newly trained LLM as a serverless function using real-time auto-scaling Nuclio serverless functions.
|
|
275
|
+
The application pipeline includes all the steps from accepting events or data, contextualizing it with a state preparing the required model features,
|
|
276
|
+
inferring results using one or more models, and driving actions.
|
|
277
|
+
|
|
278
|
+
|
|
279
|
+
**Docs:**
|
|
280
|
+
[Serving gen AI models](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving.html), GPU utilization](https://docs.mlrun.org/en/stable/genai/deployment/gpu_utilization.html), [Gen AI realtime serving graph](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving_graph.html)
|
|
281
|
+
**Tutorial:**
|
|
282
|
+
[Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html)
|
|
283
|
+
**Demos:**
|
|
284
|
+
[Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom(fine-tuned)]LLM models and applications <https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs]<https://github.com/mlrun/demo-llm-bot/blob/main)
|
|
285
|
+
**Video:**
|
|
286
|
+
[Call center]<https://youtu.be/YycMbxRgLBA)
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
### Live Ops
|
|
290
|
+
Monitor all resources, data, model and application metrics to ensure performance. Then identify risks, control costs, and measure business KPIs.
|
|
291
|
+
Collect production data, metadata, and metrics to tune the model and application further, and to enable governance and explainability.
|
|
292
|
+
|
|
293
|
+
|
|
294
|
+
**Docs:**
|
|
295
|
+
[Model monitoring <monitoring](https://docs.mlrun.org/en/stable/concepts/monitoring.html), [Alerts and notifications](https://docs.mlrun.org/en/stable/concepts/alerts-notifications.html)
|
|
296
|
+
**Tutorials:**
|
|
297
|
+
[Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html), [Model monitoring using LLM](https://docs.mlrun.org/en/stable/tutorials/genai-02-monitoring-llm.html)
|
|
298
|
+
**Demo:**
|
|
299
|
+
[Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main)
|
|
232
300
|
|
|
233
|
-
This page explains how MLRun addresses the [**MLOps Tasks**](#mlops-tasks) and the [**MLRun core components**](#core-components).
|
|
234
301
|
|
|
235
302
|
<a id="mlops-tasks"></a>
|
|
236
303
|
## MLOps tasks
|
|
237
304
|
|
|
238
305
|
<p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-task.png" alt="mlrun-tasks" width="800"/></p><br>
|
|
239
306
|
|
|
240
|
-
The [**MLOps development workflow**](https://docs.mlrun.org/en/
|
|
307
|
+
The [**MLOps development workflow**](https://docs.mlrun.org/en/stable/mlops-dev-flow.html) section describes the different tasks and stages in detail.
|
|
241
308
|
MLRun can be used to automate and orchestrate all the different tasks or just specific tasks (and integrate them with what you have already deployed).
|
|
242
309
|
|
|
243
310
|
### Project management and CI/CD automation
|
|
@@ -246,32 +313,40 @@ In MLRun the assets, metadata, and services (data, functions, jobs, artifacts, m
|
|
|
246
313
|
Projects can be imported/exported as a whole, mapped to git repositories or IDE projects (in PyCharm, VSCode, etc.), which enables versioning, collaboration, and CI/CD.
|
|
247
314
|
Project access can be restricted to a set of users and roles.
|
|
248
315
|
|
|
249
|
-
|
|
316
|
+
**Docs:** [Projects and Automation](https://docs.mlrun.org/en/stable/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/stable/projects/ci-integration.html)
|
|
317
|
+
**Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
|
|
318
|
+
**Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
|
|
250
319
|
|
|
251
320
|
### Ingest and process data
|
|
252
321
|
|
|
253
|
-
MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/
|
|
254
|
-
In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/
|
|
322
|
+
MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/stable/store/datastore.html), supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
|
|
323
|
+
In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automates the collection, transformation, storage, catalog, serving, and monitoring of data features across the ML lifecycle and enables feature reuse and sharing.
|
|
255
324
|
|
|
256
|
-
See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/
|
|
325
|
+
See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/stable/data-prep/index.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/feature-store.html), [Data & Artifacts](https://docs.mlrun.org/en/stable/concepts/data.html)
|
|
326
|
+
**Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/basic-demo.html).
|
|
257
327
|
|
|
258
328
|
### Develop and train models
|
|
259
329
|
|
|
260
330
|
MLRun allows you to easily build ML pipelines that take data from various sources or the Feature Store and process it, train models at scale with multiple parameters, test models, tracks each experiments, register, version and deploy models, etc. MLRun provides scalable built-in or custom model training services, integrate with any framework and can work with 3rd party training/auto-ML services. You can also bring your own pre-trained model and use it in the pipeline.
|
|
261
331
|
|
|
262
|
-
|
|
332
|
+
**Docs:** [Develop and train models](https://docs.mlrun.org/en/stable/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/stable/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html)
|
|
333
|
+
**Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/stable/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
|
|
334
|
+
**Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
|
|
263
335
|
|
|
264
336
|
### Deploy models and applications
|
|
265
337
|
|
|
266
338
|
MLRun rapidly deploys and manages production-grade real-time or batch application pipelines using elastic and resilient serverless functions. MLRun addresses the entire ML application: intercepting application/user requests, running data processing tasks, inferencing using one or more models, driving actions, and integrating with the application logic.
|
|
267
339
|
|
|
268
|
-
|
|
340
|
+
**Docs:** [Deploy models and applications](https://docs.mlrun.org/en/stable/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/stable/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/stable/deployment/batch_inference.html)
|
|
341
|
+
**Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/stable/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html)
|
|
342
|
+
**Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
|
|
269
343
|
|
|
270
|
-
###
|
|
344
|
+
### Model Monitoring
|
|
271
345
|
|
|
272
346
|
Observability is built into the different MLRun objects (data, functions, jobs, models, pipelines, etc.), eliminating the need for complex integrations and code instrumentation. With MLRun, you can observe the application/model resource usage and model behavior (drift, performance, etc.), define custom app metrics, and trigger alerts or retraining jobs.
|
|
273
347
|
|
|
274
|
-
|
|
348
|
+
**Docs:** [Model monitoring](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html), [Model Monitoring Overview](https://docs.mlrun.org/en/stable/monitoring/model-monitoring-deployment.html)
|
|
349
|
+
**Tutorials:** [Model Monitoring & Drift Detection](https://docs.mlrun.org/en/stable/tutorials/05-model-monitoring.html).
|
|
275
350
|
|
|
276
351
|
|
|
277
352
|
<a id="core-components"></a>
|
|
@@ -279,18 +354,21 @@ See: **Docs:** [Monitor and alert](https://docs.mlrun.org/en/latest/monitoring/i
|
|
|
279
354
|
|
|
280
355
|
<p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-core.png" alt="mlrun-core" width="800"/></p><br>
|
|
281
356
|
|
|
357
|
+
|
|
282
358
|
MLRun includes the following major components:
|
|
283
359
|
|
|
284
|
-
[**Project Management:**](https://docs.mlrun.org/en/
|
|
360
|
+
[**Project Management:**](https://docs.mlrun.org/en/stable/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
|
|
361
|
+
|
|
362
|
+
[**Functions:**](https://docs.mlrun.org/en/stable/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
|
|
285
363
|
|
|
286
|
-
[**
|
|
364
|
+
[**Data & Artifacts:**](https://docs.mlrun.org/en/stable/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
|
|
287
365
|
|
|
288
|
-
[**
|
|
366
|
+
[**Batch Runs & Workflows:**](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html) Execute one or more functions with specific parameters and collect, track, and compare all their results and artifacts.
|
|
289
367
|
|
|
290
|
-
[**
|
|
368
|
+
[**Real-Time Serving Pipeline:**](https://docs.mlrun.org/en/stable/serving/serving-graph.html) Rapid deployment of scalable data and ML pipelines using real-time serverless technology, including API handling, data preparation/enrichment, model serving, ensembles, driving and measuring actions, etc.
|
|
291
369
|
|
|
292
|
-
[**
|
|
370
|
+
[**Model monitoring:**](https://docs.mlrun.org/en/stable/monitoring/index.html) monitors data, models, resources, and production components and provides a feedback loop for exploring production data, identifying drift, alerting on anomalies or data quality issues, triggering retraining jobs, measuring business impact, etc.
|
|
293
371
|
|
|
294
|
-
[**
|
|
372
|
+
[**Alerts and notifications:**](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html) Use alerts to identify and inform you of possible problem situations. Use notifications to report status on runs and pipelines.
|
|
295
373
|
|
|
296
|
-
[**
|
|
374
|
+
[**Feature Store:**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
|
|
@@ -2,7 +2,7 @@ mlrun/__init__.py,sha256=y08M1JcKXy5-9_5WaI9fn5aV5BxIQ5QkbduJK0OxWbA,7470
|
|
|
2
2
|
mlrun/__main__.py,sha256=mC_Izs4kuHUHQi88QJFLN22n1kbygGM0wAirjNt7uj4,45938
|
|
3
3
|
mlrun/config.py,sha256=NJG59Rl_5-mwgCdPDboRhjHD1ujW9ITYL7gtCbSMkM8,67308
|
|
4
4
|
mlrun/errors.py,sha256=nY23dns_kTzbOrelJf0FyxLw5mglv7jo4Sx3efKS9Fs,7798
|
|
5
|
-
mlrun/execution.py,sha256=
|
|
5
|
+
mlrun/execution.py,sha256=u1nDWc7X3_B_w6-8AFuG52t11B9nd3ee5rLLGbalRDI,42843
|
|
6
6
|
mlrun/features.py,sha256=m17K_3l9Jktwb9dOwlHLTAPTlemsWrRF7dJhXUX0iJU,15429
|
|
7
7
|
mlrun/k8s_utils.py,sha256=mRQMs6NzPq36vx1n5_2BfFapXysc8wv3NcrZ77_2ANA,8949
|
|
8
8
|
mlrun/lists.py,sha256=3PqBdcajdwhTe1XuFsAaHTuFVM2kjwepf31qqE82apg,8384
|
|
@@ -33,7 +33,7 @@ mlrun/common/formatters/feature_set.py,sha256=lH5RL9Mo6weRexHrruUnmL1qqv_mZocBOQ
|
|
|
33
33
|
mlrun/common/formatters/function.py,sha256=fGa5m5aI_XvQdvrUr73dmUwrEJrE_8wM4_P4q8RgBTg,1477
|
|
34
34
|
mlrun/common/formatters/pipeline.py,sha256=hGUV_3wcTEMa-JouspbjgJ1JGKa2Wc5cXSaH2XhOdMc,1763
|
|
35
35
|
mlrun/common/formatters/project.py,sha256=rdGf7fq_CfwFwd8iKWl8sW-tqTJilK3gJtV5oLdaY-M,1756
|
|
36
|
-
mlrun/common/formatters/run.py,sha256=
|
|
36
|
+
mlrun/common/formatters/run.py,sha256=Gcf9lVDqxPMNfWcPX0RJasjTC_N_U0yTBkQ02jOPJ7A,1062
|
|
37
37
|
mlrun/common/model_monitoring/__init__.py,sha256=x0EMEvxVjHsm858J1t6IEA9dtKTdFpJ9sKhss10ld8A,721
|
|
38
38
|
mlrun/common/model_monitoring/helpers.py,sha256=1CpxIDQPumFnpUB1eqcvCpLlyPFVeW2sL6prM-N5A1A,4405
|
|
39
39
|
mlrun/common/runtimes/constants.py,sha256=Rl0Sd8n_L7Imo-uF1LL9CJ5Szi0W1gUm36yrF8PXfSc,10989
|
|
@@ -41,7 +41,7 @@ mlrun/common/schemas/__init__.py,sha256=QZMyVHjIoa88JmyVy45JGkNGz5K39XX7A72TUnXr
|
|
|
41
41
|
mlrun/common/schemas/alert.py,sha256=qWYCISNYMdkgAARVQNxshVr9d-s8LGscfLKpczkTBms,6749
|
|
42
42
|
mlrun/common/schemas/api_gateway.py,sha256=9ilorgLOiWxFZbv89-dbPNfVdaChlGOIdC4SLTxQwNI,7118
|
|
43
43
|
mlrun/common/schemas/artifact.py,sha256=V3ngobnzI1v2eoOroWBEedjAZu0ntCSIQ-LzsOK1Z9k,3570
|
|
44
|
-
mlrun/common/schemas/auth.py,sha256=
|
|
44
|
+
mlrun/common/schemas/auth.py,sha256=7XpEXICjDhHHkAppOp0mHvEtCwG68L3mhgSHPqqTBMk,6584
|
|
45
45
|
mlrun/common/schemas/background_task.py,sha256=2qZxib2qrF_nPZj0ncitCG-2jxz2hg1qj0hFc8eswWQ,1707
|
|
46
46
|
mlrun/common/schemas/client_spec.py,sha256=wqzQ5R4Zc7FL-8lV_BRN6nLrD0jK1kon05-JQ3fy2KY,2892
|
|
47
47
|
mlrun/common/schemas/clusterization_spec.py,sha256=aeaFJZms7r7h2HDv6ML_GDAT6gboW-PxBbc3GKPalGk,888
|
|
@@ -56,7 +56,7 @@ mlrun/common/schemas/http.py,sha256=1PtYFhF6sqLSBRcuPMtYcUGmroBhaleqLmYidSdL9LM,
|
|
|
56
56
|
mlrun/common/schemas/hub.py,sha256=cuv_vpkO27XNCZzfytnUyi0k0ZA4wf_QRn5B0ZPoK-Y,4116
|
|
57
57
|
mlrun/common/schemas/k8s.py,sha256=nmMnhgjVMLem5jyumoG2eQKioGK9eUVhQnOSb3hG7yw,1395
|
|
58
58
|
mlrun/common/schemas/memory_reports.py,sha256=tpS3fpvxa6VcBpzCRzcZTt0fCF0h6ReUetYs7j6kdps,892
|
|
59
|
-
mlrun/common/schemas/notification.py,sha256=
|
|
59
|
+
mlrun/common/schemas/notification.py,sha256=ZZi5uIcpKdijRCAsW7Xq8Mld2D-NsVgnmHgae3fs1J0,4930
|
|
60
60
|
mlrun/common/schemas/object.py,sha256=VleJSUmDJMl92knLgaDE8SWCi3ky0UaHcwcwOIapPQ8,1980
|
|
61
61
|
mlrun/common/schemas/pagination.py,sha256=q7nk6bipkDiE7HExIVqhy5ANl-zv0x8QC9Kg6AkLtDA,887
|
|
62
62
|
mlrun/common/schemas/pipeline.py,sha256=MhH07_fAQXNAnmf5j6oXZp8qh9cxGcZlReMdt-ZJf40,1429
|
|
@@ -67,13 +67,13 @@ mlrun/common/schemas/runtime_resource.py,sha256=2rSuYL-9JkESSomlnU91mYDbfV-IkqZe
|
|
|
67
67
|
mlrun/common/schemas/schedule.py,sha256=nD9kxH2KjXkbGZPNfzVNlNSxbyFZmZUlwtT04_z2xCw,4289
|
|
68
68
|
mlrun/common/schemas/secret.py,sha256=51tCN1F8DFTq4y_XdHIMDy3I1TnMEBX8kO8BHKavYF4,1484
|
|
69
69
|
mlrun/common/schemas/tag.py,sha256=OAn9Qt6z8ibqw8uU8WQSvuwY8irUv45Dhx2Ko5FzUss,884
|
|
70
|
-
mlrun/common/schemas/workflow.py,sha256=
|
|
70
|
+
mlrun/common/schemas/workflow.py,sha256=K5kZdbdKMg21pqwJyTRn41p3Ws220Sjhn0Xl4Z5iDRg,2063
|
|
71
71
|
mlrun/common/schemas/model_monitoring/__init__.py,sha256=q2icasMdgI7OG-p5eVwCu6sBuPrBMpRxByC6rxYk0DM,1813
|
|
72
|
-
mlrun/common/schemas/model_monitoring/constants.py,sha256=
|
|
72
|
+
mlrun/common/schemas/model_monitoring/constants.py,sha256=Wha21Iev3Nr9ugB1Ms_wrmcY42YzWTQqLKPYZD2dRHA,9896
|
|
73
73
|
mlrun/common/schemas/model_monitoring/grafana.py,sha256=SG13MFUUz_tk6-mWeSx17qcdEW4ekicxqNtnMSwRTCY,1559
|
|
74
74
|
mlrun/common/schemas/model_monitoring/model_endpoints.py,sha256=5vvjNX1bV98VSGdT4jwHr5ArKC9v_c1iHlaTf82fSUY,13198
|
|
75
75
|
mlrun/data_types/__init__.py,sha256=EkxfkFoHb91zz3Aymq-KZfCHlPMzEc3bBqgzPUwmHWY,1087
|
|
76
|
-
mlrun/data_types/data_types.py,sha256=
|
|
76
|
+
mlrun/data_types/data_types.py,sha256=uB9qJusSvPRK2PTvrFBXrS5jcDXMuwqXokJGToDg4VA,4953
|
|
77
77
|
mlrun/data_types/infer.py,sha256=z2EbSpR6xWEE5-HRUtDZkapHQld3xMbzXtTX83K-690,6134
|
|
78
78
|
mlrun/data_types/spark.py,sha256=xfcr6lcaLcHepnrHavx_vacMJK7BC8FWsUKjwrjjn6w,9509
|
|
79
79
|
mlrun/data_types/to_pandas.py,sha256=-ZbJBg00x4xxyqqqu3AVbEh-HaO2--DrChyPuedRhHA,11215
|
|
@@ -105,7 +105,7 @@ mlrun/db/__init__.py,sha256=WqJ4x8lqJ7ZoKbhEyFqkYADd9P6E3citckx9e9ZLcIU,1163
|
|
|
105
105
|
mlrun/db/auth_utils.py,sha256=hpg8D2r82oN0BWabuWN04BTNZ7jYMAF242YSUpK7LFM,5211
|
|
106
106
|
mlrun/db/base.py,sha256=lUfJrCWbuRUErIrUUXAKI2sSlrwfB-dHDz-Ck_cnZHU,24297
|
|
107
107
|
mlrun/db/factory.py,sha256=ibIrE5QkIIyzDU1FXKrfbc31cZiRLYKDZb8dqCpQwyU,2397
|
|
108
|
-
mlrun/db/httpdb.py,sha256=
|
|
108
|
+
mlrun/db/httpdb.py,sha256=SaJT3OkxBqBJvwvGVMnYqd7yKf1vbfHV5If0bYPiX-Y,184934
|
|
109
109
|
mlrun/db/nopdb.py,sha256=1oCZR2EmQQDkwXUgmyI3SB76zvOwA6Ml3Lk_xvuwHfc,21620
|
|
110
110
|
mlrun/feature_store/__init__.py,sha256=FhHRc8NdqL_HWpCs7A8dKruxJS5wEm55Gs3dcgBiRUg,1522
|
|
111
111
|
mlrun/feature_store/api.py,sha256=SWBbFD4KU2U4TUaAbD2hRLSquFWxX46mZGCToI0GfFQ,49994
|
|
@@ -119,7 +119,7 @@ mlrun/feature_store/retrieval/base.py,sha256=zgDsRsYQz8eqReKBEeTP0O4UoLoVYjWpO1o
|
|
|
119
119
|
mlrun/feature_store/retrieval/dask_merger.py,sha256=t60xciYp6StUQLEyFyI4JK5NpWkdBy2MGCs6beimaWU,5575
|
|
120
120
|
mlrun/feature_store/retrieval/job.py,sha256=xNIe3fAZ-wQ_sVLG2iTMLrnWSRIJ3EbDR10mnUUiSKE,8593
|
|
121
121
|
mlrun/feature_store/retrieval/local_merger.py,sha256=jM-8ta44PeNUc1cKMPs-TxrO9t8pXbwu_Tw8MZrLxUY,4513
|
|
122
|
-
mlrun/feature_store/retrieval/spark_merger.py,sha256=
|
|
122
|
+
mlrun/feature_store/retrieval/spark_merger.py,sha256=XTMK40Y0bUli1Z9KwtYmMSQ8a4WOHEHzIq9uzk1mfc4,10548
|
|
123
123
|
mlrun/feature_store/retrieval/storey_merger.py,sha256=5YM0UPrLjGOobulHkowRO-1LuvFD2cm_0GxcpnTdu0I,6314
|
|
124
124
|
mlrun/frameworks/__init__.py,sha256=qRHe_nUfxpoLaSASAkIxcW6IyunMtxq5LXhjzZMO_1E,743
|
|
125
125
|
mlrun/frameworks/parallel_coordinates.py,sha256=XY2C1Q29VWxcWIsIhcluUivpEHglr8PcZHCMs2MH4GM,11485
|
|
@@ -212,22 +212,20 @@ mlrun/launcher/factory.py,sha256=RW7mfzEFi8fR0M-4W1JQg1iq3_muUU6OTqT_3l4Ubrk,233
|
|
|
212
212
|
mlrun/launcher/local.py,sha256=pP9-ZrNL8OnNDEiXTAKAZQnmLpS_mCc2v-mJw329eks,11269
|
|
213
213
|
mlrun/launcher/remote.py,sha256=tGICSfWtvUHeR31mbzy6gqHejmDxjPUgjtxXTWhRubg,7699
|
|
214
214
|
mlrun/model_monitoring/__init__.py,sha256=dm5_j0_pwqrdzFwTaEtGnKfv2nVpNaM56nBI-oqLbNU,879
|
|
215
|
-
mlrun/model_monitoring/api.py,sha256=
|
|
216
|
-
mlrun/model_monitoring/
|
|
217
|
-
mlrun/model_monitoring/controller.py,sha256=ZKp3mWMhj6irCuREs-OH1MYYh5DzqNEDe04kVPVrZzw,27971
|
|
218
|
-
mlrun/model_monitoring/evidently_application.py,sha256=iOc42IVjj8m6PDBmVcKIMWm46Bu0EdO9SDcH40Eqhyo,769
|
|
215
|
+
mlrun/model_monitoring/api.py,sha256=2EHCzB_5sCDgalYPkrFbI01cSO7LVWBv9yWoooJ-a0g,28106
|
|
216
|
+
mlrun/model_monitoring/controller.py,sha256=dvqEyoE-iCd2jqDeoUpcrQFUeoTME58i3Wa2MhYi57k,20444
|
|
219
217
|
mlrun/model_monitoring/features_drift_table.py,sha256=c6GpKtpOJbuT1u5uMWDL_S-6N4YPOmlktWMqPme3KFY,25308
|
|
220
218
|
mlrun/model_monitoring/helpers.py,sha256=KsbSH0kEjCPajvLUpv3q5GWyvx0bZj-JkghGJlzbLZI,12757
|
|
221
219
|
mlrun/model_monitoring/model_endpoint.py,sha256=7VX0cBATqLsA4sSinDzouf41ndxqh2mf5bO9BW0G5Z4,4017
|
|
222
220
|
mlrun/model_monitoring/stream_processing.py,sha256=0eu1Gq1Obq87LFno6eIZ55poXoFaeloqYTLiQgyfd0k,38687
|
|
223
221
|
mlrun/model_monitoring/tracking_policy.py,sha256=sQq956akAQpntkrJwIgFWcEq-JpyVcg0FxgNa4h3V70,5502
|
|
224
222
|
mlrun/model_monitoring/writer.py,sha256=TrBwngRmdwr67De71UCcCFsJOfcqQe8jDp0vkBvGf0o,10177
|
|
225
|
-
mlrun/model_monitoring/applications/__init__.py,sha256=
|
|
223
|
+
mlrun/model_monitoring/applications/__init__.py,sha256=QYvzgCutFdAkzqKPD3mvkX_3c1X4tzd-kW8ojUOE9ic,889
|
|
226
224
|
mlrun/model_monitoring/applications/_application_steps.py,sha256=fvZbtat7eXe5mo927_jyhq4BqWCapKZn7OVjptepIAI,7055
|
|
227
|
-
mlrun/model_monitoring/applications/base.py,sha256=
|
|
228
|
-
mlrun/model_monitoring/applications/context.py,sha256=
|
|
229
|
-
mlrun/model_monitoring/applications/evidently_base.py,sha256=
|
|
230
|
-
mlrun/model_monitoring/applications/histogram_data_drift.py,sha256=
|
|
225
|
+
mlrun/model_monitoring/applications/base.py,sha256=uzc14lFlwTJnL0p2VBCzmp-CNoHd73cK_Iz0YHC1KAs,4380
|
|
226
|
+
mlrun/model_monitoring/applications/context.py,sha256=vOZ_ZgUuy5UsNe22-puJSt7TB32HiZtqBdN1hegykuQ,12436
|
|
227
|
+
mlrun/model_monitoring/applications/evidently_base.py,sha256=FSzmoDZP8EiSQ3tq5RmU7kJ6edh8bWaKQh0rBORjODY,5099
|
|
228
|
+
mlrun/model_monitoring/applications/histogram_data_drift.py,sha256=wRCttgK1H4eRDiAJJ7Aid2hPuQPzUoBY3hSHlVkdE5w,13337
|
|
231
229
|
mlrun/model_monitoring/applications/results.py,sha256=B0YuLig4rgBzBs3OAh01yLavhtNgj8Oz1RD8UfEkENU,3590
|
|
232
230
|
mlrun/model_monitoring/db/__init__.py,sha256=6Ic-X3Fh9XLPYMytmevGNSs-Hii1rAjLLoFTSPwTguw,736
|
|
233
231
|
mlrun/model_monitoring/db/stores/__init__.py,sha256=m6Z6rPQyaufq5oXF3HVUYGDN34biAX1JE1F6OxLN9B8,4752
|
|
@@ -273,9 +271,9 @@ mlrun/package/utils/type_hint_utils.py,sha256=JYrek6vuN3z7e6MGUD3qBLDfQ03C4puZXN
|
|
|
273
271
|
mlrun/platforms/__init__.py,sha256=ggSGF7inITs6S-vj9u4S9X_5psgbA0G3GVqf7zu8qYc,2406
|
|
274
272
|
mlrun/platforms/iguazio.py,sha256=1h5BpdAEQJBg2vIt7ySjUADU0ip5OkaMYr0_VREi9ys,13084
|
|
275
273
|
mlrun/projects/__init__.py,sha256=Lv5rfxyXJrw6WGOWJKhBz66M6t3_zsNMCfUD6waPwx4,1153
|
|
276
|
-
mlrun/projects/operations.py,sha256=
|
|
277
|
-
mlrun/projects/pipelines.py,sha256=
|
|
278
|
-
mlrun/projects/project.py,sha256=
|
|
274
|
+
mlrun/projects/operations.py,sha256=gtqSU9OvYOV-b681uQtWgnW7YSnX6qfa1Mt1Xm4f1ZI,19752
|
|
275
|
+
mlrun/projects/pipelines.py,sha256=RP9lTRuRRCuA4Vf0Z2-NwuPL9XRJ28S2v6tfLzmD9B0,40874
|
|
276
|
+
mlrun/projects/project.py,sha256=FjgkBBBP6geuxOGGp1Es5EFqsrs3M6PNWejBdoM08ng,190769
|
|
279
277
|
mlrun/runtimes/__init__.py,sha256=egLM94cDMUyQ1GVABdFGXUQcDhU70lP3k7qSnM_UnHY,9008
|
|
280
278
|
mlrun/runtimes/base.py,sha256=JXWmTIcm3b0klGUOHDlyFNa3bUgsNzQIgWhUQpSZoE0,37692
|
|
281
279
|
mlrun/runtimes/daskjob.py,sha256=Ka_xqim8LkCYjp-M_WgteJy6ZN_3qfmLLHvXs7N6pa4,19411
|
|
@@ -295,10 +293,10 @@ mlrun/runtimes/mpijob/__init__.py,sha256=V_1gQD1VHa0Qvjqgyv8RLouH27Sy9YTwj2ZG62o
|
|
|
295
293
|
mlrun/runtimes/mpijob/abstract.py,sha256=kDWo-IY1FKLZhI30j38Xx9HMhlUvHezfd1DT2ShoxZY,9161
|
|
296
294
|
mlrun/runtimes/mpijob/v1.py,sha256=1XQZC7AIMGX_AQCbApcwpH8I7y39-v0v2O35MvxjXoo,3213
|
|
297
295
|
mlrun/runtimes/nuclio/__init__.py,sha256=gx1kizzKv8pGT5TNloN1js1hdbxqDw3rM90sLVYVffY,794
|
|
298
|
-
mlrun/runtimes/nuclio/api_gateway.py,sha256=
|
|
296
|
+
mlrun/runtimes/nuclio/api_gateway.py,sha256=oQRSOvqtODKCzT2LqlqSXZbq2vcZ7epsFZwO9jvarhc,26899
|
|
299
297
|
mlrun/runtimes/nuclio/function.py,sha256=TQt6RyxK_iyzNJr2r57BRtVXuy2GMrhdeFOlFjb2AZg,52106
|
|
300
298
|
mlrun/runtimes/nuclio/nuclio.py,sha256=sLK8KdGO1LbftlL3HqPZlFOFTAAuxJACZCVl1c0Ha6E,2942
|
|
301
|
-
mlrun/runtimes/nuclio/serving.py,sha256=
|
|
299
|
+
mlrun/runtimes/nuclio/serving.py,sha256=Tsv-MssXJPe4di9stVOAyCj2MTMI7zQxvtFbAgdAtu0,29717
|
|
302
300
|
mlrun/runtimes/nuclio/application/__init__.py,sha256=rRs5vasy_G9IyoTpYIjYDafGoL6ifFBKgBtsXn31Atw,614
|
|
303
301
|
mlrun/runtimes/nuclio/application/application.py,sha256=5XFIg7tgU9kKWwGdMFwB1OJpw79BWwlWUdGiHlDo4AY,29055
|
|
304
302
|
mlrun/runtimes/nuclio/application/reverse_proxy.go,sha256=JIIYae6bXzCLf3jXuu49KWPQYoXr_FDQ2Rbo1OWKAd0,3150
|
|
@@ -343,11 +341,11 @@ mlrun/utils/notifications/notification/ipython.py,sha256=ZtVL30B_Ha0VGoo4LxO-voT
|
|
|
343
341
|
mlrun/utils/notifications/notification/slack.py,sha256=wqpFGr5BTvFO5KuUSzFfxsgmyU1Ohq7fbrGeNe9TXOk,7006
|
|
344
342
|
mlrun/utils/notifications/notification/webhook.py,sha256=cb9w1Mc8ENfJBdgan7iiVHK9eVls4-R3tUxmXM-P-8I,4746
|
|
345
343
|
mlrun/utils/version/__init__.py,sha256=7kkrB7hEZ3cLXoWj1kPoDwo4MaswsI2JVOBpbKgPAgc,614
|
|
346
|
-
mlrun/utils/version/version.json,sha256=
|
|
344
|
+
mlrun/utils/version/version.json,sha256=slRKoCCm9V9GXOEcyhpf1FNyOfO-3lk6SydAW7BkmVg,89
|
|
347
345
|
mlrun/utils/version/version.py,sha256=eEW0tqIAkU9Xifxv8Z9_qsYnNhn3YH7NRAfM-pPLt1g,1878
|
|
348
|
-
mlrun-1.7.
|
|
349
|
-
mlrun-1.7.
|
|
350
|
-
mlrun-1.7.
|
|
351
|
-
mlrun-1.7.
|
|
352
|
-
mlrun-1.7.
|
|
353
|
-
mlrun-1.7.
|
|
346
|
+
mlrun-1.7.0rc50.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
347
|
+
mlrun-1.7.0rc50.dist-info/METADATA,sha256=0FpVzUdgaF0PueIufozDnrdMySc9QYVTznJOkgnEEjw,24262
|
|
348
|
+
mlrun-1.7.0rc50.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
|
349
|
+
mlrun-1.7.0rc50.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
|
|
350
|
+
mlrun-1.7.0rc50.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
|
|
351
|
+
mlrun-1.7.0rc50.dist-info/RECORD,,
|
|
@@ -1,19 +0,0 @@
|
|
|
1
|
-
# Copyright 2023 Iguazio
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
# TODO : delete this file in 1.9.0
|
|
16
|
-
from mlrun.model_monitoring.applications import ( # noqa: F401
|
|
17
|
-
ModelMonitoringApplicationBase,
|
|
18
|
-
ModelMonitoringApplicationResult,
|
|
19
|
-
)
|
|
@@ -1,20 +0,0 @@
|
|
|
1
|
-
# Copyright 2023 Iguazio
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
# TODO : delete this file in 1.9.0
|
|
16
|
-
from mlrun.model_monitoring.applications import ( # noqa: F401
|
|
17
|
-
_HAS_EVIDENTLY,
|
|
18
|
-
SUPPORTED_EVIDENTLY_VERSION,
|
|
19
|
-
EvidentlyModelMonitoringApplicationBase,
|
|
20
|
-
)
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|