mlrun 1.7.0rc38__py3-none-any.whl → 1.7.0rc40__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/alerts/alert.py +30 -27
- mlrun/common/schemas/alert.py +3 -0
- mlrun/common/schemas/notification.py +1 -0
- mlrun/datastore/alibaba_oss.py +2 -2
- mlrun/datastore/azure_blob.py +6 -3
- mlrun/datastore/base.py +1 -1
- mlrun/datastore/dbfs_store.py +2 -2
- mlrun/datastore/google_cloud_storage.py +83 -20
- mlrun/datastore/s3.py +2 -2
- mlrun/datastore/sources.py +54 -0
- mlrun/datastore/targets.py +9 -53
- mlrun/db/httpdb.py +6 -1
- mlrun/errors.py +8 -0
- mlrun/execution.py +7 -0
- mlrun/feature_store/api.py +5 -0
- mlrun/feature_store/retrieval/job.py +1 -0
- mlrun/model.py +24 -3
- mlrun/model_monitoring/api.py +9 -0
- mlrun/model_monitoring/applications/_application_steps.py +36 -0
- mlrun/model_monitoring/applications/histogram_data_drift.py +15 -13
- mlrun/model_monitoring/controller.py +15 -11
- mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +5 -5
- mlrun/model_monitoring/db/tsdb/tdengine/schemas.py +85 -47
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +35 -7
- mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +3 -1
- mlrun/model_monitoring/helpers.py +16 -17
- mlrun/model_monitoring/stream_processing.py +2 -3
- mlrun/projects/pipelines.py +19 -30
- mlrun/projects/project.py +69 -51
- mlrun/run.py +8 -6
- mlrun/runtimes/__init__.py +4 -0
- mlrun/runtimes/nuclio/api_gateway.py +9 -0
- mlrun/runtimes/nuclio/application/application.py +112 -54
- mlrun/runtimes/nuclio/function.py +1 -1
- mlrun/utils/helpers.py +33 -2
- mlrun/utils/version/version.json +2 -2
- {mlrun-1.7.0rc38.dist-info → mlrun-1.7.0rc40.dist-info}/METADATA +8 -11
- {mlrun-1.7.0rc38.dist-info → mlrun-1.7.0rc40.dist-info}/RECORD +42 -42
- {mlrun-1.7.0rc38.dist-info → mlrun-1.7.0rc40.dist-info}/WHEEL +1 -1
- {mlrun-1.7.0rc38.dist-info → mlrun-1.7.0rc40.dist-info}/LICENSE +0 -0
- {mlrun-1.7.0rc38.dist-info → mlrun-1.7.0rc40.dist-info}/entry_points.txt +0 -0
- {mlrun-1.7.0rc38.dist-info → mlrun-1.7.0rc40.dist-info}/top_level.txt +0 -0
mlrun/projects/pipelines.py
CHANGED
|
@@ -447,7 +447,6 @@ class _PipelineRunner(abc.ABC):
|
|
|
447
447
|
namespace=None,
|
|
448
448
|
source=None,
|
|
449
449
|
notifications: list[mlrun.model.Notification] = None,
|
|
450
|
-
send_start_notification: bool = True,
|
|
451
450
|
) -> _PipelineRunStatus:
|
|
452
451
|
pass
|
|
453
452
|
|
|
@@ -567,7 +566,6 @@ class _KFPRunner(_PipelineRunner):
|
|
|
567
566
|
namespace=None,
|
|
568
567
|
source=None,
|
|
569
568
|
notifications: list[mlrun.model.Notification] = None,
|
|
570
|
-
send_start_notification: bool = True,
|
|
571
569
|
) -> _PipelineRunStatus:
|
|
572
570
|
pipeline_context.set(project, workflow_spec)
|
|
573
571
|
workflow_handler = _PipelineRunner._get_handler(
|
|
@@ -585,7 +583,8 @@ class _KFPRunner(_PipelineRunner):
|
|
|
585
583
|
"Notifications will only be sent if you wait for pipeline completion. "
|
|
586
584
|
"To use the new notification behavior, use the remote pipeline runner."
|
|
587
585
|
)
|
|
588
|
-
for notification
|
|
586
|
+
# for start message, fallback to old notification behavior
|
|
587
|
+
for notification in notifications or []:
|
|
589
588
|
project.notifiers.add_notification(
|
|
590
589
|
notification.kind, notification.params
|
|
591
590
|
)
|
|
@@ -616,13 +615,12 @@ class _KFPRunner(_PipelineRunner):
|
|
|
616
615
|
func_name=func.metadata.name,
|
|
617
616
|
exc_info=err_to_str(exc),
|
|
618
617
|
)
|
|
619
|
-
|
|
620
|
-
project.
|
|
621
|
-
|
|
622
|
-
|
|
623
|
-
|
|
624
|
-
|
|
625
|
-
)
|
|
618
|
+
project.notifiers.push_pipeline_start_message(
|
|
619
|
+
project.metadata.name,
|
|
620
|
+
project.get_param("commit_id", None),
|
|
621
|
+
run_id,
|
|
622
|
+
True,
|
|
623
|
+
)
|
|
626
624
|
pipeline_context.clear()
|
|
627
625
|
return _PipelineRunStatus(run_id, cls, project=project, workflow=workflow_spec)
|
|
628
626
|
|
|
@@ -670,7 +668,6 @@ class _LocalRunner(_PipelineRunner):
|
|
|
670
668
|
namespace=None,
|
|
671
669
|
source=None,
|
|
672
670
|
notifications: list[mlrun.model.Notification] = None,
|
|
673
|
-
send_start_notification: bool = True,
|
|
674
671
|
) -> _PipelineRunStatus:
|
|
675
672
|
pipeline_context.set(project, workflow_spec)
|
|
676
673
|
workflow_handler = _PipelineRunner._get_handler(
|
|
@@ -692,10 +689,9 @@ class _LocalRunner(_PipelineRunner):
|
|
|
692
689
|
project.set_source(source=source)
|
|
693
690
|
pipeline_context.workflow_artifact_path = artifact_path
|
|
694
691
|
|
|
695
|
-
|
|
696
|
-
project.
|
|
697
|
-
|
|
698
|
-
)
|
|
692
|
+
project.notifiers.push_pipeline_start_message(
|
|
693
|
+
project.metadata.name, pipeline_id=workflow_id
|
|
694
|
+
)
|
|
699
695
|
err = None
|
|
700
696
|
try:
|
|
701
697
|
workflow_handler(**workflow_spec.args)
|
|
@@ -755,22 +751,10 @@ class _RemoteRunner(_PipelineRunner):
|
|
|
755
751
|
namespace: str = None,
|
|
756
752
|
source: str = None,
|
|
757
753
|
notifications: list[mlrun.model.Notification] = None,
|
|
758
|
-
send_start_notification: bool = True,
|
|
759
754
|
) -> typing.Optional[_PipelineRunStatus]:
|
|
760
755
|
workflow_name = normalize_workflow_name(name=name, project_name=project.name)
|
|
761
756
|
workflow_id = None
|
|
762
757
|
|
|
763
|
-
# for start message, fallback to old notification behavior
|
|
764
|
-
if send_start_notification:
|
|
765
|
-
for notification in notifications or []:
|
|
766
|
-
project.notifiers.add_notification(
|
|
767
|
-
notification.kind, notification.params
|
|
768
|
-
)
|
|
769
|
-
# if a notification with `when=running` is provided, it will be used explicitly and others
|
|
770
|
-
# will be ignored
|
|
771
|
-
if "running" in notification.when:
|
|
772
|
-
break
|
|
773
|
-
|
|
774
758
|
# The returned engine for this runner is the engine of the workflow.
|
|
775
759
|
# In this way wait_for_completion/get_run_status would be executed by the correct pipeline runner.
|
|
776
760
|
inner_engine = get_workflow_engine(workflow_spec.engine)
|
|
@@ -870,9 +854,6 @@ class _RemoteRunner(_PipelineRunner):
|
|
|
870
854
|
state = mlrun_pipelines.common.models.RunStatuses.failed
|
|
871
855
|
else:
|
|
872
856
|
state = mlrun_pipelines.common.models.RunStatuses.running
|
|
873
|
-
project.notifiers.push_pipeline_start_message(
|
|
874
|
-
project.metadata.name,
|
|
875
|
-
)
|
|
876
857
|
pipeline_context.clear()
|
|
877
858
|
return _PipelineRunStatus(
|
|
878
859
|
run_id=workflow_id,
|
|
@@ -1078,6 +1059,13 @@ def load_and_run(
|
|
|
1078
1059
|
if load_only:
|
|
1079
1060
|
return
|
|
1080
1061
|
|
|
1062
|
+
# extract "start" notification if exists
|
|
1063
|
+
start_notifications = [
|
|
1064
|
+
notification
|
|
1065
|
+
for notification in context.get_notifications()
|
|
1066
|
+
if "running" in notification.when
|
|
1067
|
+
]
|
|
1068
|
+
|
|
1081
1069
|
workflow_log_message = workflow_name or workflow_path
|
|
1082
1070
|
context.logger.info(f"Running workflow {workflow_log_message} from remote")
|
|
1083
1071
|
run = project.run(
|
|
@@ -1093,6 +1081,7 @@ def load_and_run(
|
|
|
1093
1081
|
cleanup_ttl=cleanup_ttl,
|
|
1094
1082
|
engine=engine,
|
|
1095
1083
|
local=local,
|
|
1084
|
+
notifications=start_notifications,
|
|
1096
1085
|
)
|
|
1097
1086
|
context.log_result(key="workflow_id", value=run.run_id)
|
|
1098
1087
|
context.log_result(key="engine", value=run._engine.engine, commit=True)
|
mlrun/projects/project.py
CHANGED
|
@@ -517,17 +517,24 @@ def get_or_create_project(
|
|
|
517
517
|
parameters=parameters,
|
|
518
518
|
allow_cross_project=allow_cross_project,
|
|
519
519
|
)
|
|
520
|
-
logger.info("Project loaded successfully", project_name=name)
|
|
520
|
+
logger.info("Project loaded successfully", project_name=project.name)
|
|
521
521
|
return project
|
|
522
522
|
except mlrun.errors.MLRunNotFoundError:
|
|
523
|
-
logger.debug(
|
|
523
|
+
logger.debug(
|
|
524
|
+
"Project not found in db", project_name=name, user_project=user_project
|
|
525
|
+
)
|
|
524
526
|
|
|
525
527
|
spec_path = path.join(context, subpath or "", "project.yaml")
|
|
526
528
|
load_from_path = url or path.isfile(spec_path)
|
|
527
529
|
# do not nest under "try" or else the exceptions raised below will be logged along with the "not found" message
|
|
528
530
|
if load_from_path:
|
|
529
531
|
# loads a project from archive or local project.yaml
|
|
530
|
-
logger.info(
|
|
532
|
+
logger.info(
|
|
533
|
+
"Loading project from path",
|
|
534
|
+
project_name=name,
|
|
535
|
+
user_project=user_project,
|
|
536
|
+
path=url or context,
|
|
537
|
+
)
|
|
531
538
|
project = load_project(
|
|
532
539
|
context,
|
|
533
540
|
url,
|
|
@@ -544,7 +551,7 @@ def get_or_create_project(
|
|
|
544
551
|
|
|
545
552
|
logger.info(
|
|
546
553
|
"Project loaded successfully",
|
|
547
|
-
project_name=name,
|
|
554
|
+
project_name=project.name,
|
|
548
555
|
path=url or context,
|
|
549
556
|
stored_in_db=save,
|
|
550
557
|
)
|
|
@@ -562,7 +569,9 @@ def get_or_create_project(
|
|
|
562
569
|
save=save,
|
|
563
570
|
parameters=parameters,
|
|
564
571
|
)
|
|
565
|
-
logger.info(
|
|
572
|
+
logger.info(
|
|
573
|
+
"Project created successfully", project_name=project.name, stored_in_db=save
|
|
574
|
+
)
|
|
566
575
|
return project
|
|
567
576
|
|
|
568
577
|
|
|
@@ -2394,7 +2403,11 @@ class MlrunProject(ModelObj):
|
|
|
2394
2403
|
requirements: typing.Union[str, list[str]] = None,
|
|
2395
2404
|
requirements_file: str = "",
|
|
2396
2405
|
) -> tuple[str, str, mlrun.runtimes.BaseRuntime, dict]:
|
|
2397
|
-
if
|
|
2406
|
+
if (
|
|
2407
|
+
func is None
|
|
2408
|
+
and not _has_module(handler, kind)
|
|
2409
|
+
and mlrun.runtimes.RuntimeKinds.supports_from_notebook(kind)
|
|
2410
|
+
):
|
|
2398
2411
|
# if function path is not provided and it is not a module (no ".")
|
|
2399
2412
|
# use the current notebook as default
|
|
2400
2413
|
if is_ipython:
|
|
@@ -2973,7 +2986,6 @@ class MlrunProject(ModelObj):
|
|
|
2973
2986
|
source: str = None,
|
|
2974
2987
|
cleanup_ttl: int = None,
|
|
2975
2988
|
notifications: list[mlrun.model.Notification] = None,
|
|
2976
|
-
send_start_notification: bool = True,
|
|
2977
2989
|
) -> _PipelineRunStatus:
|
|
2978
2990
|
"""Run a workflow using kubeflow pipelines
|
|
2979
2991
|
|
|
@@ -3010,8 +3022,6 @@ class MlrunProject(ModelObj):
|
|
|
3010
3022
|
workflow and all its resources are deleted)
|
|
3011
3023
|
:param notifications:
|
|
3012
3024
|
List of notifications to send for workflow completion
|
|
3013
|
-
:param send_start_notification:
|
|
3014
|
-
Send a notification when the workflow starts
|
|
3015
3025
|
|
|
3016
3026
|
:returns: ~py:class:`~mlrun.projects.pipelines._PipelineRunStatus` instance
|
|
3017
3027
|
"""
|
|
@@ -3089,7 +3099,6 @@ class MlrunProject(ModelObj):
|
|
|
3089
3099
|
namespace=namespace,
|
|
3090
3100
|
source=source,
|
|
3091
3101
|
notifications=notifications,
|
|
3092
|
-
send_start_notification=send_start_notification,
|
|
3093
3102
|
)
|
|
3094
3103
|
# run is None when scheduling
|
|
3095
3104
|
if run and run.state == mlrun_pipelines.common.models.RunStatuses.failed:
|
|
@@ -3222,30 +3231,30 @@ class MlrunProject(ModelObj):
|
|
|
3222
3231
|
infrastructure functions. Important to note that you have to set the credentials before deploying any
|
|
3223
3232
|
model monitoring or serving function.
|
|
3224
3233
|
|
|
3225
|
-
:param access_key: Model
|
|
3226
|
-
:param endpoint_store_connection: Endpoint store connection string. By default, None.
|
|
3227
|
-
|
|
3228
|
-
|
|
3229
|
-
|
|
3230
|
-
|
|
3231
|
-
|
|
3232
|
-
|
|
3233
|
-
|
|
3234
|
-
|
|
3235
|
-
|
|
3236
|
-
|
|
3237
|
-
|
|
3238
|
-
|
|
3239
|
-
|
|
3240
|
-
custom topic, for example kafka://<some_kafka_broker>:<port>.
|
|
3234
|
+
:param access_key: Model monitoring access key for managing user permissions.
|
|
3235
|
+
:param endpoint_store_connection: Endpoint store connection string. By default, None. Options:
|
|
3236
|
+
|
|
3237
|
+
* None - will be set from the system configuration.
|
|
3238
|
+
* v3io - for v3io endpoint store, pass `v3io` and the system will generate the
|
|
3239
|
+
exact path.
|
|
3240
|
+
* MySQL/SQLite - for SQL endpoint store, provide the full connection string,
|
|
3241
|
+
for example: mysql+pymysql://<username>:<password>@<host>:<port>/<db_name>
|
|
3242
|
+
:param stream_path: Path to the model monitoring stream. By default, None. Options:
|
|
3243
|
+
|
|
3244
|
+
* None - will be set from the system configuration.
|
|
3245
|
+
* v3io - for v3io stream, pass `v3io` and the system will generate the exact
|
|
3246
|
+
path.
|
|
3247
|
+
* Kafka - for Kafka stream, provide the full connection string without custom
|
|
3248
|
+
topic, for example kafka://<some_kafka_broker>:<port>.
|
|
3241
3249
|
:param tsdb_connection: Connection string to the time series database. By default, None.
|
|
3242
3250
|
Options:
|
|
3243
|
-
|
|
3244
|
-
|
|
3245
|
-
|
|
3246
|
-
|
|
3247
|
-
|
|
3248
|
-
|
|
3251
|
+
|
|
3252
|
+
* None - will be set from the system configuration.
|
|
3253
|
+
* v3io - for v3io stream, pass `v3io` and the system will generate the exact
|
|
3254
|
+
path.
|
|
3255
|
+
* TDEngine - for TDEngine tsdb, provide the full websocket connection URL,
|
|
3256
|
+
for example taosws://<username>:<password>@<host>:<port>.
|
|
3257
|
+
:param replace_creds: If True, will override the existing credentials.
|
|
3249
3258
|
Please keep in mind that if you already enabled model monitoring on
|
|
3250
3259
|
your project this action can cause data loose and will require redeploying
|
|
3251
3260
|
all model monitoring functions & model monitoring infra
|
|
@@ -3351,7 +3360,8 @@ class MlrunProject(ModelObj):
|
|
|
3351
3360
|
* A dictionary of configurations to use when logging. Further info per object type and
|
|
3352
3361
|
artifact type can be given there. The artifact key must appear in the dictionary as
|
|
3353
3362
|
"key": "the_key".
|
|
3354
|
-
:param builder_env:
|
|
3363
|
+
:param builder_env: env vars dict for source archive config/credentials e.g. builder_env={"GIT_TOKEN":
|
|
3364
|
+
token}
|
|
3355
3365
|
:param reset_on_run: When True, function python modules would reload prior to code execution.
|
|
3356
3366
|
This ensures latest code changes are executed. This argument must be used in
|
|
3357
3367
|
conjunction with the local=True argument.
|
|
@@ -4061,7 +4071,7 @@ class MlrunProject(ModelObj):
|
|
|
4061
4071
|
mlrun.db.get_run_db().delete_api_gateway(name=name, project=self.name)
|
|
4062
4072
|
|
|
4063
4073
|
def store_alert_config(
|
|
4064
|
-
self, alert_data: AlertConfig, alert_name=None
|
|
4074
|
+
self, alert_data: AlertConfig, alert_name: typing.Optional[str] = None
|
|
4065
4075
|
) -> AlertConfig:
|
|
4066
4076
|
"""
|
|
4067
4077
|
Create/modify an alert.
|
|
@@ -4070,9 +4080,11 @@ class MlrunProject(ModelObj):
|
|
|
4070
4080
|
:param alert_name: The name of the alert.
|
|
4071
4081
|
:return: the created/modified alert.
|
|
4072
4082
|
"""
|
|
4083
|
+
if not alert_data:
|
|
4084
|
+
raise mlrun.errors.MLRunInvalidArgumentError("Alert data must be provided")
|
|
4085
|
+
|
|
4073
4086
|
db = mlrun.db.get_run_db(secrets=self._secrets)
|
|
4074
|
-
|
|
4075
|
-
alert_name = alert_data.name
|
|
4087
|
+
alert_name = alert_name or alert_data.name
|
|
4076
4088
|
if alert_data.project is not None and alert_data.project != self.metadata.name:
|
|
4077
4089
|
logger.warn(
|
|
4078
4090
|
"Project in alert does not match project in operation",
|
|
@@ -4375,18 +4387,17 @@ def _init_function_from_dict(
|
|
|
4375
4387
|
)
|
|
4376
4388
|
|
|
4377
4389
|
elif url.endswith(".py"):
|
|
4378
|
-
# when load_source_on_run is used we allow not providing image as code will be loaded pre-run. ML-4994
|
|
4379
|
-
if (
|
|
4380
|
-
not image
|
|
4381
|
-
and not project.default_image
|
|
4382
|
-
and kind != "local"
|
|
4383
|
-
and not project.spec.load_source_on_run
|
|
4384
|
-
):
|
|
4385
|
-
raise ValueError(
|
|
4386
|
-
"image must be provided with py code files which do not "
|
|
4387
|
-
"run on 'local' engine kind"
|
|
4388
|
-
)
|
|
4389
4390
|
if in_context and with_repo:
|
|
4391
|
+
# when load_source_on_run is used we allow not providing image as code will be loaded pre-run. ML-4994
|
|
4392
|
+
if (
|
|
4393
|
+
not image
|
|
4394
|
+
and not project.default_image
|
|
4395
|
+
and kind != "local"
|
|
4396
|
+
and not project.spec.load_source_on_run
|
|
4397
|
+
):
|
|
4398
|
+
raise ValueError(
|
|
4399
|
+
"image must be provided with py code files which do not run on 'local' engine kind"
|
|
4400
|
+
)
|
|
4390
4401
|
func = new_function(
|
|
4391
4402
|
name,
|
|
4392
4403
|
command=relative_url,
|
|
@@ -4408,7 +4419,6 @@ def _init_function_from_dict(
|
|
|
4408
4419
|
elif kind in mlrun.runtimes.RuntimeKinds.nuclio_runtimes():
|
|
4409
4420
|
func = new_function(
|
|
4410
4421
|
name,
|
|
4411
|
-
command=relative_url,
|
|
4412
4422
|
image=image,
|
|
4413
4423
|
kind=kind,
|
|
4414
4424
|
handler=handler,
|
|
@@ -4462,9 +4472,17 @@ def _init_function_from_obj(
|
|
|
4462
4472
|
def _has_module(handler, kind):
|
|
4463
4473
|
if not handler:
|
|
4464
4474
|
return False
|
|
4465
|
-
|
|
4466
|
-
|
|
4467
|
-
|
|
4475
|
+
|
|
4476
|
+
if (
|
|
4477
|
+
kind in mlrun.runtimes.RuntimeKinds.pure_nuclio_deployed_runtimes()
|
|
4478
|
+
and ":" in handler
|
|
4479
|
+
):
|
|
4480
|
+
return True
|
|
4481
|
+
|
|
4482
|
+
if "." in handler:
|
|
4483
|
+
return True
|
|
4484
|
+
|
|
4485
|
+
return False
|
|
4468
4486
|
|
|
4469
4487
|
|
|
4470
4488
|
def _is_imported_artifact(artifact):
|
mlrun/run.py
CHANGED
|
@@ -65,6 +65,7 @@ from .runtimes.nuclio.application import ApplicationRuntime
|
|
|
65
65
|
from .runtimes.utils import add_code_metadata, global_context
|
|
66
66
|
from .utils import (
|
|
67
67
|
RunKeys,
|
|
68
|
+
create_ipython_display,
|
|
68
69
|
extend_hub_uri_if_needed,
|
|
69
70
|
get_in,
|
|
70
71
|
logger,
|
|
@@ -744,11 +745,10 @@ def code_to_function(
|
|
|
744
745
|
raise ValueError("Databricks tasks only support embed_code=True")
|
|
745
746
|
|
|
746
747
|
if kind == RuntimeKinds.application:
|
|
747
|
-
|
|
748
|
-
|
|
749
|
-
|
|
750
|
-
|
|
751
|
-
filename, handler = ApplicationRuntime.get_filename_and_handler()
|
|
748
|
+
raise MLRunInvalidArgumentError(
|
|
749
|
+
"Embedding a code file is not supported for application runtime. "
|
|
750
|
+
"Code files should be specified via project/function source."
|
|
751
|
+
)
|
|
752
752
|
|
|
753
753
|
is_nuclio, sub_kind = RuntimeKinds.resolve_nuclio_sub_kind(kind)
|
|
754
754
|
code_origin = add_name(add_code_metadata(filename), name)
|
|
@@ -942,10 +942,12 @@ def wait_for_pipeline_completion(
|
|
|
942
942
|
if remote:
|
|
943
943
|
mldb = mlrun.db.get_run_db()
|
|
944
944
|
|
|
945
|
+
dag_display_id = create_ipython_display()
|
|
946
|
+
|
|
945
947
|
def _wait_for_pipeline_completion():
|
|
946
948
|
pipeline = mldb.get_pipeline(run_id, namespace=namespace, project=project)
|
|
947
949
|
pipeline_status = pipeline["run"]["status"]
|
|
948
|
-
show_kfp_run(pipeline,
|
|
950
|
+
show_kfp_run(pipeline, dag_display_id=dag_display_id, with_html=False)
|
|
949
951
|
if pipeline_status not in RunStatuses.stable_statuses():
|
|
950
952
|
logger.debug(
|
|
951
953
|
"Waiting for pipeline completion",
|
mlrun/runtimes/__init__.py
CHANGED
|
@@ -242,6 +242,10 @@ class RuntimeKinds:
|
|
|
242
242
|
# both spark and remote spark uses different mechanism for assigning images
|
|
243
243
|
return kind not in [RuntimeKinds.spark, RuntimeKinds.remotespark]
|
|
244
244
|
|
|
245
|
+
@staticmethod
|
|
246
|
+
def supports_from_notebook(kind):
|
|
247
|
+
return kind not in [RuntimeKinds.application]
|
|
248
|
+
|
|
245
249
|
@staticmethod
|
|
246
250
|
def resolve_nuclio_runtime(kind: str, sub_kind: str):
|
|
247
251
|
kind = kind.split(":")[0]
|
|
@@ -386,6 +386,7 @@ class APIGateway(ModelObj):
|
|
|
386
386
|
headers: dict = None,
|
|
387
387
|
credentials: Optional[tuple[str, str]] = None,
|
|
388
388
|
path: Optional[str] = None,
|
|
389
|
+
body: Optional[Union[str, bytes, dict]] = None,
|
|
389
390
|
**kwargs,
|
|
390
391
|
):
|
|
391
392
|
"""
|
|
@@ -396,6 +397,7 @@ class APIGateway(ModelObj):
|
|
|
396
397
|
:param credentials: (Optional[tuple[str, str]], optional) The (username,password) for the invocation if required
|
|
397
398
|
can also be set by the environment variable (_, V3IO_ACCESS_KEY) for access key authentication.
|
|
398
399
|
:param path: (str, optional) The sub-path for the invocation.
|
|
400
|
+
:param body: (Optional[Union[str, bytes, dict]]) The body of the invocation.
|
|
399
401
|
:param kwargs: (dict) Additional keyword arguments.
|
|
400
402
|
|
|
401
403
|
:return: The response from the API gateway invocation.
|
|
@@ -444,6 +446,13 @@ class APIGateway(ModelObj):
|
|
|
444
446
|
"API Gateway invocation requires authentication. Please set V3IO_ACCESS_KEY env var"
|
|
445
447
|
)
|
|
446
448
|
url = urljoin(self.invoke_url, path or "")
|
|
449
|
+
|
|
450
|
+
# Determine the correct keyword argument for the body
|
|
451
|
+
if isinstance(body, dict):
|
|
452
|
+
kwargs["json"] = body
|
|
453
|
+
elif isinstance(body, (str, bytes)):
|
|
454
|
+
kwargs["data"] = body
|
|
455
|
+
|
|
447
456
|
return requests.request(
|
|
448
457
|
method=method,
|
|
449
458
|
url=url,
|