mlrun 1.7.0rc41__py3-none-any.whl → 1.7.0rc42__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

@@ -11,13 +11,14 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
- #
15
14
 
16
15
 
17
16
  from sqlalchemy import create_engine
18
17
  from sqlalchemy.engine import Engine
19
18
  from sqlalchemy.orm import Session
20
- from sqlalchemy.orm import sessionmaker as SessionMaker
19
+ from sqlalchemy.orm import (
20
+ sessionmaker as SessionMaker, # noqa: N812 - `sessionmaker` is a class
21
+ )
21
22
 
22
23
  from mlrun.config import config
23
24
 
@@ -77,7 +77,7 @@ class APIGatewaySpec(_APIGatewayBaseModel):
77
77
  name: str
78
78
  description: Optional[str]
79
79
  path: Optional[str] = "/"
80
- authenticationMode: Optional[APIGatewayAuthenticationMode] = (
80
+ authenticationMode: Optional[APIGatewayAuthenticationMode] = ( # noqa: N815 - for compatibility with Nuclio https://github.com/nuclio/nuclio/blob/672b8e36f9edd6e42b4685ec1d27cabae3c5f045/pkg/platform/types.go#L476
81
81
  APIGatewayAuthenticationMode.none
82
82
  )
83
83
  upstreams: list[APIGatewayUpstream]
@@ -103,11 +103,11 @@ class APIGateway(_APIGatewayBaseModel):
103
103
  ]
104
104
 
105
105
  def get_invoke_url(self):
106
- return (
107
- self.spec.host + self.spec.path
108
- if self.spec.path and self.spec.host
109
- else self.spec.host
110
- ).rstrip("/")
106
+ if self.spec.host and self.spec.path:
107
+ return f"{self.spec.host.rstrip('/')}/{self.spec.path.lstrip('/')}".rstrip(
108
+ "/"
109
+ )
110
+ return self.spec.host.rstrip("/")
111
111
 
112
112
  def enrich_mlrun_names(self):
113
113
  self._enrich_api_gateway_mlrun_name()
@@ -11,16 +11,16 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
- #
14
+
15
15
  import typing
16
16
 
17
17
  import pydantic
18
18
 
19
19
 
20
20
  class ImageBuilder(pydantic.BaseModel):
21
- functionSourceCode: typing.Optional[str] = None
22
- codeEntryType: typing.Optional[str] = None
23
- codeEntryAttributes: typing.Optional[str] = None
21
+ functionSourceCode: typing.Optional[str] = None # noqa: N815
22
+ codeEntryType: typing.Optional[str] = None # noqa: N815
23
+ codeEntryAttributes: typing.Optional[str] = None # noqa: N815
24
24
  source: typing.Optional[str] = None
25
25
  code_origin: typing.Optional[str] = None
26
26
  origin_filename: typing.Optional[str] = None
@@ -19,7 +19,7 @@ import pandas as pd
19
19
  import semver
20
20
 
21
21
 
22
- def _toPandas(spark_df):
22
+ def _to_pandas(spark_df):
23
23
  """
24
24
  Modified version of spark DataFrame.toPandas() -
25
25
  https://github.com/apache/spark/blob/v3.2.3/python/pyspark/sql/pandas/conversion.py#L35
@@ -262,9 +262,9 @@ def spark_df_to_pandas(spark_df):
262
262
  )
263
263
  type_conversion_dict[field.name] = "datetime64[ns]"
264
264
 
265
- df = _toPandas(spark_df)
265
+ df = _to_pandas(spark_df)
266
266
  if type_conversion_dict:
267
267
  df = df.astype(type_conversion_dict)
268
268
  return df
269
269
  else:
270
- return _toPandas(spark_df)
270
+ return _to_pandas(spark_df)
mlrun/errors.py CHANGED
@@ -29,11 +29,14 @@ class MLRunBaseError(Exception):
29
29
  pass
30
30
 
31
31
 
32
- class MLRunTaskNotReady(MLRunBaseError):
32
+ class MLRunTaskNotReadyError(MLRunBaseError):
33
33
  """indicate we are trying to read a value which is not ready
34
34
  or need to come from a job which is in progress"""
35
35
 
36
36
 
37
+ MLRunTaskNotReady = MLRunTaskNotReadyError # kept for BC only
38
+
39
+
37
40
  class MLRunHTTPError(MLRunBaseError, requests.HTTPError):
38
41
  def __init__(
39
42
  self,
@@ -205,15 +208,15 @@ class MLRunTimeoutError(MLRunHTTPStatusError, TimeoutError):
205
208
  error_status_code = HTTPStatus.GATEWAY_TIMEOUT.value
206
209
 
207
210
 
208
- class MLRunInvalidMMStoreType(MLRunHTTPStatusError, ValueError):
211
+ class MLRunInvalidMMStoreTypeError(MLRunHTTPStatusError, ValueError):
209
212
  error_status_code = HTTPStatus.BAD_REQUEST.value
210
213
 
211
214
 
212
- class MLRunStreamConnectionFailure(MLRunHTTPStatusError, ValueError):
215
+ class MLRunStreamConnectionFailureError(MLRunHTTPStatusError, ValueError):
213
216
  error_status_code = HTTPStatus.BAD_REQUEST.value
214
217
 
215
218
 
216
- class MLRunTSDBConnectionFailure(MLRunHTTPStatusError, ValueError):
219
+ class MLRunTSDBConnectionFailureError(MLRunHTTPStatusError, ValueError):
217
220
  error_status_code = HTTPStatus.BAD_REQUEST.value
218
221
 
219
222
 
@@ -1086,7 +1086,9 @@ class OfflineVectorResponse:
1086
1086
  def to_dataframe(self, to_pandas=True):
1087
1087
  """return result as dataframe"""
1088
1088
  if self.status != "completed":
1089
- raise mlrun.errors.MLRunTaskNotReady("feature vector dataset is not ready")
1089
+ raise mlrun.errors.MLRunTaskNotReadyError(
1090
+ "feature vector dataset is not ready"
1091
+ )
1090
1092
  return self._merger.get_df(to_pandas=to_pandas)
1091
1093
 
1092
1094
  def to_parquet(self, target_path, **kw):
@@ -156,7 +156,9 @@ class RemoteVectorResponse:
156
156
 
157
157
  def _is_ready(self):
158
158
  if self.status != "completed":
159
- raise mlrun.errors.MLRunTaskNotReady("feature vector dataset is not ready")
159
+ raise mlrun.errors.MLRunTaskNotReadyError(
160
+ "feature vector dataset is not ready"
161
+ )
160
162
  self.vector.reload()
161
163
 
162
164
  def to_dataframe(self, columns=None, df_module=None, **kwargs):
@@ -97,7 +97,7 @@ class SKLearnMLRunInterface(MLRunInterface, ABC):
97
97
 
98
98
  def wrapper(
99
99
  self: SKLearnTypes.ModelType,
100
- X: SKLearnTypes.DatasetType,
100
+ X: SKLearnTypes.DatasetType, # noqa: N803 - should be lowercase "x", kept for BC
101
101
  y: SKLearnTypes.DatasetType = None,
102
102
  *args,
103
103
  **kwargs,
@@ -124,7 +124,12 @@ class SKLearnMLRunInterface(MLRunInterface, ABC):
124
124
 
125
125
  return wrapper
126
126
 
127
- def mlrun_predict(self, X: SKLearnTypes.DatasetType, *args, **kwargs):
127
+ def mlrun_predict(
128
+ self,
129
+ X: SKLearnTypes.DatasetType, # noqa: N803 - should be lowercase "x", kept for BC
130
+ *args,
131
+ **kwargs,
132
+ ):
128
133
  """
129
134
  MLRun's wrapper for the common ML API predict method.
130
135
  """
@@ -136,7 +141,12 @@ class SKLearnMLRunInterface(MLRunInterface, ABC):
136
141
 
137
142
  return y_pred
138
143
 
139
- def mlrun_predict_proba(self, X: SKLearnTypes.DatasetType, *args, **kwargs):
144
+ def mlrun_predict_proba(
145
+ self,
146
+ X: SKLearnTypes.DatasetType, # noqa: N803 - should be lowercase "x", kept for BC
147
+ *args,
148
+ **kwargs,
149
+ ):
140
150
  """
141
151
  MLRun's wrapper for the common ML API predict_proba method.
142
152
  """
mlrun/model.py CHANGED
@@ -487,7 +487,7 @@ class ImageBuilder(ModelObj):
487
487
 
488
488
  def __init__(
489
489
  self,
490
- functionSourceCode=None,
490
+ functionSourceCode=None, # noqa: N803 - should be "snake_case", kept for BC
491
491
  source=None,
492
492
  image=None,
493
493
  base_image=None,
@@ -63,7 +63,7 @@ class ObjectStoreFactory(enum.Enum):
63
63
  :param value: Provided enum (invalid) value.
64
64
  """
65
65
  valid_values = list(cls.__members__.keys())
66
- raise mlrun.errors.MLRunInvalidMMStoreType(
66
+ raise mlrun.errors.MLRunInvalidMMStoreTypeError(
67
67
  f"{value} is not a valid endpoint store, please choose a valid value: %{valid_values}."
68
68
  )
69
69
 
@@ -101,7 +101,7 @@ def get_store_object(
101
101
 
102
102
  :return: `StoreBase` object. Using this object, the user can apply different operations such as write, update, get
103
103
  and delete a model endpoint record.
104
- :raise: `MLRunInvalidMMStoreType` if the user didn't provide store connection
104
+ :raise: `MLRunInvalidMMStoreTypeError` if the user didn't provide store connection
105
105
  or the provided store connection is invalid.
106
106
  """
107
107
 
@@ -123,7 +123,7 @@ def get_store_object(
123
123
  mlrun.common.schemas.model_monitoring.ModelEndpointTarget.V3IO_NOSQL
124
124
  )
125
125
  else:
126
- raise mlrun.errors.MLRunInvalidMMStoreType(
126
+ raise mlrun.errors.MLRunInvalidMMStoreTypeError(
127
127
  "You must provide a valid store connection by using "
128
128
  "set_model_monitoring_credentials API."
129
129
  )
@@ -57,7 +57,7 @@ class ObjectTSDBFactory(enum.Enum):
57
57
  :param value: Provided enum (invalid) value.
58
58
  """
59
59
  valid_values = list(cls.__members__.keys())
60
- raise mlrun.errors.MLRunInvalidMMStoreType(
60
+ raise mlrun.errors.MLRunInvalidMMStoreTypeError(
61
61
  f"{value} is not a valid tsdb, please choose a valid value: %{valid_values}."
62
62
  )
63
63
 
@@ -76,7 +76,7 @@ def get_tsdb_connector(
76
76
 
77
77
  :return: `TSDBConnector` object. The main goal of this object is to handle different operations on the
78
78
  TSDB connector such as updating drift metrics or write application record result.
79
- :raise: `MLRunInvalidMMStoreType` if the user didn't provide TSDB connection
79
+ :raise: `MLRunInvalidMMStoreTypeError` if the user didn't provide TSDB connection
80
80
  or the provided TSDB connection is invalid.
81
81
  """
82
82
 
@@ -93,7 +93,7 @@ def get_tsdb_connector(
93
93
  elif tsdb_connection_string and tsdb_connection_string == "v3io":
94
94
  tsdb_connector_type = mlrun.common.schemas.model_monitoring.TSDBTarget.V3IO_TSDB
95
95
  else:
96
- raise mlrun.errors.MLRunInvalidMMStoreType(
96
+ raise mlrun.errors.MLRunInvalidMMStoreTypeError(
97
97
  "You must provide a valid tsdb store connection by using "
98
98
  "set_model_monitoring_credentials API."
99
99
  )
@@ -68,7 +68,7 @@ class TDEngineConnector(TSDBConnector):
68
68
  try:
69
69
  conn.execute(f"USE {self.database}")
70
70
  except taosws.QueryError as e:
71
- raise mlrun.errors.MLRunTSDBConnectionFailure(
71
+ raise mlrun.errors.MLRunTSDBConnectionFailureError(
72
72
  f"Failed to use TDEngine database {self.database}, {mlrun.errors.err_to_str(e)}"
73
73
  )
74
74
  return conn
@@ -91,7 +91,7 @@ class TDEngineConnector(TSDBConnector):
91
91
  """Create TDEngine supertables."""
92
92
  for table in self.tables:
93
93
  create_table_query = self.tables[table]._create_super_table_query()
94
- self._connection.execute(create_table_query)
94
+ self.connection.execute(create_table_query)
95
95
 
96
96
  def write_application_event(
97
97
  self,
@@ -135,10 +135,10 @@ class TDEngineConnector(TSDBConnector):
135
135
  create_table_query = table._create_subtable_query(
136
136
  subtable=table_name, values=event
137
137
  )
138
- self._connection.execute(create_table_query)
138
+ self.connection.execute(create_table_query)
139
139
 
140
140
  insert_statement = table._insert_subtable_query(
141
- self._connection,
141
+ self.connection,
142
142
  subtable=table_name,
143
143
  values=event,
144
144
  )
@@ -204,12 +204,12 @@ class TDEngineConnector(TSDBConnector):
204
204
  get_subtable_names_query = self.tables[table]._get_subtables_query(
205
205
  values={mm_schemas.EventFieldType.PROJECT: self.project}
206
206
  )
207
- subtables = self._connection.query(get_subtable_names_query)
207
+ subtables = self.connection.query(get_subtable_names_query)
208
208
  for subtable in subtables:
209
209
  drop_query = self.tables[table]._drop_subtable_query(
210
210
  subtable=subtable[0]
211
211
  )
212
- self._connection.execute(drop_query)
212
+ self.connection.execute(drop_query)
213
213
  logger.info(
214
214
  f"Deleted all project resources in the TSDB connector for project {self.project}"
215
215
  )
@@ -281,7 +281,7 @@ class TDEngineConnector(TSDBConnector):
281
281
  database=self.database,
282
282
  )
283
283
  try:
284
- query_result = self._connection.query(full_query)
284
+ query_result = self.connection.query(full_query)
285
285
  except taosws.QueryError as e:
286
286
  raise mlrun.errors.MLRunInvalidArgumentError(
287
287
  f"Failed to query table {table} in database {self.database}, {str(e)}"
@@ -34,7 +34,7 @@ class _DefaultPackagerMeta(ABCMeta):
34
34
  dynamically generated docstring that will include a summary of the packager.
35
35
  """
36
36
 
37
- def __new__(mcls, name: str, bases: tuple, namespace: dict, **kwargs):
37
+ def __new__(cls, name: str, bases: tuple, namespace: dict, **kwargs):
38
38
  """
39
39
  Create a new DefaultPackager metaclass that saves the original packager docstring to another attribute named
40
40
  `_packager_doc`.
@@ -48,7 +48,7 @@ class _DefaultPackagerMeta(ABCMeta):
48
48
  namespace["_packager_doc"] = namespace.get("__doc__", "")
49
49
 
50
50
  # Continue creating the metaclass:
51
- return super().__new__(mcls, name, bases, namespace, **kwargs)
51
+ return super().__new__(cls, name, bases, namespace, **kwargs)
52
52
 
53
53
  @property
54
54
  def __doc__(cls: type["DefaultPackager"]) -> str:
mlrun/runtimes/funcdoc.py CHANGED
@@ -247,7 +247,7 @@ class ASTVisitor(ast.NodeVisitor):
247
247
  self.exprs.append(node)
248
248
  super().generic_visit(node)
249
249
 
250
- def visit_FunctionDef(self, node):
250
+ def visit_FunctionDef(self, node): # noqa: N802
251
251
  self.funcs.append(node)
252
252
  self.generic_visit(node)
253
253
 
@@ -451,7 +451,7 @@ class Spark3JobSpec(KubeResourceSpec):
451
451
  class Spark3Runtime(KubejobRuntime):
452
452
  group = "sparkoperator.k8s.io"
453
453
  version = "v1beta2"
454
- apiVersion = group + "/" + version
454
+ apiVersion = group + "/" + version # noqa: N815
455
455
  kind = "spark"
456
456
  plural = "sparkapplications"
457
457
 
@@ -13,7 +13,7 @@
13
13
  # limitations under the License.
14
14
 
15
15
  from v3io.dataplane import Client as V3IOClient
16
- from v3io_frames import Client as get_client
16
+ from v3io_frames import Client as V3IOFramesClient
17
17
  from v3io_frames.client import ClientBase
18
18
 
19
19
  _v3io_clients: dict[frozenset, V3IOClient] = {}
@@ -24,7 +24,7 @@ def get_frames_client(**kwargs) -> ClientBase:
24
24
  global _frames_clients
25
25
  kw_set = frozenset(kwargs.items())
26
26
  if kw_set not in _frames_clients:
27
- _frames_clients[kw_set] = get_client(**kwargs)
27
+ _frames_clients[kw_set] = V3IOFramesClient(**kwargs)
28
28
 
29
29
  return _frames_clients[kw_set]
30
30
 
@@ -1,4 +1,4 @@
1
1
  {
2
- "git_commit": "550d6e3ffdb88092249d9f4790fb5ec02723575b",
3
- "version": "1.7.0-rc41"
2
+ "git_commit": "4029300162894b90ff3b3a732f627cc20dd33257",
3
+ "version": "1.7.0-rc42"
4
4
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mlrun
3
- Version: 1.7.0rc41
3
+ Version: 1.7.0rc42
4
4
  Summary: Tracking and config of machine learning runs
5
5
  Home-page: https://github.com/mlrun/mlrun
6
6
  Author: Yaron Haviv
@@ -1,12 +1,12 @@
1
1
  mlrun/__init__.py,sha256=y08M1JcKXy5-9_5WaI9fn5aV5BxIQ5QkbduJK0OxWbA,7470
2
2
  mlrun/__main__.py,sha256=iAifncsrQQx6ozXXmz7GH1OiNl8PA7KS3TnwlxnHGeo,45890
3
3
  mlrun/config.py,sha256=5JqxZh9rbxdBV3yRyRbAzYkDVjwgvMOenaXHAlQZejY,66137
4
- mlrun/errors.py,sha256=i75KY-Wza1B3XpdD0xspxOI02TZMoarkQbJPZF5DB1U,7713
4
+ mlrun/errors.py,sha256=nY23dns_kTzbOrelJf0FyxLw5mglv7jo4Sx3efKS9Fs,7798
5
5
  mlrun/execution.py,sha256=o64-PAdOnLnT_CAHwyxpj7uJJVn7fh8tR5dpy1OnqBg,42188
6
6
  mlrun/features.py,sha256=m17K_3l9Jktwb9dOwlHLTAPTlemsWrRF7dJhXUX0iJU,15429
7
7
  mlrun/k8s_utils.py,sha256=WdUajadvAhTR7sAMQdwFqKeJMimuTyqm02VdwK1A4xU,7023
8
8
  mlrun/lists.py,sha256=3PqBdcajdwhTe1XuFsAaHTuFVM2kjwepf31qqE82apg,8384
9
- mlrun/model.py,sha256=0GYOHeLuPH3K8FXy6oVjECm-TFE9tl1lj6qgrJfMnFA,80567
9
+ mlrun/model.py,sha256=SE4WEGa8f1DrC-GQicErllrGtb6od-p37oripm09UfA,80619
10
10
  mlrun/render.py,sha256=n8SeY3ogVrsV02-7-H0lt1RmpkxGpbI-11RQx61Vq9E,13267
11
11
  mlrun/run.py,sha256=hNxV-TnixbH8MCos2jqz8jdTDlK7dBSvJMil_QoGKQI,43616
12
12
  mlrun/secrets.py,sha256=ibtCK79u7JVBZF6F0SP1-xXXF5MyrLEUs_TCWiJAnlc,7798
@@ -25,7 +25,7 @@ mlrun/common/helpers.py,sha256=DIdqs_eN3gO5bZ8iFobIvx8cEiOxYxhFIyut6-O69T0,1385
25
25
  mlrun/common/secrets.py,sha256=vc8WV82EZsCB5ENjUkObFOzZP59aZ1w8F82PTnqwBnc,5181
26
26
  mlrun/common/types.py,sha256=APVFvumnHpCG-yXlt6OSioMfkyT-DADPiW3dGG3dUFQ,1057
27
27
  mlrun/common/db/__init__.py,sha256=xY3wHC4TEJgez7qtnn1pQvHosi8-5UJOCtyGBS7FcGE,571
28
- mlrun/common/db/sql_session.py,sha256=Znc8KE2oLy4lg3_vRki1sVlNx59TgDSOTCXfU561hBU,2659
28
+ mlrun/common/db/sql_session.py,sha256=J6b-0xrnFb-8n_xdksPXeA8kArSMfAiSDN4n7iOhtus,2708
29
29
  mlrun/common/formatters/__init__.py,sha256=91yPb5xoLK7fTIOC5C7ndJMvyEBlQY6f0CjenLYbsZw,785
30
30
  mlrun/common/formatters/artifact.py,sha256=t4LmoWCFjPJ_YzzQCC2aMJwOeeLi84le979m6OTRyoM,1401
31
31
  mlrun/common/formatters/base.py,sha256=LHwWWnQJCmvlnOCCmG8YtJ_xzs0xBI8PujYDL5Ky9H4,4101
@@ -38,13 +38,13 @@ mlrun/common/model_monitoring/helpers.py,sha256=1CpxIDQPumFnpUB1eqcvCpLlyPFVeW2s
38
38
  mlrun/common/runtimes/constants.py,sha256=Rl0Sd8n_L7Imo-uF1LL9CJ5Szi0W1gUm36yrF8PXfSc,10989
39
39
  mlrun/common/schemas/__init__.py,sha256=CUX4F6VeowqX5PzakB7xgGs2lJZAN42RMm1asB-kf1c,5227
40
40
  mlrun/common/schemas/alert.py,sha256=NIotUCJjtw5aYA3CmxiDo2ch-Ba8r1Sj1WkJfYCtluM,6749
41
- mlrun/common/schemas/api_gateway.py,sha256=aEQ4rO5WyjAGIH7QJohctpftJi_SP4cTAfbmRi1ATwE,6920
41
+ mlrun/common/schemas/api_gateway.py,sha256=9ilorgLOiWxFZbv89-dbPNfVdaChlGOIdC4SLTxQwNI,7118
42
42
  mlrun/common/schemas/artifact.py,sha256=V3ngobnzI1v2eoOroWBEedjAZu0ntCSIQ-LzsOK1Z9k,3570
43
43
  mlrun/common/schemas/auth.py,sha256=5c4WSn3KdX1v04ttSQblkF_gyjdjuJSHG7BTCx4_LWM,6336
44
44
  mlrun/common/schemas/background_task.py,sha256=2qZxib2qrF_nPZj0ncitCG-2jxz2hg1qj0hFc8eswWQ,1707
45
45
  mlrun/common/schemas/client_spec.py,sha256=xQ_9S5i5q7vJmkp2_3IYD0FSYnWoAr1k-W9MU2ClgEU,2955
46
46
  mlrun/common/schemas/clusterization_spec.py,sha256=aeaFJZms7r7h2HDv6ML_GDAT6gboW-PxBbc3GKPalGk,888
47
- mlrun/common/schemas/common.py,sha256=nxtZDzs92-p0wygIhQ_SEU3J9QsJRKE4RsY18olLXyo,1613
47
+ mlrun/common/schemas/common.py,sha256=73KxUHF6gvTdI29qLWecmOWqpOxDpMbD8ypsK03GtEE,1654
48
48
  mlrun/common/schemas/constants.py,sha256=sTNCimttd7ytSZ3jxbftItw_HDGxPwY96Ub86OvcT9w,6660
49
49
  mlrun/common/schemas/datastore_profile.py,sha256=hJ8q54A8VZKsnOvSIjcllj4MZ1bBhb_EmBgsqpwSF_Y,750
50
50
  mlrun/common/schemas/events.py,sha256=ROHJLo_fqYjc96pek7yhAUPpPRIuAR76lwxvNz8LIr8,1026
@@ -75,7 +75,7 @@ mlrun/data_types/__init__.py,sha256=EkxfkFoHb91zz3Aymq-KZfCHlPMzEc3bBqgzPUwmHWY,
75
75
  mlrun/data_types/data_types.py,sha256=hWiL5TPOj9EK7_nd1yttLBUhXTmBYLDZzmG-hWzzhHE,4751
76
76
  mlrun/data_types/infer.py,sha256=z2EbSpR6xWEE5-HRUtDZkapHQld3xMbzXtTX83K-690,6134
77
77
  mlrun/data_types/spark.py,sha256=xfcr6lcaLcHepnrHavx_vacMJK7BC8FWsUKjwrjjn6w,9509
78
- mlrun/data_types/to_pandas.py,sha256=acCY2qYlCLC9Hy5S-9kwbyDHPM7zy4j8kzn4Fw9fTFM,11212
78
+ mlrun/data_types/to_pandas.py,sha256=-ZbJBg00x4xxyqqqu3AVbEh-HaO2--DrChyPuedRhHA,11215
79
79
  mlrun/datastore/__init__.py,sha256=8WvgHF245fvU9u98ctRqosvEmQ9iAKKIIS_dSgj_fmU,4153
80
80
  mlrun/datastore/alibaba_oss.py,sha256=-RMA4vCE4rar-D57Niy3tY_6bXKHLFpMp28z5YR7-jI,4888
81
81
  mlrun/datastore/azure_blob.py,sha256=9qkgrEMXGiuYYcc6b6HkuHlRHDbl0p7tIzeWxAAcEVs,12724
@@ -110,13 +110,13 @@ mlrun/feature_store/__init__.py,sha256=FhHRc8NdqL_HWpCs7A8dKruxJS5wEm55Gs3dcgBiR
110
110
  mlrun/feature_store/api.py,sha256=NZJ7Qp5L-0X08oI_xHTX6PukGq9Mt_9uU_KmVMbFB6s,49941
111
111
  mlrun/feature_store/common.py,sha256=mSlfEj_LIbtM-pNiIWUGIdX0Z0y5ZoH5nKow7KMc5VQ,12673
112
112
  mlrun/feature_store/feature_set.py,sha256=qD8RqkeoJFbJMMK5-zjs-27DC4UXQiQSokkt4pdMzkw,56027
113
- mlrun/feature_store/feature_vector.py,sha256=A29-yCsFgvFU_Qw53CgDjn8t_okh7Nm6FZuvcEaKci0,44134
113
+ mlrun/feature_store/feature_vector.py,sha256=HAhAX9peGdTBT_rbWRJyAnMM836OImMI3q7RbU7urjE,44169
114
114
  mlrun/feature_store/ingestion.py,sha256=kT3Hbz1PBjsJd-GPBm2ap0sg9-fiXxaSXoEIo-dOXpU,11361
115
115
  mlrun/feature_store/steps.py,sha256=kdOrYh3fAdamV-RYNr86cFg445h_pgSWlb1EHOsAZUM,29297
116
116
  mlrun/feature_store/retrieval/__init__.py,sha256=bwA4copPpLQi8fyoUAYtOyrlw0-6f3-Knct8GbJSvRg,1282
117
117
  mlrun/feature_store/retrieval/base.py,sha256=zgDsRsYQz8eqReKBEeTP0O4UoLoVYjWpO1o1gtvbjRA,30230
118
118
  mlrun/feature_store/retrieval/dask_merger.py,sha256=t60xciYp6StUQLEyFyI4JK5NpWkdBy2MGCs6beimaWU,5575
119
- mlrun/feature_store/retrieval/job.py,sha256=7ZgJwNtFxvMeOa_kTT6rpYmVUSHv5bLdDpkJ5chv8us,8558
119
+ mlrun/feature_store/retrieval/job.py,sha256=xNIe3fAZ-wQ_sVLG2iTMLrnWSRIJ3EbDR10mnUUiSKE,8593
120
120
  mlrun/feature_store/retrieval/local_merger.py,sha256=jM-8ta44PeNUc1cKMPs-TxrO9t8pXbwu_Tw8MZrLxUY,4513
121
121
  mlrun/feature_store/retrieval/spark_merger.py,sha256=n3WxFlrY0y5mJ-7U8GJJlv9QulG4WSUSdHY0xJjHzhY,10552
122
122
  mlrun/feature_store/retrieval/storey_merger.py,sha256=5YM0UPrLjGOobulHkowRO-1LuvFD2cm_0GxcpnTdu0I,6314
@@ -188,7 +188,7 @@ mlrun/frameworks/sklearn/__init__.py,sha256=BEPTw_VqxTFwcgb1B2DdDyEQaN57LrJgkX8_
188
188
  mlrun/frameworks/sklearn/estimator.py,sha256=T0SltgAqy8NQy7rkdBEItLjMOMjyN2clRfQXhimNx-o,5840
189
189
  mlrun/frameworks/sklearn/metric.py,sha256=57UVkkKgUz9xDGWILWfLkBqrLk8WvhsKMgwEflYrM0s,7089
190
190
  mlrun/frameworks/sklearn/metrics_library.py,sha256=mGMo_s4d1JpTBVm_6pfqqCRlGbpbMrPsJjyGd0a8nqE,12203
191
- mlrun/frameworks/sklearn/mlrun_interface.py,sha256=y4RsG_RI4KfPrPADU4Lsr8PF95_VRXJiUX6ez-ljrv0,14054
191
+ mlrun/frameworks/sklearn/mlrun_interface.py,sha256=NQZ3dnUFGUAQdcSf3aHTXPtXQJjRZZ_2q-GKOjnIe-A,14291
192
192
  mlrun/frameworks/sklearn/model_handler.py,sha256=h2fZGq8y_0okTq9ygsRtVwE3IduNYcUTf8OJyNA2xww,4695
193
193
  mlrun/frameworks/sklearn/utils.py,sha256=Cg_pSxUMvKe8vBSLQor6JM8u9_ccKJg4Rk5EPDzTsVo,1209
194
194
  mlrun/frameworks/tf_keras/__init__.py,sha256=OuDIC4NQ59x003KddYq_Vzd0LBYdjfpoJzz28-co0cs,10555
@@ -229,7 +229,7 @@ mlrun/model_monitoring/applications/evidently_base.py,sha256=6hzfO6s0jEVHj4R_puj
229
229
  mlrun/model_monitoring/applications/histogram_data_drift.py,sha256=OOPojE-KIP9rAPZ6va6uJOjqJOb3c8K_VAmITXZd918,13341
230
230
  mlrun/model_monitoring/applications/results.py,sha256=VVlu9Si7Tj2LNJzPQrp4_Qeyh9mxOVMu1Jwb5K2LfvY,3577
231
231
  mlrun/model_monitoring/db/__init__.py,sha256=6Ic-X3Fh9XLPYMytmevGNSs-Hii1rAjLLoFTSPwTguw,736
232
- mlrun/model_monitoring/db/stores/__init__.py,sha256=ZScmxeZZ3yZ84MocdDGRtvVIixSo0rAPiuLpavXTgJw,4737
232
+ mlrun/model_monitoring/db/stores/__init__.py,sha256=m6Z6rPQyaufq5oXF3HVUYGDN34biAX1JE1F6OxLN9B8,4752
233
233
  mlrun/model_monitoring/db/stores/base/__init__.py,sha256=JufJETW3BXzPhFwbRa8dMf7BFGGZKceIWIMgr5x9n9c,599
234
234
  mlrun/model_monitoring/db/stores/base/store.py,sha256=xaiaUwXDYYV1z6e17Ny9IiE3a7pSiEFg8nffdWHSq0A,7517
235
235
  mlrun/model_monitoring/db/stores/sqldb/__init__.py,sha256=6CsTXAxeLbbf8yfCADTaxmiavqwrLEdYFJ-qc5kgDAY,569
@@ -240,13 +240,13 @@ mlrun/model_monitoring/db/stores/sqldb/models/mysql.py,sha256=4SfjS0Rz6hSvZwU4s_
240
240
  mlrun/model_monitoring/db/stores/sqldb/models/sqlite.py,sha256=yJJZppbKj3PsOANS_DXAQFFHKX4cQcm6Pz2DoxRiXMk,1104
241
241
  mlrun/model_monitoring/db/stores/v3io_kv/__init__.py,sha256=6CsTXAxeLbbf8yfCADTaxmiavqwrLEdYFJ-qc5kgDAY,569
242
242
  mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py,sha256=zmN7MtxJnZUtBLGFNFVhQejZjLfxziymjUi7OHxS9H0,26819
243
- mlrun/model_monitoring/db/tsdb/__init__.py,sha256=_Mfa4gguX86OS1fQCxnt_QSaNh603-zPYAK8NjYk7t8,4040
243
+ mlrun/model_monitoring/db/tsdb/__init__.py,sha256=Zqh_27I2YAEHk9nl0Z6lUxP7VEfrgrpnwhmHsbi4jnA,4055
244
244
  mlrun/model_monitoring/db/tsdb/base.py,sha256=X89X763sDrShfRXE1N-p8k97E8NBs7O1QJFiO-CffLM,18583
245
245
  mlrun/model_monitoring/db/tsdb/helpers.py,sha256=0oUXc4aUkYtP2SGP6jTb3uPPKImIUsVsrb9otX9a7O4,1189
246
246
  mlrun/model_monitoring/db/tsdb/tdengine/__init__.py,sha256=vgBdsKaXUURKqIf3M0y4sRatmSVA4CQiJs7J5dcVBkQ,620
247
247
  mlrun/model_monitoring/db/tsdb/tdengine/schemas.py,sha256=dlb4DHtA6_5ZWKjRh9N-sFZZu8VCsg8LjKPRLm19woY,10506
248
248
  mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py,sha256=Hb0vcCBP-o0ET78mU4P32fnhUL65QZv-pMuv2lnCby4,1586
249
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py,sha256=fS3aZvFU177IKa-fhc_WLrFl1NOuHvl3yYvPMh9xvYw,18490
249
+ mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py,sha256=CaBTBi-skQzM9kvLjYWNc_I3yrAtvsaN3dAOefanh04,18489
250
250
  mlrun/model_monitoring/db/tsdb/v3io/__init__.py,sha256=aL3bfmQsUQ-sbvKGdNihFj8gLCK3mSys0qDcXtYOwgc,616
251
251
  mlrun/model_monitoring/db/tsdb/v3io/stream_graph_steps.py,sha256=mbmhN4f_F58ptVjhwoMF6ifZSdnZWhK7x8eNsWS39IA,6217
252
252
  mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py,sha256=1H-IBXPNJPRAaxDMGWpUU25QqfR87LpZbJ03vaJkICs,32858
@@ -258,7 +258,7 @@ mlrun/package/errors.py,sha256=LKF8SSaRIdbkB7JQz6b9U4mZV42Ebnf6ZHu4wKuWqK4,1204
258
258
  mlrun/package/packager.py,sha256=xE7U1njB2RXhmiA0kCSmA4i5j84Dd7Bt-H4Fk5OcVLk,15064
259
259
  mlrun/package/packagers_manager.py,sha256=g4XuqpKJGrGKYrA38FXZd9gquDv8KUcW1eXA-DesaMA,37161
260
260
  mlrun/package/packagers/__init__.py,sha256=rpxpuATMoxCMgHDaVamm0uwocy71e0CSXm85Q5X9tkU,769
261
- mlrun/package/packagers/default_packager.py,sha256=QaZyxm03fRTJy5OGBeyVvSpEqnWj3-hSQVbsCjlTpLM,26625
261
+ mlrun/package/packagers/default_packager.py,sha256=6hMBInkA0q8AyYuFfuA3XFrzbQNIcL2z_He0jl83qoo,26623
262
262
  mlrun/package/packagers/numpy_packagers.py,sha256=k7Vke41LOp1ExbXCKf4FyahBIDlBqSiYrGPMeH0yI7M,25602
263
263
  mlrun/package/packagers/pandas_packagers.py,sha256=KPOZj1yiHxV2b1iah4hlwoNQP4JKzt95Fe9Tn9OUPs8,35761
264
264
  mlrun/package/packagers/python_standard_library_packagers.py,sha256=p2IK18m_8sGbw8fPOuUVna-AXI8Nyjj2tz0pROKy3TQ,22322
@@ -278,7 +278,7 @@ mlrun/projects/project.py,sha256=prN4TlZnuQlsEy4z6FxCtcSSwWZH3T5ASFu-79lPkKo,185
278
278
  mlrun/runtimes/__init__.py,sha256=egLM94cDMUyQ1GVABdFGXUQcDhU70lP3k7qSnM_UnHY,9008
279
279
  mlrun/runtimes/base.py,sha256=JXWmTIcm3b0klGUOHDlyFNa3bUgsNzQIgWhUQpSZoE0,37692
280
280
  mlrun/runtimes/daskjob.py,sha256=JfK8rSPY-0SYnLJdtp_ts3oKyad0pA98th-2VntYzK0,19387
281
- mlrun/runtimes/funcdoc.py,sha256=CC9cWRPgBiM2sk4NJTqusjc6O9kZ-49vGA5WRPjREKE,9796
281
+ mlrun/runtimes/funcdoc.py,sha256=zRFHrJsV8rhDLJwoUhcfZ7Cs0j-tQ76DxwUqdXV_Wyc,9810
282
282
  mlrun/runtimes/function_reference.py,sha256=iWKRe4r2GTc5S8FOIASYUNLwwne8NqIui51PFr8Q4mg,4918
283
283
  mlrun/runtimes/generators.py,sha256=v28HdNgxdHvj888G1dTnUeQZz-D9iTO0hoGeZbCdiuQ,7241
284
284
  mlrun/runtimes/kubejob.py,sha256=ptBnMTIjukbEznkdixmbGvBqzujXrRzqNfP7ze6M76M,8660
@@ -302,7 +302,7 @@ mlrun/runtimes/nuclio/application/__init__.py,sha256=rRs5vasy_G9IyoTpYIjYDafGoL6
302
302
  mlrun/runtimes/nuclio/application/application.py,sha256=TbS3l8dZcIp4JouO0_g4tBbyw7oDpUql_cTLhBsBOWc,28975
303
303
  mlrun/runtimes/nuclio/application/reverse_proxy.go,sha256=JIIYae6bXzCLf3jXuu49KWPQYoXr_FDQ2Rbo1OWKAd0,3150
304
304
  mlrun/runtimes/sparkjob/__init__.py,sha256=_KPvk0qefeLtHO6lxQE_AMOGiMTG_OT48eRCE4Z2ldw,709
305
- mlrun/runtimes/sparkjob/spark3job.py,sha256=fj3iiqScXNR7wvnHXvgtvgvHkGNCKAvLBX9XF17dNeI,41027
305
+ mlrun/runtimes/sparkjob/spark3job.py,sha256=LjQgNpszpUUEN6qDT13N5AbbzadzV96plU_6hPjyRw4,41041
306
306
  mlrun/serving/__init__.py,sha256=-SMRV3q_5cGVPDxRslXPU0zGYZIygs0cSj7WKlOJJUc,1163
307
307
  mlrun/serving/merger.py,sha256=PXLn3A21FiLteJHaDSLm5xKNT-80eTTjfHUJnBX1gKY,6116
308
308
  mlrun/serving/remote.py,sha256=MrFByphQWmIsKXqw-MOwl2Q1hbtWReYVRKvlcKj9pfw,17980
@@ -330,7 +330,7 @@ mlrun/utils/logger.py,sha256=cag2J30-jynIHmHZ2J8RYmVMNhYBGgAoimc5sbk-A1U,10016
330
330
  mlrun/utils/regex.py,sha256=b0AUa2THS-ELzJj0grl5b8Stq609F2XomTZkD9SB1fQ,4900
331
331
  mlrun/utils/retryer.py,sha256=GzDMeATklqxcKSLYaFYcqioh8e5cbWRxA1_XKrGR1A4,7570
332
332
  mlrun/utils/singleton.py,sha256=p1Y-X0mPSs_At092GS-pZCA8CTR62HOqPU07_ZH6-To,869
333
- mlrun/utils/v3io_clients.py,sha256=F7zO2NaXSSih6B35LkwuKW_y2CdV5C1ztP-Xs2FsgpQ,1282
333
+ mlrun/utils/v3io_clients.py,sha256=0aCFiQFBmgdSeLzJr_nEP6SG-zyieSgH8RdtcUq4dc0,1294
334
334
  mlrun/utils/vault.py,sha256=xUiKL17dCXjwQJ33YRzQj0oadUXATlFWPzKKYAESoQk,10447
335
335
  mlrun/utils/notifications/__init__.py,sha256=eUzQDBxSQmMZASRY-YAnYS6tL5801P0wEjycp3Dvoe0,990
336
336
  mlrun/utils/notifications/notification_pusher.py,sha256=4ecV6JfCtvYpb0kl1-sdg4Cw6XTrAjmmh2olhUenesY,26752
@@ -342,11 +342,11 @@ mlrun/utils/notifications/notification/ipython.py,sha256=ZtVL30B_Ha0VGoo4LxO-voT
342
342
  mlrun/utils/notifications/notification/slack.py,sha256=wqpFGr5BTvFO5KuUSzFfxsgmyU1Ohq7fbrGeNe9TXOk,7006
343
343
  mlrun/utils/notifications/notification/webhook.py,sha256=cb9w1Mc8ENfJBdgan7iiVHK9eVls4-R3tUxmXM-P-8I,4746
344
344
  mlrun/utils/version/__init__.py,sha256=7kkrB7hEZ3cLXoWj1kPoDwo4MaswsI2JVOBpbKgPAgc,614
345
- mlrun/utils/version/version.json,sha256=vLx7yzlSxbxnUd6v7i0-lWVkOBkIeL8MjtTgVNk6EYM,89
345
+ mlrun/utils/version/version.json,sha256=mqkEUfdwFUqf_3Ele0tr9V8oeJRjKdz3MtgI3-7hidU,89
346
346
  mlrun/utils/version/version.py,sha256=eEW0tqIAkU9Xifxv8Z9_qsYnNhn3YH7NRAfM-pPLt1g,1878
347
- mlrun-1.7.0rc41.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
348
- mlrun-1.7.0rc41.dist-info/METADATA,sha256=rmTCEoIA6C8Ytj0UmiQaWsnnOR063AWycC0PxQ_To_U,19939
349
- mlrun-1.7.0rc41.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
350
- mlrun-1.7.0rc41.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
351
- mlrun-1.7.0rc41.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
352
- mlrun-1.7.0rc41.dist-info/RECORD,,
347
+ mlrun-1.7.0rc42.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
348
+ mlrun-1.7.0rc42.dist-info/METADATA,sha256=MBWiwfqpQkEbVJrHrfM0teH0Syf5gRPf9ufgSyrYoXo,19939
349
+ mlrun-1.7.0rc42.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
350
+ mlrun-1.7.0rc42.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
351
+ mlrun-1.7.0rc42.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
352
+ mlrun-1.7.0rc42.dist-info/RECORD,,