mlrun 1.7.0rc43__py3-none-any.whl → 1.7.0rc55__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (68) hide show
  1. mlrun/__main__.py +4 -2
  2. mlrun/artifacts/manager.py +3 -1
  3. mlrun/common/formatters/__init__.py +1 -0
  4. mlrun/{model_monitoring/application.py → common/formatters/feature_set.py} +20 -6
  5. mlrun/common/formatters/run.py +3 -0
  6. mlrun/common/schemas/__init__.py +1 -0
  7. mlrun/common/schemas/alert.py +11 -11
  8. mlrun/common/schemas/auth.py +5 -0
  9. mlrun/common/schemas/client_spec.py +0 -1
  10. mlrun/common/schemas/model_monitoring/__init__.py +2 -1
  11. mlrun/common/schemas/model_monitoring/constants.py +23 -9
  12. mlrun/common/schemas/model_monitoring/model_endpoints.py +24 -47
  13. mlrun/common/schemas/notification.py +12 -2
  14. mlrun/common/schemas/workflow.py +10 -2
  15. mlrun/config.py +28 -21
  16. mlrun/data_types/data_types.py +6 -1
  17. mlrun/datastore/base.py +4 -4
  18. mlrun/datastore/s3.py +12 -9
  19. mlrun/datastore/storeytargets.py +9 -6
  20. mlrun/db/base.py +3 -0
  21. mlrun/db/httpdb.py +28 -16
  22. mlrun/db/nopdb.py +24 -4
  23. mlrun/errors.py +7 -1
  24. mlrun/execution.py +40 -7
  25. mlrun/feature_store/api.py +1 -0
  26. mlrun/feature_store/retrieval/spark_merger.py +7 -7
  27. mlrun/frameworks/_common/plan.py +3 -3
  28. mlrun/frameworks/_ml_common/plan.py +1 -1
  29. mlrun/frameworks/parallel_coordinates.py +2 -3
  30. mlrun/launcher/client.py +6 -6
  31. mlrun/model.py +29 -0
  32. mlrun/model_monitoring/api.py +1 -12
  33. mlrun/model_monitoring/applications/__init__.py +1 -2
  34. mlrun/model_monitoring/applications/_application_steps.py +5 -1
  35. mlrun/model_monitoring/applications/base.py +2 -182
  36. mlrun/model_monitoring/applications/context.py +2 -9
  37. mlrun/model_monitoring/applications/evidently_base.py +0 -74
  38. mlrun/model_monitoring/applications/histogram_data_drift.py +2 -2
  39. mlrun/model_monitoring/applications/results.py +4 -4
  40. mlrun/model_monitoring/controller.py +46 -209
  41. mlrun/model_monitoring/db/stores/base/store.py +1 -0
  42. mlrun/model_monitoring/db/stores/sqldb/sql_store.py +15 -1
  43. mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +12 -0
  44. mlrun/model_monitoring/db/tsdb/tdengine/schemas.py +17 -16
  45. mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +49 -39
  46. mlrun/model_monitoring/helpers.py +13 -15
  47. mlrun/model_monitoring/writer.py +3 -1
  48. mlrun/projects/operations.py +11 -8
  49. mlrun/projects/pipelines.py +35 -16
  50. mlrun/projects/project.py +52 -24
  51. mlrun/render.py +3 -3
  52. mlrun/runtimes/daskjob.py +1 -1
  53. mlrun/runtimes/kubejob.py +6 -6
  54. mlrun/runtimes/nuclio/api_gateway.py +12 -0
  55. mlrun/runtimes/nuclio/application/application.py +3 -3
  56. mlrun/runtimes/nuclio/function.py +41 -0
  57. mlrun/runtimes/nuclio/serving.py +2 -2
  58. mlrun/runtimes/pod.py +19 -13
  59. mlrun/serving/server.py +2 -0
  60. mlrun/utils/helpers.py +62 -16
  61. mlrun/utils/version/version.json +2 -2
  62. {mlrun-1.7.0rc43.dist-info → mlrun-1.7.0rc55.dist-info}/METADATA +126 -44
  63. {mlrun-1.7.0rc43.dist-info → mlrun-1.7.0rc55.dist-info}/RECORD +67 -68
  64. {mlrun-1.7.0rc43.dist-info → mlrun-1.7.0rc55.dist-info}/WHEEL +1 -1
  65. mlrun/model_monitoring/evidently_application.py +0 -20
  66. {mlrun-1.7.0rc43.dist-info → mlrun-1.7.0rc55.dist-info}/LICENSE +0 -0
  67. {mlrun-1.7.0rc43.dist-info → mlrun-1.7.0rc55.dist-info}/entry_points.txt +0 -0
  68. {mlrun-1.7.0rc43.dist-info → mlrun-1.7.0rc55.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mlrun
3
- Version: 1.7.0rc43
3
+ Version: 1.7.0rc55
4
4
  Summary: Tracking and config of machine learning runs
5
5
  Home-page: https://github.com/mlrun/mlrun
6
6
  Author: Yaron Haviv
@@ -31,9 +31,9 @@ Requires-Dist: ipython ~=8.10
31
31
  Requires-Dist: nuclio-jupyter ~=0.10.4
32
32
  Requires-Dist: numpy <1.27.0,>=1.16.5
33
33
  Requires-Dist: pandas <2.2,>=1.2
34
- Requires-Dist: pyarrow <15,>=10.0
34
+ Requires-Dist: pyarrow <18,>=10.0
35
35
  Requires-Dist: pyyaml <7,>=5.4.1
36
- Requires-Dist: requests ~=2.31
36
+ Requires-Dist: requests ~=2.32
37
37
  Requires-Dist: tabulate ~=0.8.6
38
38
  Requires-Dist: v3io ~=0.6.9
39
39
  Requires-Dist: pydantic <1.10.15,>=1.10.8
@@ -43,30 +43,30 @@ Requires-Dist: semver ~=3.0
43
43
  Requires-Dist: dependency-injector ~=4.41
44
44
  Requires-Dist: fsspec <2024.7,>=2023.9.2
45
45
  Requires-Dist: v3iofs ~=0.1.17
46
- Requires-Dist: storey ~=1.7.24
46
+ Requires-Dist: storey ~=1.7.27
47
47
  Requires-Dist: inflection ~=0.5.0
48
48
  Requires-Dist: python-dotenv ~=0.17.0
49
49
  Requires-Dist: setuptools ~=71.0
50
50
  Requires-Dist: deprecated ~=1.2
51
51
  Requires-Dist: jinja2 >=3.1.3,~=3.1
52
52
  Requires-Dist: orjson <4,>=3.9.15
53
- Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.7
53
+ Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.9
54
54
  Requires-Dist: mlrun-pipelines-kfp-v1-8 ~=0.1.6
55
55
  Provides-Extra: alibaba-oss
56
56
  Requires-Dist: ossfs ==2023.12.0 ; extra == 'alibaba-oss'
57
57
  Requires-Dist: oss2 ==2.18.1 ; extra == 'alibaba-oss'
58
58
  Provides-Extra: all
59
59
  Requires-Dist: adlfs ==2023.9.0 ; extra == 'all'
60
- Requires-Dist: aiobotocore <2.8,>=2.5.0 ; extra == 'all'
60
+ Requires-Dist: aiobotocore <2.16,>=2.5.0 ; extra == 'all'
61
61
  Requires-Dist: avro ~=1.11 ; extra == 'all'
62
62
  Requires-Dist: azure-core ~=1.24 ; extra == 'all'
63
63
  Requires-Dist: azure-identity ~=1.5 ; extra == 'all'
64
64
  Requires-Dist: azure-keyvault-secrets ~=4.2 ; extra == 'all'
65
65
  Requires-Dist: bokeh >=2.4.2,~=2.4 ; extra == 'all'
66
- Requires-Dist: boto3 <1.29.0,>=1.28.0 ; extra == 'all'
67
- Requires-Dist: dask ~=2023.9.0 ; extra == 'all'
66
+ Requires-Dist: boto3 <1.36,>=1.28.0 ; extra == 'all'
67
+ Requires-Dist: dask ~=2023.12.1 ; extra == 'all'
68
68
  Requires-Dist: databricks-sdk ~=0.13.0 ; extra == 'all'
69
- Requires-Dist: distributed ~=2023.9.0 ; extra == 'all'
69
+ Requires-Dist: distributed ~=2023.12.1 ; extra == 'all'
70
70
  Requires-Dist: gcsfs <2024.7,>=2023.9.2 ; extra == 'all'
71
71
  Requires-Dist: google-cloud-bigquery-storage ~=2.17 ; extra == 'all'
72
72
  Requires-Dist: google-cloud-bigquery[bqstorage,pandas] ==3.14.1 ; extra == 'all'
@@ -84,7 +84,8 @@ Requires-Dist: redis ~=4.3 ; extra == 'all'
84
84
  Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 'all'
85
85
  Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'all'
86
86
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'all'
87
- Requires-Dist: taos-ws-py ~=0.3.2 ; extra == 'all'
87
+ Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'all'
88
+ Requires-Dist: taoswswrap ~=0.2.0 ; extra == 'all'
88
89
  Provides-Extra: api
89
90
  Requires-Dist: uvicorn ~=0.27.1 ; extra == 'api'
90
91
  Requires-Dist: dask-kubernetes ~=0.11.0 ; extra == 'api'
@@ -111,15 +112,15 @@ Provides-Extra: bokeh
111
112
  Requires-Dist: bokeh >=2.4.2,~=2.4 ; extra == 'bokeh'
112
113
  Provides-Extra: complete
113
114
  Requires-Dist: adlfs ==2023.9.0 ; extra == 'complete'
114
- Requires-Dist: aiobotocore <2.8,>=2.5.0 ; extra == 'complete'
115
+ Requires-Dist: aiobotocore <2.16,>=2.5.0 ; extra == 'complete'
115
116
  Requires-Dist: avro ~=1.11 ; extra == 'complete'
116
117
  Requires-Dist: azure-core ~=1.24 ; extra == 'complete'
117
118
  Requires-Dist: azure-identity ~=1.5 ; extra == 'complete'
118
119
  Requires-Dist: azure-keyvault-secrets ~=4.2 ; extra == 'complete'
119
- Requires-Dist: boto3 <1.29.0,>=1.28.0 ; extra == 'complete'
120
- Requires-Dist: dask ~=2023.9.0 ; extra == 'complete'
120
+ Requires-Dist: boto3 <1.36,>=1.28.0 ; extra == 'complete'
121
+ Requires-Dist: dask ~=2023.12.1 ; extra == 'complete'
121
122
  Requires-Dist: databricks-sdk ~=0.13.0 ; extra == 'complete'
122
- Requires-Dist: distributed ~=2023.9.0 ; extra == 'complete'
123
+ Requires-Dist: distributed ~=2023.12.1 ; extra == 'complete'
123
124
  Requires-Dist: gcsfs <2024.7,>=2023.9.2 ; extra == 'complete'
124
125
  Requires-Dist: google-cloud-bigquery-storage ~=2.17 ; extra == 'complete'
125
126
  Requires-Dist: google-cloud-bigquery[bqstorage,pandas] ==3.14.1 ; extra == 'complete'
@@ -137,21 +138,22 @@ Requires-Dist: redis ~=4.3 ; extra == 'complete'
137
138
  Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 'complete'
138
139
  Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'complete'
139
140
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'complete'
140
- Requires-Dist: taos-ws-py ~=0.3.2 ; extra == 'complete'
141
+ Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'complete'
142
+ Requires-Dist: taoswswrap ~=0.2.0 ; extra == 'complete'
141
143
  Provides-Extra: complete-api
142
144
  Requires-Dist: adlfs ==2023.9.0 ; extra == 'complete-api'
143
- Requires-Dist: aiobotocore <2.8,>=2.5.0 ; extra == 'complete-api'
145
+ Requires-Dist: aiobotocore <2.16,>=2.5.0 ; extra == 'complete-api'
144
146
  Requires-Dist: alembic ~=1.9 ; extra == 'complete-api'
145
147
  Requires-Dist: apscheduler <4,>=3.10.3 ; extra == 'complete-api'
146
148
  Requires-Dist: avro ~=1.11 ; extra == 'complete-api'
147
149
  Requires-Dist: azure-core ~=1.24 ; extra == 'complete-api'
148
150
  Requires-Dist: azure-identity ~=1.5 ; extra == 'complete-api'
149
151
  Requires-Dist: azure-keyvault-secrets ~=4.2 ; extra == 'complete-api'
150
- Requires-Dist: boto3 <1.29.0,>=1.28.0 ; extra == 'complete-api'
152
+ Requires-Dist: boto3 <1.36,>=1.28.0 ; extra == 'complete-api'
151
153
  Requires-Dist: dask-kubernetes ~=0.11.0 ; extra == 'complete-api'
152
- Requires-Dist: dask ~=2023.9.0 ; extra == 'complete-api'
154
+ Requires-Dist: dask ~=2023.12.1 ; extra == 'complete-api'
153
155
  Requires-Dist: databricks-sdk ~=0.13.0 ; extra == 'complete-api'
154
- Requires-Dist: distributed ~=2023.9.0 ; extra == 'complete-api'
156
+ Requires-Dist: distributed ~=2023.12.1 ; extra == 'complete-api'
155
157
  Requires-Dist: fastapi ~=0.110.0 ; extra == 'complete-api'
156
158
  Requires-Dist: gcsfs <2024.7,>=2023.9.2 ; extra == 'complete-api'
157
159
  Requires-Dist: google-cloud-bigquery-storage ~=2.17 ; extra == 'complete-api'
@@ -174,13 +176,14 @@ Requires-Dist: redis ~=4.3 ; extra == 'complete-api'
174
176
  Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 'complete-api'
175
177
  Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'complete-api'
176
178
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'complete-api'
177
- Requires-Dist: taos-ws-py ~=0.3.2 ; extra == 'complete-api'
179
+ Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'complete-api'
180
+ Requires-Dist: taoswswrap ~=0.2.0 ; extra == 'complete-api'
178
181
  Requires-Dist: timelength ~=1.1 ; extra == 'complete-api'
179
182
  Requires-Dist: uvicorn ~=0.27.1 ; extra == 'complete-api'
180
183
  Requires-Dist: memray ~=1.12 ; (sys_platform != "win32") and extra == 'complete-api'
181
184
  Provides-Extra: dask
182
- Requires-Dist: dask ~=2023.9.0 ; extra == 'dask'
183
- Requires-Dist: distributed ~=2023.9.0 ; extra == 'dask'
185
+ Requires-Dist: dask ~=2023.12.1 ; extra == 'dask'
186
+ Requires-Dist: distributed ~=2023.12.1 ; extra == 'dask'
184
187
  Provides-Extra: databricks-sdk
185
188
  Requires-Dist: databricks-sdk ~=0.13.0 ; extra == 'databricks-sdk'
186
189
  Provides-Extra: google-cloud
@@ -201,15 +204,16 @@ Requires-Dist: plotly ~=5.23 ; extra == 'plotly'
201
204
  Provides-Extra: redis
202
205
  Requires-Dist: redis ~=4.3 ; extra == 'redis'
203
206
  Provides-Extra: s3
204
- Requires-Dist: boto3 <1.29.0,>=1.28.0 ; extra == 's3'
205
- Requires-Dist: aiobotocore <2.8,>=2.5.0 ; extra == 's3'
207
+ Requires-Dist: boto3 <1.36,>=1.28.0 ; extra == 's3'
208
+ Requires-Dist: aiobotocore <2.16,>=2.5.0 ; extra == 's3'
206
209
  Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 's3'
207
210
  Provides-Extra: snowflake
208
211
  Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'snowflake'
209
212
  Provides-Extra: sqlalchemy
210
213
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'sqlalchemy'
211
214
  Provides-Extra: tdengine
212
- Requires-Dist: taos-ws-py ~=0.3.2 ; extra == 'tdengine'
215
+ Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'tdengine'
216
+ Requires-Dist: taoswswrap ~=0.2.0 ; extra == 'tdengine'
213
217
 
214
218
  <a id="top"></a>
215
219
  [![Build Status](https://github.com/mlrun/mlrun/actions/workflows/build.yaml/badge.svg?branch=development)](https://github.com/mlrun/mlrun/actions/workflows/build.yaml?query=branch%3Adevelopment)
@@ -225,19 +229,86 @@ Requires-Dist: taos-ws-py ~=0.3.2 ; extra == 'tdengine'
225
229
 
226
230
  # Using MLRun
227
231
 
228
- MLRun is an open MLOps platform for quickly building and managing continuous ML applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources.
232
+ MLRun is an open source AI orchestration platform for quickly building and managing continuous (gen) AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications.
233
+ MLRun significantly reduces engineering efforts, time to production, and computation resources.
229
234
  With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
230
235
 
231
- Get started with MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/latest/tutorials/index.html), [**Installation and setup guide**](https://docs.mlrun.org/en/latest/install.html), or read about [**MLRun Architecture**](https://docs.mlrun.org/en/latest/architecture.html).
236
+ Get started with the MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/stable/tutorials/index.html) and the [**Installation and setup guide**](https://docs.mlrun.org/en/stable/install.html), or read about the [**MLRun Architecture**](https://docs.mlrun.org/en/stable/architecture.html).
237
+
238
+ This page explains how MLRun addresses the [**gen AI tasks**](#genai-tasks), [**MLOps tasks**](#mlops-tasks), and presents the [**MLRun core components**](#core-components).
239
+
240
+ See the supported data stores, development tools, services, platforms, etc., supported by MLRun's open architecture in **https://docs.mlrun.org/en/stable/ecosystem.html**.
241
+
242
+ ## Gen AI tasks
243
+
244
+ <p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/ai-tasks.png" alt="ai-tasks" width="800"/></p><br>
245
+
246
+ Use MLRun to develop, scale, deploy, and monitor your AI model across your enterprise. The [**gen AI development workflow**](https://docs.mlrun.org/en/stable/genai/genai-flow.html)
247
+ section describes the different tasks and stages in detail.
248
+
249
+ ### Data management
250
+
251
+
252
+ MLRun supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
253
+ Removing inappropriate data at an early stage saves resources that would otherwise be required later on.
254
+
255
+
256
+ **Docs:**
257
+ [Using LLMs to process unstructured data](https://docs.mlrun.org/en/stable/genai/data-mgmt/unstructured-data.html)
258
+ [Vector databases](https://docs.mlrun.org/en/stable/genai/data-mgmt/vector-databases.html)
259
+ [Guardrails for data management](https://docs.mlrun.org/en/stable/genai/data-mgmt/guardrails-data.html)
260
+ **Demo:**
261
+ [Call center demo](https://github.com/mlrun/demo-call-center>`
262
+ **Video:**
263
+ [Call center](https://youtu.be/YycMbxRgLBA>`
264
+
265
+ ### Development
266
+ Use MLRun to build an automated ML pipeline to: collect data,
267
+ preprocess (prepare) the data, run the training pipeline, and evaluate the model.
268
+
269
+ **Docs:**
270
+ [Working with RAG](https://docs.mlrun.org/en/stable/genai/development/working-with-rag.html), [Evalating LLMs](https://docs.mlrun.org/en/stable/genai/development/evaluating-llms.html), [Fine tuning LLMS](https://docs.mlrun.org/en/stable/genai/development/fine-tuning-llms.html)
271
+ **Demos:**
272
+ [Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs](https://github.com/mlrun/demo-llm-bot/blob/main)
273
+ **Video:**
274
+ [Call center](https://youtu.be/YycMbxRgLBA)
275
+
276
+
277
+ ### Deployment
278
+ MLRun serving can productize the newly trained LLM as a serverless function using real-time auto-scaling Nuclio serverless functions.
279
+ The application pipeline includes all the steps from accepting events or data, contextualizing it with a state preparing the required model features,
280
+ inferring results using one or more models, and driving actions.
281
+
282
+
283
+ **Docs:**
284
+ [Serving gen AI models](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving.html), GPU utilization](https://docs.mlrun.org/en/stable/genai/deployment/gpu_utilization.html), [Gen AI realtime serving graph](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving_graph.html)
285
+ **Tutorial:**
286
+ [Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html)
287
+ **Demos:**
288
+ [Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom(fine-tuned)]LLM models and applications <https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs]<https://github.com/mlrun/demo-llm-bot/blob/main)
289
+ **Video:**
290
+ [Call center]<https://youtu.be/YycMbxRgLBA)
291
+
292
+
293
+ ### Live Ops
294
+ Monitor all resources, data, model and application metrics to ensure performance. Then identify risks, control costs, and measure business KPIs.
295
+ Collect production data, metadata, and metrics to tune the model and application further, and to enable governance and explainability.
296
+
297
+
298
+ **Docs:**
299
+ [Model monitoring <monitoring](https://docs.mlrun.org/en/stable/concepts/monitoring.html), [Alerts and notifications](https://docs.mlrun.org/en/stable/concepts/alerts-notifications.html)
300
+ **Tutorials:**
301
+ [Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html), [Model monitoring using LLM](https://docs.mlrun.org/en/stable/tutorials/genai-02-monitoring-llm.html)
302
+ **Demo:**
303
+ [Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main)
232
304
 
233
- This page explains how MLRun addresses the [**MLOps Tasks**](#mlops-tasks) and the [**MLRun core components**](#core-components).
234
305
 
235
306
  <a id="mlops-tasks"></a>
236
307
  ## MLOps tasks
237
308
 
238
309
  <p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-task.png" alt="mlrun-tasks" width="800"/></p><br>
239
310
 
240
- The [**MLOps development workflow**](https://docs.mlrun.org/en/latest/mlops-dev-flow.html) section describes the different tasks and stages in detail.
311
+ The [**MLOps development workflow**](https://docs.mlrun.org/en/stable/mlops-dev-flow.html) section describes the different tasks and stages in detail.
241
312
  MLRun can be used to automate and orchestrate all the different tasks or just specific tasks (and integrate them with what you have already deployed).
242
313
 
243
314
  ### Project management and CI/CD automation
@@ -246,32 +317,40 @@ In MLRun the assets, metadata, and services (data, functions, jobs, artifacts, m
246
317
  Projects can be imported/exported as a whole, mapped to git repositories or IDE projects (in PyCharm, VSCode, etc.), which enables versioning, collaboration, and CI/CD.
247
318
  Project access can be restricted to a set of users and roles.
248
319
 
249
- See: **Docs:** [Projects and Automation](https://docs.mlrun.org/en/latest/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/latest/projects/ci-integration.html), **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html), **Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
320
+ **Docs:** [Projects and Automation](https://docs.mlrun.org/en/stable/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/stable/projects/ci-integration.html)
321
+ **Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
322
+ **Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
250
323
 
251
324
  ### Ingest and process data
252
325
 
253
- MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/latest/store/datastore.html), supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
254
- In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/latest/feature-store/feature-store.html) automates the collection, transformation, storage, catalog, serving, and monitoring of data features across the ML lifecycle and enables feature reuse and sharing.
326
+ MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/stable/store/datastore.html), supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
327
+ In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automates the collection, transformation, storage, catalog, serving, and monitoring of data features across the ML lifecycle and enables feature reuse and sharing.
255
328
 
256
- See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/latest/data-prep/index.html), [Feature Store](https://docs.mlrun.org/en/latest/feature-store/feature-store.html), [Data & Artifacts](https://docs.mlrun.org/en/latest/concepts/data.html); **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Feature Store](https://docs.mlrun.org/en/latest/feature-store/basic-demo.html).
329
+ See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/stable/data-prep/index.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/feature-store.html), [Data & Artifacts](https://docs.mlrun.org/en/stable/concepts/data.html)
330
+ **Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/basic-demo.html).
257
331
 
258
332
  ### Develop and train models
259
333
 
260
334
  MLRun allows you to easily build ML pipelines that take data from various sources or the Feature Store and process it, train models at scale with multiple parameters, test models, tracks each experiments, register, version and deploy models, etc. MLRun provides scalable built-in or custom model training services, integrate with any framework and can work with 3rd party training/auto-ML services. You can also bring your own pre-trained model and use it in the pipeline.
261
335
 
262
- See: **Docs:** [Develop and train models](https://docs.mlrun.org/en/latest/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/latest/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html); **Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/latest/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html); **Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
336
+ **Docs:** [Develop and train models](https://docs.mlrun.org/en/stable/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/stable/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html)
337
+ **Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/stable/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
338
+ **Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
263
339
 
264
340
  ### Deploy models and applications
265
341
 
266
342
  MLRun rapidly deploys and manages production-grade real-time or batch application pipelines using elastic and resilient serverless functions. MLRun addresses the entire ML application: intercepting application/user requests, running data processing tasks, inferencing using one or more models, driving actions, and integrating with the application logic.
267
343
 
268
- See: **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/latest/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/latest/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/latest/deployment/batch_inference.html), **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/latest/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html); **Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
344
+ **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/stable/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/stable/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/stable/deployment/batch_inference.html)
345
+ **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/stable/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html)
346
+ **Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
269
347
 
270
- ### Monitor and alert
348
+ ### Model Monitoring
271
349
 
272
350
  Observability is built into the different MLRun objects (data, functions, jobs, models, pipelines, etc.), eliminating the need for complex integrations and code instrumentation. With MLRun, you can observe the application/model resource usage and model behavior (drift, performance, etc.), define custom app metrics, and trigger alerts or retraining jobs.
273
351
 
274
- See: **Docs:** [Monitor and alert](https://docs.mlrun.org/en/latest/monitoring/index.html), [Model Monitoring Overview](https://docs.mlrun.org/en/latest/monitoring/model-monitoring-deployment.html), **Tutorials:** [Model Monitoring & Drift Detection](https://docs.mlrun.org/en/latest/tutorials/05-model-monitoring.html).
352
+ **Docs:** [Model monitoring](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html), [Model Monitoring Overview](https://docs.mlrun.org/en/stable/monitoring/model-monitoring-deployment.html)
353
+ **Tutorials:** [Model Monitoring & Drift Detection](https://docs.mlrun.org/en/stable/tutorials/05-model-monitoring.html).
275
354
 
276
355
 
277
356
  <a id="core-components"></a>
@@ -279,18 +358,21 @@ See: **Docs:** [Monitor and alert](https://docs.mlrun.org/en/latest/monitoring/i
279
358
 
280
359
  <p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-core.png" alt="mlrun-core" width="800"/></p><br>
281
360
 
361
+
282
362
  MLRun includes the following major components:
283
363
 
284
- [**Project Management:**](https://docs.mlrun.org/en/latest/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
364
+ [**Project Management:**](https://docs.mlrun.org/en/stable/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
365
+
366
+ [**Functions:**](https://docs.mlrun.org/en/stable/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
285
367
 
286
- [**Functions:**](https://docs.mlrun.org/en/latest/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
368
+ [**Data & Artifacts:**](https://docs.mlrun.org/en/stable/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
287
369
 
288
- [**Data & Artifacts:**](https://docs.mlrun.org/en/latest/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
370
+ [**Batch Runs & Workflows:**](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html) Execute one or more functions with specific parameters and collect, track, and compare all their results and artifacts.
289
371
 
290
- [**Feature Store:**](https://docs.mlrun.org/en/latest/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
372
+ [**Real-Time Serving Pipeline:**](https://docs.mlrun.org/en/stable/serving/serving-graph.html) Rapid deployment of scalable data and ML pipelines using real-time serverless technology, including API handling, data preparation/enrichment, model serving, ensembles, driving and measuring actions, etc.
291
373
 
292
- [**Batch Runs & Workflows:**](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html) Execute one or more functions with specific parameters and collect, track, and compare all their results and artifacts.
374
+ [**Model monitoring:**](https://docs.mlrun.org/en/stable/monitoring/index.html) monitors data, models, resources, and production components and provides a feedback loop for exploring production data, identifying drift, alerting on anomalies or data quality issues, triggering retraining jobs, measuring business impact, etc.
293
375
 
294
- [**Real-Time Serving Pipeline:**](https://docs.mlrun.org/en/latest/serving/serving-graph.html) Rapid deployment of scalable data and ML pipelines using real-time serverless technology, including API handling, data preparation/enrichment, model serving, ensembles, driving and measuring actions, etc.
376
+ [**Alerts and notifications:**](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html) Use alerts to identify and inform you of possible problem situations. Use notifications to report status on runs and pipelines.
295
377
 
296
- [**Real-Time monitoring:**](https://docs.mlrun.org/en/latest/monitoring/index.html) monitors data, models, resources, and production components and provides a feedback loop for exploring production data, identifying drift, alerting on anomalies or data quality issues, triggering retraining jobs, measuring business impact, etc.
378
+ [**Feature Store:**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.