mlrun 1.7.0rc33__py3-none-any.whl → 1.7.0rc35__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/artifacts/base.py +1 -0
- mlrun/common/schemas/__init__.py +1 -1
- mlrun/common/schemas/common.py +3 -0
- mlrun/common/schemas/function.py +7 -0
- mlrun/common/schemas/model_monitoring/__init__.py +1 -2
- mlrun/common/schemas/model_monitoring/constants.py +3 -16
- mlrun/common/schemas/notification.py +1 -1
- mlrun/common/schemas/project.py +35 -3
- mlrun/common/types.py +1 -0
- mlrun/config.py +6 -7
- mlrun/datastore/sources.py +8 -4
- mlrun/db/base.py +7 -5
- mlrun/db/httpdb.py +10 -8
- mlrun/execution.py +1 -3
- mlrun/model.py +143 -23
- mlrun/model_monitoring/applications/context.py +13 -15
- mlrun/model_monitoring/applications/evidently_base.py +4 -5
- mlrun/model_monitoring/db/stores/sqldb/sql_store.py +5 -0
- mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +2 -2
- mlrun/model_monitoring/db/tsdb/base.py +6 -3
- mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py +0 -3
- mlrun/model_monitoring/db/tsdb/v3io/stream_graph_steps.py +22 -3
- mlrun/model_monitoring/stream_processing.py +5 -153
- mlrun/projects/pipelines.py +76 -73
- mlrun/projects/project.py +7 -1
- mlrun/run.py +26 -9
- mlrun/runtimes/nuclio/api_gateway.py +22 -6
- mlrun/runtimes/nuclio/application/application.py +62 -11
- mlrun/runtimes/nuclio/function.py +8 -0
- mlrun/runtimes/nuclio/serving.py +6 -6
- mlrun/runtimes/pod.py +2 -4
- mlrun/serving/server.py +12 -7
- mlrun/serving/states.py +16 -2
- mlrun/utils/db.py +3 -0
- mlrun/utils/helpers.py +30 -19
- mlrun/utils/notifications/notification/webhook.py +8 -1
- mlrun/utils/version/version.json +2 -2
- {mlrun-1.7.0rc33.dist-info → mlrun-1.7.0rc35.dist-info}/METADATA +4 -2
- {mlrun-1.7.0rc33.dist-info → mlrun-1.7.0rc35.dist-info}/RECORD +43 -44
- {mlrun-1.7.0rc33.dist-info → mlrun-1.7.0rc35.dist-info}/WHEEL +1 -1
- mlrun/model_monitoring/prometheus.py +0 -216
- {mlrun-1.7.0rc33.dist-info → mlrun-1.7.0rc35.dist-info}/LICENSE +0 -0
- {mlrun-1.7.0rc33.dist-info → mlrun-1.7.0rc35.dist-info}/entry_points.txt +0 -0
- {mlrun-1.7.0rc33.dist-info → mlrun-1.7.0rc35.dist-info}/top_level.txt +0 -0
|
@@ -23,7 +23,7 @@ import mlrun.model_monitoring.applications.base as mm_base
|
|
|
23
23
|
import mlrun.model_monitoring.applications.context as mm_context
|
|
24
24
|
from mlrun.errors import MLRunIncompatibleVersionError
|
|
25
25
|
|
|
26
|
-
SUPPORTED_EVIDENTLY_VERSION = semver.Version.parse("0.4.
|
|
26
|
+
SUPPORTED_EVIDENTLY_VERSION = semver.Version.parse("0.4.32")
|
|
27
27
|
|
|
28
28
|
|
|
29
29
|
def _check_evidently_version(*, cur: semver.Version, ref: semver.Version) -> None:
|
|
@@ -57,12 +57,11 @@ except ModuleNotFoundError:
|
|
|
57
57
|
|
|
58
58
|
|
|
59
59
|
if _HAS_EVIDENTLY:
|
|
60
|
-
from evidently.renderers.notebook_utils import determine_template
|
|
61
60
|
from evidently.report.report import Report
|
|
62
61
|
from evidently.suite.base_suite import Suite
|
|
63
62
|
from evidently.ui.type_aliases import STR_UUID
|
|
64
63
|
from evidently.ui.workspace import Workspace
|
|
65
|
-
from evidently.utils.dashboard import TemplateParams
|
|
64
|
+
from evidently.utils.dashboard import TemplateParams, file_html_template
|
|
66
65
|
|
|
67
66
|
|
|
68
67
|
class EvidentlyModelMonitoringApplicationBase(mm_base.ModelMonitoringApplicationBase):
|
|
@@ -123,7 +122,7 @@ class EvidentlyModelMonitoringApplicationBase(mm_base.ModelMonitoringApplication
|
|
|
123
122
|
additional_graphs={},
|
|
124
123
|
)
|
|
125
124
|
|
|
126
|
-
dashboard_html = self._render(
|
|
125
|
+
dashboard_html = self._render(file_html_template, template_params)
|
|
127
126
|
self.context.log_artifact(
|
|
128
127
|
artifact_name, body=dashboard_html.encode("utf-8"), format="html"
|
|
129
128
|
)
|
|
@@ -201,7 +200,7 @@ class EvidentlyModelMonitoringApplicationBaseV2(
|
|
|
201
200
|
additional_graphs={},
|
|
202
201
|
)
|
|
203
202
|
|
|
204
|
-
dashboard_html = self._render(
|
|
203
|
+
dashboard_html = self._render(file_html_template, template_params)
|
|
205
204
|
monitoring_context.log_artifact(
|
|
206
205
|
artifact_name, body=dashboard_html.encode("utf-8"), format="html"
|
|
207
206
|
)
|
|
@@ -177,6 +177,11 @@ class SQLStoreBase(StoreBase):
|
|
|
177
177
|
param table: SQLAlchemy declarative table.
|
|
178
178
|
:param criteria: A list of binary expressions that filter the query.
|
|
179
179
|
"""
|
|
180
|
+
if not self._engine.has_table(table.__tablename__):
|
|
181
|
+
logger.debug(
|
|
182
|
+
f"Table {table.__tablename__} does not exist in the database. Skipping deletion."
|
|
183
|
+
)
|
|
184
|
+
return
|
|
180
185
|
with create_session(dsn=self._sql_connection_string) as session:
|
|
181
186
|
# Generate and commit the delete query
|
|
182
187
|
session.query(
|
|
@@ -408,14 +408,14 @@ class KVStoreBase(StoreBase):
|
|
|
408
408
|
|
|
409
409
|
"""
|
|
410
410
|
try:
|
|
411
|
-
|
|
411
|
+
response = self.client.kv.get(
|
|
412
412
|
container=self._get_monitoring_schedules_container(
|
|
413
413
|
project_name=self.project
|
|
414
414
|
),
|
|
415
415
|
table_path=endpoint_id,
|
|
416
416
|
key=application_name,
|
|
417
417
|
)
|
|
418
|
-
return
|
|
418
|
+
return response.output.item[mm_schemas.SchedulingKeys.LAST_ANALYZED]
|
|
419
419
|
except v3io.dataplane.response.HttpResponseError as err:
|
|
420
420
|
logger.debug("Error while getting last analyzed time", err=err)
|
|
421
421
|
raise mlrun.errors.MLRunNotFoundError(
|
|
@@ -27,7 +27,7 @@ from mlrun.utils import logger
|
|
|
27
27
|
class TSDBConnector(ABC):
|
|
28
28
|
type: typing.ClassVar[str]
|
|
29
29
|
|
|
30
|
-
def __init__(self, project: str):
|
|
30
|
+
def __init__(self, project: str) -> None:
|
|
31
31
|
"""
|
|
32
32
|
Initialize a new TSDB connector. The connector is used to interact with the TSDB and store monitoring data.
|
|
33
33
|
At the moment we have 3 different types of monitoring data:
|
|
@@ -42,10 +42,10 @@ class TSDBConnector(ABC):
|
|
|
42
42
|
writer.
|
|
43
43
|
|
|
44
44
|
:param project: the name of the project.
|
|
45
|
-
|
|
46
45
|
"""
|
|
47
46
|
self.project = project
|
|
48
47
|
|
|
48
|
+
@abstractmethod
|
|
49
49
|
def apply_monitoring_stream_steps(self, graph):
|
|
50
50
|
"""
|
|
51
51
|
Apply TSDB steps on the provided monitoring graph. Throughout these steps, the graph stores live data of
|
|
@@ -58,6 +58,7 @@ class TSDBConnector(ABC):
|
|
|
58
58
|
"""
|
|
59
59
|
pass
|
|
60
60
|
|
|
61
|
+
@abstractmethod
|
|
61
62
|
def write_application_event(
|
|
62
63
|
self,
|
|
63
64
|
event: dict,
|
|
@@ -69,13 +70,14 @@ class TSDBConnector(ABC):
|
|
|
69
70
|
:raise mlrun.errors.MLRunRuntimeError: If an error occurred while writing the event.
|
|
70
71
|
"""
|
|
71
72
|
|
|
73
|
+
@abstractmethod
|
|
72
74
|
def delete_tsdb_resources(self):
|
|
73
75
|
"""
|
|
74
76
|
Delete all project resources in the TSDB connector, such as model endpoints data and drift results.
|
|
75
77
|
"""
|
|
76
|
-
|
|
77
78
|
pass
|
|
78
79
|
|
|
80
|
+
@abstractmethod
|
|
79
81
|
def get_model_endpoint_real_time_metrics(
|
|
80
82
|
self,
|
|
81
83
|
endpoint_id: str,
|
|
@@ -102,6 +104,7 @@ class TSDBConnector(ABC):
|
|
|
102
104
|
"""
|
|
103
105
|
pass
|
|
104
106
|
|
|
107
|
+
@abstractmethod
|
|
105
108
|
def create_tables(self) -> None:
|
|
106
109
|
"""
|
|
107
110
|
Create the TSDB tables using the TSDB connector. At the moment we support 3 types of tables:
|
|
@@ -11,7 +11,6 @@
|
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
|
-
#
|
|
15
14
|
|
|
16
15
|
import json
|
|
17
16
|
|
|
@@ -21,8 +20,6 @@ from mlrun.common.schemas.model_monitoring import (
|
|
|
21
20
|
EventKeyMetrics,
|
|
22
21
|
)
|
|
23
22
|
|
|
24
|
-
_TABLE_COLUMN = "table_column"
|
|
25
|
-
|
|
26
23
|
|
|
27
24
|
class ProcessBeforeTDEngine(mlrun.feature_store.steps.MapClass):
|
|
28
25
|
def __init__(self, **kwargs):
|
|
@@ -11,7 +11,8 @@
|
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
|
-
|
|
14
|
+
|
|
15
|
+
from typing import Any
|
|
15
16
|
|
|
16
17
|
import mlrun.feature_store.steps
|
|
17
18
|
from mlrun.common.schemas.model_monitoring import (
|
|
@@ -21,6 +22,24 @@ from mlrun.common.schemas.model_monitoring import (
|
|
|
21
22
|
)
|
|
22
23
|
|
|
23
24
|
|
|
25
|
+
def _normalize_dict_for_v3io_frames(event: dict[str, Any]) -> dict[str, Any]:
|
|
26
|
+
"""
|
|
27
|
+
Normalize user defined keys - input data to a model and its predictions,
|
|
28
|
+
to a form V3IO frames tolerates.
|
|
29
|
+
|
|
30
|
+
The dictionary keys should conform to '^[a-zA-Z_:]([a-zA-Z0-9_:])*$'.
|
|
31
|
+
"""
|
|
32
|
+
prefix = "_"
|
|
33
|
+
|
|
34
|
+
def norm_key(key: str) -> str:
|
|
35
|
+
key = key.replace("-", "_") # hyphens `-` are not allowed
|
|
36
|
+
if key and key[0].isdigit(): # starting with a digit is not allowed
|
|
37
|
+
return prefix + key
|
|
38
|
+
return key
|
|
39
|
+
|
|
40
|
+
return {norm_key(k): v for k, v in event.items()}
|
|
41
|
+
|
|
42
|
+
|
|
24
43
|
class ProcessBeforeTSDB(mlrun.feature_store.steps.MapClass):
|
|
25
44
|
def __init__(self, **kwargs):
|
|
26
45
|
"""
|
|
@@ -68,8 +87,8 @@ class ProcessBeforeTSDB(mlrun.feature_store.steps.MapClass):
|
|
|
68
87
|
# endpoint_features includes the event values of each feature and prediction
|
|
69
88
|
endpoint_features = {
|
|
70
89
|
EventFieldType.RECORD_TYPE: EventKeyMetrics.ENDPOINT_FEATURES,
|
|
71
|
-
**event[EventFieldType.NAMED_PREDICTIONS],
|
|
72
|
-
**event[EventFieldType.NAMED_FEATURES],
|
|
90
|
+
**_normalize_dict_for_v3io_frames(event[EventFieldType.NAMED_PREDICTIONS]),
|
|
91
|
+
**_normalize_dict_for_v3io_frames(event[EventFieldType.NAMED_FEATURES]),
|
|
73
92
|
**base_event,
|
|
74
93
|
}
|
|
75
94
|
# Create a dictionary that includes both base_metrics and endpoint_features
|
|
@@ -27,7 +27,6 @@ import mlrun.datastore.targets
|
|
|
27
27
|
import mlrun.feature_store as fstore
|
|
28
28
|
import mlrun.feature_store.steps
|
|
29
29
|
import mlrun.model_monitoring.db
|
|
30
|
-
import mlrun.model_monitoring.prometheus
|
|
31
30
|
import mlrun.serving.states
|
|
32
31
|
import mlrun.utils
|
|
33
32
|
from mlrun.common.schemas.model_monitoring.constants import (
|
|
@@ -37,7 +36,6 @@ from mlrun.common.schemas.model_monitoring.constants import (
|
|
|
37
36
|
FileTargetKind,
|
|
38
37
|
ModelEndpointTarget,
|
|
39
38
|
ProjectSecretKeys,
|
|
40
|
-
PrometheusEndpoints,
|
|
41
39
|
)
|
|
42
40
|
from mlrun.utils import logger
|
|
43
41
|
|
|
@@ -172,39 +170,12 @@ class EventStreamProcessor:
|
|
|
172
170
|
fn.set_topology(mlrun.serving.states.StepKinds.flow),
|
|
173
171
|
)
|
|
174
172
|
|
|
175
|
-
# Event routing based on the provided path
|
|
176
|
-
def apply_event_routing():
|
|
177
|
-
typing.cast(
|
|
178
|
-
mlrun.serving.TaskStep,
|
|
179
|
-
graph.add_step(
|
|
180
|
-
"EventRouting",
|
|
181
|
-
full_event=True,
|
|
182
|
-
project=self.project,
|
|
183
|
-
),
|
|
184
|
-
).respond()
|
|
185
|
-
|
|
186
|
-
apply_event_routing()
|
|
187
|
-
|
|
188
|
-
# Filter out events with '-' in the path basename from going forward
|
|
189
|
-
# through the next steps of the stream graph
|
|
190
|
-
def apply_storey_filter_stream_events():
|
|
191
|
-
# Filter events with Prometheus endpoints path
|
|
192
|
-
graph.add_step(
|
|
193
|
-
"storey.Filter",
|
|
194
|
-
"filter_stream_event",
|
|
195
|
-
_fn=f"(event.path not in {PrometheusEndpoints.list()})",
|
|
196
|
-
full_event=True,
|
|
197
|
-
)
|
|
198
|
-
|
|
199
|
-
apply_storey_filter_stream_events()
|
|
200
|
-
|
|
201
173
|
# Process endpoint event: splitting into sub-events and validate event data
|
|
202
174
|
def apply_process_endpoint_event():
|
|
203
175
|
graph.add_step(
|
|
204
176
|
"ProcessEndpointEvent",
|
|
205
177
|
full_event=True,
|
|
206
178
|
project=self.project,
|
|
207
|
-
after="filter_stream_event",
|
|
208
179
|
)
|
|
209
180
|
|
|
210
181
|
apply_process_endpoint_event()
|
|
@@ -324,33 +295,10 @@ class EventStreamProcessor:
|
|
|
324
295
|
|
|
325
296
|
apply_storey_sample_window()
|
|
326
297
|
|
|
327
|
-
|
|
328
|
-
|
|
329
|
-
|
|
330
|
-
|
|
331
|
-
)
|
|
332
|
-
tsdb_connector.apply_monitoring_stream_steps(graph=graph)
|
|
333
|
-
|
|
334
|
-
else:
|
|
335
|
-
# Prometheus
|
|
336
|
-
# Increase the prediction counter by 1 and update the latency value
|
|
337
|
-
graph.add_step(
|
|
338
|
-
"IncCounter",
|
|
339
|
-
name="IncCounter",
|
|
340
|
-
after="MapFeatureNames",
|
|
341
|
-
project=self.project,
|
|
342
|
-
)
|
|
343
|
-
|
|
344
|
-
# Record a sample of features and labels
|
|
345
|
-
def apply_record_features_to_prometheus():
|
|
346
|
-
graph.add_step(
|
|
347
|
-
"RecordFeatures",
|
|
348
|
-
name="RecordFeaturesToPrometheus",
|
|
349
|
-
after="sample",
|
|
350
|
-
project=self.project,
|
|
351
|
-
)
|
|
352
|
-
|
|
353
|
-
apply_record_features_to_prometheus()
|
|
298
|
+
tsdb_connector = mlrun.model_monitoring.get_tsdb_connector(
|
|
299
|
+
project=self.project, secret_provider=secret_provider
|
|
300
|
+
)
|
|
301
|
+
tsdb_connector.apply_monitoring_stream_steps(graph=graph)
|
|
354
302
|
|
|
355
303
|
# Parquet branch
|
|
356
304
|
# Filter and validate different keys before writing the data to Parquet target
|
|
@@ -542,11 +490,7 @@ class ProcessEndpointEvent(mlrun.feature_store.steps.MapClass):
|
|
|
542
490
|
error = event.get("error")
|
|
543
491
|
if error:
|
|
544
492
|
self.error_count[endpoint_id] += 1
|
|
545
|
-
|
|
546
|
-
project=self.project,
|
|
547
|
-
endpoint_id=event["endpoint_id"],
|
|
548
|
-
model_name=event["model"],
|
|
549
|
-
)
|
|
493
|
+
# TODO: write to tsdb / kv once in a while
|
|
550
494
|
raise mlrun.errors.MLRunInvalidArgumentError(str(error))
|
|
551
495
|
|
|
552
496
|
# Validate event fields
|
|
@@ -973,98 +917,6 @@ class InferSchema(mlrun.feature_store.steps.MapClass):
|
|
|
973
917
|
return event
|
|
974
918
|
|
|
975
919
|
|
|
976
|
-
class EventRouting(mlrun.feature_store.steps.MapClass):
|
|
977
|
-
"""
|
|
978
|
-
Router the event according to the configured path under event.path. Please note that this step returns the result
|
|
979
|
-
to the caller. At the moment there are several paths:
|
|
980
|
-
|
|
981
|
-
- /model-monitoring-metrics (GET): return Prometheus registry results as a text. Will be used by Prometheus client
|
|
982
|
-
to scrape the results from the monitoring stream memory.
|
|
983
|
-
|
|
984
|
-
- /monitoring-batch-metrics (POST): update the Prometheus registry with the provided statistical metrics such as the
|
|
985
|
-
statistical metrics from the monitoring batch job. Note that the event body is a list of dictionaries of different
|
|
986
|
-
metrics.
|
|
987
|
-
|
|
988
|
-
- /monitoring-drift-status (POST): update the Prometheus registry with the provided model drift status.
|
|
989
|
-
|
|
990
|
-
"""
|
|
991
|
-
|
|
992
|
-
def __init__(
|
|
993
|
-
self,
|
|
994
|
-
project: str,
|
|
995
|
-
**kwargs,
|
|
996
|
-
):
|
|
997
|
-
super().__init__(**kwargs)
|
|
998
|
-
self.project: str = project
|
|
999
|
-
|
|
1000
|
-
def do(self, event):
|
|
1001
|
-
if event.path == PrometheusEndpoints.MODEL_MONITORING_METRICS:
|
|
1002
|
-
# Return a parsed Prometheus registry file
|
|
1003
|
-
event.body = mlrun.model_monitoring.prometheus.get_registry()
|
|
1004
|
-
elif event.path == PrometheusEndpoints.MONITORING_BATCH_METRICS:
|
|
1005
|
-
# Update statistical metrics
|
|
1006
|
-
for event_metric in event.body:
|
|
1007
|
-
mlrun.model_monitoring.prometheus.write_drift_metrics(
|
|
1008
|
-
project=self.project,
|
|
1009
|
-
endpoint_id=event_metric[EventFieldType.ENDPOINT_ID],
|
|
1010
|
-
metric=event_metric[EventFieldType.METRIC],
|
|
1011
|
-
value=event_metric[EventFieldType.VALUE],
|
|
1012
|
-
)
|
|
1013
|
-
elif event.path == PrometheusEndpoints.MONITORING_DRIFT_STATUS:
|
|
1014
|
-
# Update drift status
|
|
1015
|
-
mlrun.model_monitoring.prometheus.write_drift_status(
|
|
1016
|
-
project=self.project,
|
|
1017
|
-
endpoint_id=event.body[EventFieldType.ENDPOINT_ID],
|
|
1018
|
-
drift_status=event.body[EventFieldType.DRIFT_STATUS],
|
|
1019
|
-
)
|
|
1020
|
-
|
|
1021
|
-
return event
|
|
1022
|
-
|
|
1023
|
-
|
|
1024
|
-
class IncCounter(mlrun.feature_store.steps.MapClass):
|
|
1025
|
-
"""Increase prediction counter by 1 and update the total latency value"""
|
|
1026
|
-
|
|
1027
|
-
def __init__(self, project: str, **kwargs):
|
|
1028
|
-
super().__init__(**kwargs)
|
|
1029
|
-
self.project: str = project
|
|
1030
|
-
|
|
1031
|
-
def do(self, event):
|
|
1032
|
-
# Compute prediction per second
|
|
1033
|
-
|
|
1034
|
-
mlrun.model_monitoring.prometheus.write_predictions_and_latency_metrics(
|
|
1035
|
-
project=self.project,
|
|
1036
|
-
endpoint_id=event[EventFieldType.ENDPOINT_ID],
|
|
1037
|
-
latency=event[EventFieldType.LATENCY],
|
|
1038
|
-
model_name=event[EventFieldType.MODEL],
|
|
1039
|
-
endpoint_type=event[EventFieldType.ENDPOINT_TYPE],
|
|
1040
|
-
)
|
|
1041
|
-
|
|
1042
|
-
return event
|
|
1043
|
-
|
|
1044
|
-
|
|
1045
|
-
class RecordFeatures(mlrun.feature_store.steps.MapClass):
|
|
1046
|
-
"""Record a sample of features and labels in Prometheus registry"""
|
|
1047
|
-
|
|
1048
|
-
def __init__(self, project: str, **kwargs):
|
|
1049
|
-
super().__init__(**kwargs)
|
|
1050
|
-
self.project: str = project
|
|
1051
|
-
|
|
1052
|
-
def do(self, event):
|
|
1053
|
-
# Generate a dictionary of features and predictions
|
|
1054
|
-
features = {
|
|
1055
|
-
**event[EventFieldType.NAMED_PREDICTIONS],
|
|
1056
|
-
**event[EventFieldType.NAMED_FEATURES],
|
|
1057
|
-
}
|
|
1058
|
-
|
|
1059
|
-
mlrun.model_monitoring.prometheus.write_income_features(
|
|
1060
|
-
project=self.project,
|
|
1061
|
-
endpoint_id=event[EventFieldType.ENDPOINT_ID],
|
|
1062
|
-
features=features,
|
|
1063
|
-
)
|
|
1064
|
-
|
|
1065
|
-
return event
|
|
1066
|
-
|
|
1067
|
-
|
|
1068
920
|
def update_endpoint_record(
|
|
1069
921
|
project: str,
|
|
1070
922
|
endpoint_id: str,
|
mlrun/projects/pipelines.py
CHANGED
|
@@ -404,12 +404,15 @@ class _PipelineRunStatus:
|
|
|
404
404
|
return self._exc
|
|
405
405
|
|
|
406
406
|
def wait_for_completion(self, timeout=None, expected_statuses=None):
|
|
407
|
-
|
|
408
|
-
self
|
|
407
|
+
returned_state = self._engine.wait_for_completion(
|
|
408
|
+
self,
|
|
409
409
|
project=self.project,
|
|
410
410
|
timeout=timeout,
|
|
411
411
|
expected_statuses=expected_statuses,
|
|
412
412
|
)
|
|
413
|
+
# TODO: returning a state is optional until all runners implement wait_for_completion
|
|
414
|
+
if returned_state:
|
|
415
|
+
self._state = returned_state
|
|
413
416
|
return self._state
|
|
414
417
|
|
|
415
418
|
def __str__(self):
|
|
@@ -458,6 +461,48 @@ class _PipelineRunner(abc.ABC):
|
|
|
458
461
|
def get_state(run_id, project=None):
|
|
459
462
|
pass
|
|
460
463
|
|
|
464
|
+
@staticmethod
|
|
465
|
+
def get_run_status(
|
|
466
|
+
project,
|
|
467
|
+
run: _PipelineRunStatus,
|
|
468
|
+
timeout=None,
|
|
469
|
+
expected_statuses=None,
|
|
470
|
+
notifiers: mlrun.utils.notifications.CustomNotificationPusher = None,
|
|
471
|
+
**kwargs,
|
|
472
|
+
):
|
|
473
|
+
timeout = timeout or 60 * 60
|
|
474
|
+
raise_error = None
|
|
475
|
+
state = ""
|
|
476
|
+
try:
|
|
477
|
+
if timeout:
|
|
478
|
+
state = run.wait_for_completion(
|
|
479
|
+
timeout=timeout, expected_statuses=expected_statuses
|
|
480
|
+
)
|
|
481
|
+
except RuntimeError as exc:
|
|
482
|
+
# push runs table also when we have errors
|
|
483
|
+
raise_error = exc
|
|
484
|
+
|
|
485
|
+
mldb = mlrun.db.get_run_db(secrets=project._secrets)
|
|
486
|
+
runs = mldb.list_runs(project=project.name, labels=f"workflow={run.run_id}")
|
|
487
|
+
|
|
488
|
+
# TODO: The below section duplicates notifiers.push_pipeline_run_results() logic. We should use it instead.
|
|
489
|
+
errors_counter = 0
|
|
490
|
+
for r in runs:
|
|
491
|
+
if r["status"].get("state", "") == "error":
|
|
492
|
+
errors_counter += 1
|
|
493
|
+
|
|
494
|
+
text = _PipelineRunner._generate_workflow_finished_message(
|
|
495
|
+
run.run_id, errors_counter, run._state
|
|
496
|
+
)
|
|
497
|
+
|
|
498
|
+
notifiers = notifiers or project.notifiers
|
|
499
|
+
if notifiers:
|
|
500
|
+
notifiers.push(text, "info", runs)
|
|
501
|
+
|
|
502
|
+
if raise_error:
|
|
503
|
+
raise raise_error
|
|
504
|
+
return state or run._state, errors_counter, text
|
|
505
|
+
|
|
461
506
|
@staticmethod
|
|
462
507
|
def _get_handler(workflow_handler, workflow_spec, project, secrets):
|
|
463
508
|
if not (workflow_handler and callable(workflow_handler)):
|
|
@@ -474,16 +519,13 @@ class _PipelineRunner(abc.ABC):
|
|
|
474
519
|
return workflow_handler
|
|
475
520
|
|
|
476
521
|
@staticmethod
|
|
477
|
-
|
|
478
|
-
|
|
479
|
-
|
|
480
|
-
|
|
481
|
-
|
|
482
|
-
|
|
483
|
-
|
|
484
|
-
**kwargs,
|
|
485
|
-
):
|
|
486
|
-
pass
|
|
522
|
+
def _generate_workflow_finished_message(run_id, errors_counter, state):
|
|
523
|
+
text = f"Workflow {run_id} finished"
|
|
524
|
+
if errors_counter:
|
|
525
|
+
text += f" with {errors_counter} errors"
|
|
526
|
+
if state:
|
|
527
|
+
text += f", state={state}"
|
|
528
|
+
return text
|
|
487
529
|
|
|
488
530
|
|
|
489
531
|
class _KFPRunner(_PipelineRunner):
|
|
@@ -585,12 +627,14 @@ class _KFPRunner(_PipelineRunner):
|
|
|
585
627
|
return _PipelineRunStatus(run_id, cls, project=project, workflow=workflow_spec)
|
|
586
628
|
|
|
587
629
|
@staticmethod
|
|
588
|
-
def wait_for_completion(
|
|
589
|
-
|
|
590
|
-
|
|
630
|
+
def wait_for_completion(run, project=None, timeout=None, expected_statuses=None):
|
|
631
|
+
logger.info(
|
|
632
|
+
"Waiting for pipeline run completion", run_id=run.run_id, project=project
|
|
633
|
+
)
|
|
634
|
+
timeout = timeout or 60 * 60
|
|
591
635
|
project_name = project.metadata.name if project else ""
|
|
592
636
|
run_info = wait_for_pipeline_completion(
|
|
593
|
-
run_id,
|
|
637
|
+
run.run_id,
|
|
594
638
|
timeout=timeout,
|
|
595
639
|
expected_statuses=expected_statuses,
|
|
596
640
|
project=project_name,
|
|
@@ -608,51 +652,6 @@ class _KFPRunner(_PipelineRunner):
|
|
|
608
652
|
return resp["run"].get("status", "")
|
|
609
653
|
return ""
|
|
610
654
|
|
|
611
|
-
@staticmethod
|
|
612
|
-
def get_run_status(
|
|
613
|
-
project,
|
|
614
|
-
run,
|
|
615
|
-
timeout=None,
|
|
616
|
-
expected_statuses=None,
|
|
617
|
-
notifiers: mlrun.utils.notifications.CustomNotificationPusher = None,
|
|
618
|
-
**kwargs,
|
|
619
|
-
):
|
|
620
|
-
if timeout is None:
|
|
621
|
-
timeout = 60 * 60
|
|
622
|
-
state = ""
|
|
623
|
-
raise_error = None
|
|
624
|
-
try:
|
|
625
|
-
if timeout:
|
|
626
|
-
logger.info("Waiting for pipeline run completion")
|
|
627
|
-
state = run.wait_for_completion(
|
|
628
|
-
timeout=timeout, expected_statuses=expected_statuses
|
|
629
|
-
)
|
|
630
|
-
except RuntimeError as exc:
|
|
631
|
-
# push runs table also when we have errors
|
|
632
|
-
raise_error = exc
|
|
633
|
-
|
|
634
|
-
mldb = mlrun.db.get_run_db(secrets=project._secrets)
|
|
635
|
-
runs = mldb.list_runs(project=project.name, labels=f"workflow={run.run_id}")
|
|
636
|
-
|
|
637
|
-
# TODO: The below section duplicates notifiers.push_pipeline_run_results() logic. We should use it instead.
|
|
638
|
-
had_errors = 0
|
|
639
|
-
for r in runs:
|
|
640
|
-
if r["status"].get("state", "") == "error":
|
|
641
|
-
had_errors += 1
|
|
642
|
-
|
|
643
|
-
text = f"Workflow {run.run_id} finished"
|
|
644
|
-
if had_errors:
|
|
645
|
-
text += f" with {had_errors} errors"
|
|
646
|
-
if state:
|
|
647
|
-
text += f", state={state}"
|
|
648
|
-
|
|
649
|
-
notifiers = notifiers or project.notifiers
|
|
650
|
-
notifiers.push(text, "info", runs)
|
|
651
|
-
|
|
652
|
-
if raise_error:
|
|
653
|
-
raise raise_error
|
|
654
|
-
return state, had_errors, text
|
|
655
|
-
|
|
656
655
|
|
|
657
656
|
class _LocalRunner(_PipelineRunner):
|
|
658
657
|
"""local pipelines runner"""
|
|
@@ -732,18 +731,10 @@ class _LocalRunner(_PipelineRunner):
|
|
|
732
731
|
return ""
|
|
733
732
|
|
|
734
733
|
@staticmethod
|
|
735
|
-
def wait_for_completion(
|
|
736
|
-
|
|
737
|
-
|
|
738
|
-
|
|
739
|
-
def get_run_status(
|
|
740
|
-
project,
|
|
741
|
-
run,
|
|
742
|
-
timeout=None,
|
|
743
|
-
expected_statuses=None,
|
|
744
|
-
notifiers: mlrun.utils.notifications.CustomNotificationPusher = None,
|
|
745
|
-
**kwargs,
|
|
746
|
-
):
|
|
734
|
+
def wait_for_completion(run, project=None, timeout=None, expected_statuses=None):
|
|
735
|
+
# TODO: local runner blocks for the duration of the pipeline.
|
|
736
|
+
# Therefore usually there will be nothing to wait for.
|
|
737
|
+
# However, users may run functions with watch=False and then it can be useful to wait for the runs here.
|
|
747
738
|
pass
|
|
748
739
|
|
|
749
740
|
|
|
@@ -924,13 +915,25 @@ class _RemoteRunner(_PipelineRunner):
|
|
|
924
915
|
elif inner_engine.engine == _LocalRunner.engine:
|
|
925
916
|
mldb = mlrun.db.get_run_db(secrets=project._secrets)
|
|
926
917
|
pipeline_runner_run = mldb.read_run(run.run_id, project=project.name)
|
|
918
|
+
|
|
927
919
|
pipeline_runner_run = mlrun.run.RunObject.from_dict(pipeline_runner_run)
|
|
920
|
+
|
|
921
|
+
# here we are waiting for the pipeline run to complete and refreshing after that the pipeline run from the
|
|
922
|
+
# db
|
|
923
|
+
# TODO: do it with timeout
|
|
928
924
|
pipeline_runner_run.logs(db=mldb)
|
|
929
925
|
pipeline_runner_run.refresh()
|
|
930
926
|
run._state = mlrun.common.runtimes.constants.RunStates.run_state_to_pipeline_run_status(
|
|
931
927
|
pipeline_runner_run.status.state
|
|
932
928
|
)
|
|
933
929
|
run._exc = pipeline_runner_run.status.error
|
|
930
|
+
return _LocalRunner.get_run_status(
|
|
931
|
+
project,
|
|
932
|
+
run,
|
|
933
|
+
timeout,
|
|
934
|
+
expected_statuses,
|
|
935
|
+
notifiers=notifiers,
|
|
936
|
+
)
|
|
934
937
|
|
|
935
938
|
else:
|
|
936
939
|
raise mlrun.errors.MLRunInvalidArgumentError(
|
mlrun/projects/project.py
CHANGED
|
@@ -725,7 +725,7 @@ def _project_instance_from_struct(struct, name, allow_cross_project):
|
|
|
725
725
|
# TODO: Remove this warning in version 1.9.0 and also fix cli to support allow_cross_project
|
|
726
726
|
warnings.warn(
|
|
727
727
|
f"Project {name=} is different than specified on the context's project yaml. "
|
|
728
|
-
"This behavior is deprecated and will not be supported
|
|
728
|
+
"This behavior is deprecated and will not be supported from version 1.9.0."
|
|
729
729
|
)
|
|
730
730
|
logger.warn(error_message)
|
|
731
731
|
elif allow_cross_project:
|
|
@@ -4063,6 +4063,12 @@ class MlrunProject(ModelObj):
|
|
|
4063
4063
|
db = mlrun.db.get_run_db(secrets=self._secrets)
|
|
4064
4064
|
if alert_name is None:
|
|
4065
4065
|
alert_name = alert_data.name
|
|
4066
|
+
if alert_data.project is not None and alert_data.project != self.metadata.name:
|
|
4067
|
+
logger.warn(
|
|
4068
|
+
"Project in alert does not match project in operation",
|
|
4069
|
+
project=alert_data.project,
|
|
4070
|
+
)
|
|
4071
|
+
alert_data.project = self.metadata.name
|
|
4066
4072
|
return db.store_alert_config(alert_name, alert_data, project=self.metadata.name)
|
|
4067
4073
|
|
|
4068
4074
|
def get_alert_config(self, alert_name: str) -> AlertConfig:
|