mlrun 1.7.0rc28__py3-none-any.whl → 1.7.0rc55__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/__main__.py +4 -2
- mlrun/alerts/alert.py +75 -8
- mlrun/artifacts/base.py +1 -0
- mlrun/artifacts/manager.py +9 -2
- mlrun/common/constants.py +4 -1
- mlrun/common/db/sql_session.py +3 -2
- mlrun/common/formatters/__init__.py +1 -0
- mlrun/common/formatters/artifact.py +1 -0
- mlrun/{model_monitoring/application.py → common/formatters/feature_set.py} +20 -6
- mlrun/common/formatters/run.py +3 -0
- mlrun/common/helpers.py +0 -1
- mlrun/common/schemas/__init__.py +3 -1
- mlrun/common/schemas/alert.py +15 -12
- mlrun/common/schemas/api_gateway.py +6 -6
- mlrun/common/schemas/auth.py +5 -0
- mlrun/common/schemas/client_spec.py +0 -1
- mlrun/common/schemas/common.py +7 -4
- mlrun/common/schemas/frontend_spec.py +7 -0
- mlrun/common/schemas/function.py +7 -0
- mlrun/common/schemas/model_monitoring/__init__.py +4 -3
- mlrun/common/schemas/model_monitoring/constants.py +41 -26
- mlrun/common/schemas/model_monitoring/model_endpoints.py +23 -47
- mlrun/common/schemas/notification.py +69 -12
- mlrun/common/schemas/project.py +45 -12
- mlrun/common/schemas/workflow.py +10 -2
- mlrun/common/types.py +1 -0
- mlrun/config.py +91 -35
- mlrun/data_types/data_types.py +6 -1
- mlrun/data_types/spark.py +2 -2
- mlrun/data_types/to_pandas.py +57 -25
- mlrun/datastore/__init__.py +1 -0
- mlrun/datastore/alibaba_oss.py +3 -2
- mlrun/datastore/azure_blob.py +125 -37
- mlrun/datastore/base.py +42 -21
- mlrun/datastore/datastore.py +4 -2
- mlrun/datastore/datastore_profile.py +1 -1
- mlrun/datastore/dbfs_store.py +3 -7
- mlrun/datastore/filestore.py +1 -3
- mlrun/datastore/google_cloud_storage.py +85 -29
- mlrun/datastore/inmem.py +4 -1
- mlrun/datastore/redis.py +1 -0
- mlrun/datastore/s3.py +25 -12
- mlrun/datastore/sources.py +76 -4
- mlrun/datastore/spark_utils.py +30 -0
- mlrun/datastore/storeytargets.py +151 -0
- mlrun/datastore/targets.py +102 -131
- mlrun/datastore/v3io.py +1 -0
- mlrun/db/base.py +15 -6
- mlrun/db/httpdb.py +57 -28
- mlrun/db/nopdb.py +29 -5
- mlrun/errors.py +20 -3
- mlrun/execution.py +46 -5
- mlrun/feature_store/api.py +25 -1
- mlrun/feature_store/common.py +6 -11
- mlrun/feature_store/feature_vector.py +3 -1
- mlrun/feature_store/retrieval/job.py +4 -1
- mlrun/feature_store/retrieval/spark_merger.py +10 -39
- mlrun/feature_store/steps.py +8 -0
- mlrun/frameworks/_common/plan.py +3 -3
- mlrun/frameworks/_ml_common/plan.py +1 -1
- mlrun/frameworks/parallel_coordinates.py +2 -3
- mlrun/frameworks/sklearn/mlrun_interface.py +13 -3
- mlrun/k8s_utils.py +48 -2
- mlrun/launcher/client.py +6 -6
- mlrun/launcher/local.py +2 -2
- mlrun/model.py +215 -34
- mlrun/model_monitoring/api.py +38 -24
- mlrun/model_monitoring/applications/__init__.py +1 -2
- mlrun/model_monitoring/applications/_application_steps.py +60 -29
- mlrun/model_monitoring/applications/base.py +2 -174
- mlrun/model_monitoring/applications/context.py +197 -70
- mlrun/model_monitoring/applications/evidently_base.py +11 -85
- mlrun/model_monitoring/applications/histogram_data_drift.py +21 -16
- mlrun/model_monitoring/applications/results.py +4 -4
- mlrun/model_monitoring/controller.py +110 -282
- mlrun/model_monitoring/db/stores/__init__.py +8 -3
- mlrun/model_monitoring/db/stores/base/store.py +3 -0
- mlrun/model_monitoring/db/stores/sqldb/models/base.py +9 -7
- mlrun/model_monitoring/db/stores/sqldb/models/mysql.py +18 -3
- mlrun/model_monitoring/db/stores/sqldb/sql_store.py +43 -23
- mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +48 -35
- mlrun/model_monitoring/db/tsdb/__init__.py +7 -2
- mlrun/model_monitoring/db/tsdb/base.py +147 -15
- mlrun/model_monitoring/db/tsdb/tdengine/schemas.py +94 -55
- mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py +0 -3
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +144 -38
- mlrun/model_monitoring/db/tsdb/v3io/stream_graph_steps.py +44 -3
- mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +246 -57
- mlrun/model_monitoring/helpers.py +70 -50
- mlrun/model_monitoring/stream_processing.py +96 -195
- mlrun/model_monitoring/writer.py +13 -5
- mlrun/package/packagers/default_packager.py +2 -2
- mlrun/projects/operations.py +16 -8
- mlrun/projects/pipelines.py +126 -115
- mlrun/projects/project.py +286 -129
- mlrun/render.py +3 -3
- mlrun/run.py +38 -19
- mlrun/runtimes/__init__.py +19 -8
- mlrun/runtimes/base.py +4 -1
- mlrun/runtimes/daskjob.py +1 -1
- mlrun/runtimes/funcdoc.py +1 -1
- mlrun/runtimes/kubejob.py +6 -6
- mlrun/runtimes/local.py +12 -5
- mlrun/runtimes/nuclio/api_gateway.py +68 -8
- mlrun/runtimes/nuclio/application/application.py +307 -70
- mlrun/runtimes/nuclio/function.py +63 -14
- mlrun/runtimes/nuclio/serving.py +10 -10
- mlrun/runtimes/pod.py +25 -19
- mlrun/runtimes/remotesparkjob.py +2 -5
- mlrun/runtimes/sparkjob/spark3job.py +16 -17
- mlrun/runtimes/utils.py +34 -0
- mlrun/serving/routers.py +2 -5
- mlrun/serving/server.py +37 -19
- mlrun/serving/states.py +30 -3
- mlrun/serving/v2_serving.py +44 -35
- mlrun/track/trackers/mlflow_tracker.py +5 -0
- mlrun/utils/async_http.py +1 -1
- mlrun/utils/db.py +18 -0
- mlrun/utils/helpers.py +150 -36
- mlrun/utils/http.py +1 -1
- mlrun/utils/notifications/notification/__init__.py +0 -1
- mlrun/utils/notifications/notification/webhook.py +8 -1
- mlrun/utils/notifications/notification_pusher.py +1 -1
- mlrun/utils/v3io_clients.py +2 -2
- mlrun/utils/version/version.json +2 -2
- {mlrun-1.7.0rc28.dist-info → mlrun-1.7.0rc55.dist-info}/METADATA +153 -66
- {mlrun-1.7.0rc28.dist-info → mlrun-1.7.0rc55.dist-info}/RECORD +131 -134
- {mlrun-1.7.0rc28.dist-info → mlrun-1.7.0rc55.dist-info}/WHEEL +1 -1
- mlrun/feature_store/retrieval/conversion.py +0 -271
- mlrun/model_monitoring/controller_handler.py +0 -37
- mlrun/model_monitoring/evidently_application.py +0 -20
- mlrun/model_monitoring/prometheus.py +0 -216
- {mlrun-1.7.0rc28.dist-info → mlrun-1.7.0rc55.dist-info}/LICENSE +0 -0
- {mlrun-1.7.0rc28.dist-info → mlrun-1.7.0rc55.dist-info}/entry_points.txt +0 -0
- {mlrun-1.7.0rc28.dist-info → mlrun-1.7.0rc55.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mlrun
|
|
3
|
-
Version: 1.7.
|
|
3
|
+
Version: 1.7.0rc55
|
|
4
4
|
Summary: Tracking and config of machine learning runs
|
|
5
5
|
Home-page: https://github.com/mlrun/mlrun
|
|
6
6
|
Author: Yaron Haviv
|
|
@@ -28,46 +28,47 @@ Requires-Dist: aiohttp-retry ~=2.8
|
|
|
28
28
|
Requires-Dist: click ~=8.1
|
|
29
29
|
Requires-Dist: nest-asyncio ~=1.0
|
|
30
30
|
Requires-Dist: ipython ~=8.10
|
|
31
|
-
Requires-Dist: nuclio-jupyter ~=0.10.
|
|
31
|
+
Requires-Dist: nuclio-jupyter ~=0.10.4
|
|
32
32
|
Requires-Dist: numpy <1.27.0,>=1.16.5
|
|
33
33
|
Requires-Dist: pandas <2.2,>=1.2
|
|
34
|
-
Requires-Dist: pyarrow <
|
|
34
|
+
Requires-Dist: pyarrow <18,>=10.0
|
|
35
35
|
Requires-Dist: pyyaml <7,>=5.4.1
|
|
36
|
-
Requires-Dist: requests ~=2.
|
|
36
|
+
Requires-Dist: requests ~=2.32
|
|
37
37
|
Requires-Dist: tabulate ~=0.8.6
|
|
38
|
-
Requires-Dist: v3io ~=0.6.
|
|
38
|
+
Requires-Dist: v3io ~=0.6.9
|
|
39
39
|
Requires-Dist: pydantic <1.10.15,>=1.10.8
|
|
40
40
|
Requires-Dist: mergedeep ~=1.3
|
|
41
41
|
Requires-Dist: v3io-frames ~=0.10.14
|
|
42
42
|
Requires-Dist: semver ~=3.0
|
|
43
43
|
Requires-Dist: dependency-injector ~=4.41
|
|
44
|
-
Requires-Dist: fsspec <2024.
|
|
44
|
+
Requires-Dist: fsspec <2024.7,>=2023.9.2
|
|
45
45
|
Requires-Dist: v3iofs ~=0.1.17
|
|
46
|
-
Requires-Dist: storey ~=1.7.
|
|
46
|
+
Requires-Dist: storey ~=1.7.27
|
|
47
47
|
Requires-Dist: inflection ~=0.5.0
|
|
48
48
|
Requires-Dist: python-dotenv ~=0.17.0
|
|
49
|
-
Requires-Dist: setuptools ~=
|
|
49
|
+
Requires-Dist: setuptools ~=71.0
|
|
50
50
|
Requires-Dist: deprecated ~=1.2
|
|
51
51
|
Requires-Dist: jinja2 >=3.1.3,~=3.1
|
|
52
52
|
Requires-Dist: orjson <4,>=3.9.15
|
|
53
|
-
Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.
|
|
54
|
-
Requires-Dist: mlrun-pipelines-kfp-v1-8 ~=0.1.
|
|
53
|
+
Requires-Dist: mlrun-pipelines-kfp-common ~=0.1.9
|
|
54
|
+
Requires-Dist: mlrun-pipelines-kfp-v1-8 ~=0.1.6
|
|
55
55
|
Provides-Extra: alibaba-oss
|
|
56
56
|
Requires-Dist: ossfs ==2023.12.0 ; extra == 'alibaba-oss'
|
|
57
57
|
Requires-Dist: oss2 ==2.18.1 ; extra == 'alibaba-oss'
|
|
58
58
|
Provides-Extra: all
|
|
59
59
|
Requires-Dist: adlfs ==2023.9.0 ; extra == 'all'
|
|
60
|
-
Requires-Dist: aiobotocore <2.
|
|
60
|
+
Requires-Dist: aiobotocore <2.16,>=2.5.0 ; extra == 'all'
|
|
61
61
|
Requires-Dist: avro ~=1.11 ; extra == 'all'
|
|
62
62
|
Requires-Dist: azure-core ~=1.24 ; extra == 'all'
|
|
63
63
|
Requires-Dist: azure-identity ~=1.5 ; extra == 'all'
|
|
64
64
|
Requires-Dist: azure-keyvault-secrets ~=4.2 ; extra == 'all'
|
|
65
65
|
Requires-Dist: bokeh >=2.4.2,~=2.4 ; extra == 'all'
|
|
66
|
-
Requires-Dist: boto3 <1.
|
|
67
|
-
Requires-Dist: dask ~=2023.
|
|
66
|
+
Requires-Dist: boto3 <1.36,>=1.28.0 ; extra == 'all'
|
|
67
|
+
Requires-Dist: dask ~=2023.12.1 ; extra == 'all'
|
|
68
68
|
Requires-Dist: databricks-sdk ~=0.13.0 ; extra == 'all'
|
|
69
|
-
Requires-Dist: distributed ~=2023.
|
|
70
|
-
Requires-Dist: gcsfs <2024.
|
|
69
|
+
Requires-Dist: distributed ~=2023.12.1 ; extra == 'all'
|
|
70
|
+
Requires-Dist: gcsfs <2024.7,>=2023.9.2 ; extra == 'all'
|
|
71
|
+
Requires-Dist: google-cloud-bigquery-storage ~=2.17 ; extra == 'all'
|
|
71
72
|
Requires-Dist: google-cloud-bigquery[bqstorage,pandas] ==3.14.1 ; extra == 'all'
|
|
72
73
|
Requires-Dist: google-cloud-storage ==2.14.0 ; extra == 'all'
|
|
73
74
|
Requires-Dist: google-cloud ==0.34 ; extra == 'all'
|
|
@@ -77,13 +78,14 @@ Requires-Dist: mlflow ~=2.8 ; extra == 'all'
|
|
|
77
78
|
Requires-Dist: msrest ~=0.6.21 ; extra == 'all'
|
|
78
79
|
Requires-Dist: oss2 ==2.18.1 ; extra == 'all'
|
|
79
80
|
Requires-Dist: ossfs ==2023.12.0 ; extra == 'all'
|
|
80
|
-
Requires-Dist: plotly
|
|
81
|
+
Requires-Dist: plotly ~=5.23 ; extra == 'all'
|
|
81
82
|
Requires-Dist: pyopenssl >=23 ; extra == 'all'
|
|
82
83
|
Requires-Dist: redis ~=4.3 ; extra == 'all'
|
|
83
|
-
Requires-Dist: s3fs <2024.
|
|
84
|
+
Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 'all'
|
|
84
85
|
Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'all'
|
|
85
86
|
Requires-Dist: sqlalchemy ~=1.4 ; extra == 'all'
|
|
86
|
-
Requires-Dist: taos-ws-py
|
|
87
|
+
Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'all'
|
|
88
|
+
Requires-Dist: taoswswrap ~=0.2.0 ; extra == 'all'
|
|
87
89
|
Provides-Extra: api
|
|
88
90
|
Requires-Dist: uvicorn ~=0.27.1 ; extra == 'api'
|
|
89
91
|
Requires-Dist: dask-kubernetes ~=0.11.0 ; extra == 'api'
|
|
@@ -96,7 +98,7 @@ Requires-Dist: sqlalchemy ~=1.4 ; extra == 'api'
|
|
|
96
98
|
Requires-Dist: pymysql ~=1.0 ; extra == 'api'
|
|
97
99
|
Requires-Dist: alembic ~=1.9 ; extra == 'api'
|
|
98
100
|
Requires-Dist: timelength ~=1.1 ; extra == 'api'
|
|
99
|
-
Requires-Dist: memray ~=1.12 ; extra == 'api'
|
|
101
|
+
Requires-Dist: memray ~=1.12 ; (sys_platform != "win32") and extra == 'api'
|
|
100
102
|
Provides-Extra: azure-blob-storage
|
|
101
103
|
Requires-Dist: msrest ~=0.6.21 ; extra == 'azure-blob-storage'
|
|
102
104
|
Requires-Dist: azure-core ~=1.24 ; extra == 'azure-blob-storage'
|
|
@@ -110,80 +112,86 @@ Provides-Extra: bokeh
|
|
|
110
112
|
Requires-Dist: bokeh >=2.4.2,~=2.4 ; extra == 'bokeh'
|
|
111
113
|
Provides-Extra: complete
|
|
112
114
|
Requires-Dist: adlfs ==2023.9.0 ; extra == 'complete'
|
|
113
|
-
Requires-Dist: aiobotocore <2.
|
|
115
|
+
Requires-Dist: aiobotocore <2.16,>=2.5.0 ; extra == 'complete'
|
|
114
116
|
Requires-Dist: avro ~=1.11 ; extra == 'complete'
|
|
115
117
|
Requires-Dist: azure-core ~=1.24 ; extra == 'complete'
|
|
116
118
|
Requires-Dist: azure-identity ~=1.5 ; extra == 'complete'
|
|
117
119
|
Requires-Dist: azure-keyvault-secrets ~=4.2 ; extra == 'complete'
|
|
118
|
-
Requires-Dist: boto3 <1.
|
|
119
|
-
Requires-Dist: dask ~=2023.
|
|
120
|
+
Requires-Dist: boto3 <1.36,>=1.28.0 ; extra == 'complete'
|
|
121
|
+
Requires-Dist: dask ~=2023.12.1 ; extra == 'complete'
|
|
120
122
|
Requires-Dist: databricks-sdk ~=0.13.0 ; extra == 'complete'
|
|
121
|
-
Requires-Dist: distributed ~=2023.
|
|
122
|
-
Requires-Dist: gcsfs <2024.
|
|
123
|
+
Requires-Dist: distributed ~=2023.12.1 ; extra == 'complete'
|
|
124
|
+
Requires-Dist: gcsfs <2024.7,>=2023.9.2 ; extra == 'complete'
|
|
125
|
+
Requires-Dist: google-cloud-bigquery-storage ~=2.17 ; extra == 'complete'
|
|
123
126
|
Requires-Dist: google-cloud-bigquery[bqstorage,pandas] ==3.14.1 ; extra == 'complete'
|
|
127
|
+
Requires-Dist: google-cloud-storage ==2.14.0 ; extra == 'complete'
|
|
128
|
+
Requires-Dist: google-cloud ==0.34 ; extra == 'complete'
|
|
124
129
|
Requires-Dist: graphviz ~=0.20.0 ; extra == 'complete'
|
|
125
130
|
Requires-Dist: kafka-python ~=2.0 ; extra == 'complete'
|
|
126
131
|
Requires-Dist: mlflow ~=2.8 ; extra == 'complete'
|
|
127
132
|
Requires-Dist: msrest ~=0.6.21 ; extra == 'complete'
|
|
128
133
|
Requires-Dist: oss2 ==2.18.1 ; extra == 'complete'
|
|
129
134
|
Requires-Dist: ossfs ==2023.12.0 ; extra == 'complete'
|
|
130
|
-
Requires-Dist: plotly
|
|
135
|
+
Requires-Dist: plotly ~=5.23 ; extra == 'complete'
|
|
131
136
|
Requires-Dist: pyopenssl >=23 ; extra == 'complete'
|
|
132
137
|
Requires-Dist: redis ~=4.3 ; extra == 'complete'
|
|
133
|
-
Requires-Dist: s3fs <2024.
|
|
138
|
+
Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 'complete'
|
|
134
139
|
Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'complete'
|
|
135
140
|
Requires-Dist: sqlalchemy ~=1.4 ; extra == 'complete'
|
|
136
|
-
Requires-Dist: taos-ws-py
|
|
141
|
+
Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'complete'
|
|
142
|
+
Requires-Dist: taoswswrap ~=0.2.0 ; extra == 'complete'
|
|
137
143
|
Provides-Extra: complete-api
|
|
138
144
|
Requires-Dist: adlfs ==2023.9.0 ; extra == 'complete-api'
|
|
139
|
-
Requires-Dist: aiobotocore <2.
|
|
145
|
+
Requires-Dist: aiobotocore <2.16,>=2.5.0 ; extra == 'complete-api'
|
|
140
146
|
Requires-Dist: alembic ~=1.9 ; extra == 'complete-api'
|
|
141
147
|
Requires-Dist: apscheduler <4,>=3.10.3 ; extra == 'complete-api'
|
|
142
148
|
Requires-Dist: avro ~=1.11 ; extra == 'complete-api'
|
|
143
149
|
Requires-Dist: azure-core ~=1.24 ; extra == 'complete-api'
|
|
144
150
|
Requires-Dist: azure-identity ~=1.5 ; extra == 'complete-api'
|
|
145
151
|
Requires-Dist: azure-keyvault-secrets ~=4.2 ; extra == 'complete-api'
|
|
146
|
-
Requires-Dist: boto3 <1.
|
|
152
|
+
Requires-Dist: boto3 <1.36,>=1.28.0 ; extra == 'complete-api'
|
|
147
153
|
Requires-Dist: dask-kubernetes ~=0.11.0 ; extra == 'complete-api'
|
|
148
|
-
Requires-Dist: dask ~=2023.
|
|
154
|
+
Requires-Dist: dask ~=2023.12.1 ; extra == 'complete-api'
|
|
149
155
|
Requires-Dist: databricks-sdk ~=0.13.0 ; extra == 'complete-api'
|
|
150
|
-
Requires-Dist: distributed ~=2023.
|
|
156
|
+
Requires-Dist: distributed ~=2023.12.1 ; extra == 'complete-api'
|
|
151
157
|
Requires-Dist: fastapi ~=0.110.0 ; extra == 'complete-api'
|
|
152
|
-
Requires-Dist: gcsfs <2024.
|
|
158
|
+
Requires-Dist: gcsfs <2024.7,>=2023.9.2 ; extra == 'complete-api'
|
|
159
|
+
Requires-Dist: google-cloud-bigquery-storage ~=2.17 ; extra == 'complete-api'
|
|
153
160
|
Requires-Dist: google-cloud-bigquery[bqstorage,pandas] ==3.14.1 ; extra == 'complete-api'
|
|
161
|
+
Requires-Dist: google-cloud-storage ==2.14.0 ; extra == 'complete-api'
|
|
162
|
+
Requires-Dist: google-cloud ==0.34 ; extra == 'complete-api'
|
|
154
163
|
Requires-Dist: graphviz ~=0.20.0 ; extra == 'complete-api'
|
|
155
164
|
Requires-Dist: humanfriendly ~=10.0 ; extra == 'complete-api'
|
|
156
165
|
Requires-Dist: igz-mgmt ~=0.2.0 ; extra == 'complete-api'
|
|
157
166
|
Requires-Dist: kafka-python ~=2.0 ; extra == 'complete-api'
|
|
158
|
-
Requires-Dist: memray ~=1.12 ; extra == 'complete-api'
|
|
159
167
|
Requires-Dist: mlflow ~=2.8 ; extra == 'complete-api'
|
|
160
168
|
Requires-Dist: msrest ~=0.6.21 ; extra == 'complete-api'
|
|
161
169
|
Requires-Dist: objgraph ~=3.6 ; extra == 'complete-api'
|
|
162
170
|
Requires-Dist: oss2 ==2.18.1 ; extra == 'complete-api'
|
|
163
171
|
Requires-Dist: ossfs ==2023.12.0 ; extra == 'complete-api'
|
|
164
|
-
Requires-Dist: plotly
|
|
172
|
+
Requires-Dist: plotly ~=5.23 ; extra == 'complete-api'
|
|
165
173
|
Requires-Dist: pymysql ~=1.0 ; extra == 'complete-api'
|
|
166
174
|
Requires-Dist: pyopenssl >=23 ; extra == 'complete-api'
|
|
167
175
|
Requires-Dist: redis ~=4.3 ; extra == 'complete-api'
|
|
168
|
-
Requires-Dist: s3fs <2024.
|
|
176
|
+
Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 'complete-api'
|
|
169
177
|
Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'complete-api'
|
|
170
178
|
Requires-Dist: sqlalchemy ~=1.4 ; extra == 'complete-api'
|
|
171
|
-
Requires-Dist: taos-ws-py
|
|
179
|
+
Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'complete-api'
|
|
180
|
+
Requires-Dist: taoswswrap ~=0.2.0 ; extra == 'complete-api'
|
|
172
181
|
Requires-Dist: timelength ~=1.1 ; extra == 'complete-api'
|
|
173
182
|
Requires-Dist: uvicorn ~=0.27.1 ; extra == 'complete-api'
|
|
183
|
+
Requires-Dist: memray ~=1.12 ; (sys_platform != "win32") and extra == 'complete-api'
|
|
174
184
|
Provides-Extra: dask
|
|
175
|
-
Requires-Dist: dask ~=2023.
|
|
176
|
-
Requires-Dist: distributed ~=2023.
|
|
185
|
+
Requires-Dist: dask ~=2023.12.1 ; extra == 'dask'
|
|
186
|
+
Requires-Dist: distributed ~=2023.12.1 ; extra == 'dask'
|
|
177
187
|
Provides-Extra: databricks-sdk
|
|
178
188
|
Requires-Dist: databricks-sdk ~=0.13.0 ; extra == 'databricks-sdk'
|
|
179
189
|
Provides-Extra: google-cloud
|
|
180
190
|
Requires-Dist: google-cloud-storage ==2.14.0 ; extra == 'google-cloud'
|
|
181
191
|
Requires-Dist: google-cloud-bigquery[bqstorage,pandas] ==3.14.1 ; extra == 'google-cloud'
|
|
192
|
+
Requires-Dist: google-cloud-bigquery-storage ~=2.17 ; extra == 'google-cloud'
|
|
182
193
|
Requires-Dist: google-cloud ==0.34 ; extra == 'google-cloud'
|
|
183
|
-
|
|
184
|
-
Requires-Dist: google-cloud-bigquery[bqstorage,pandas] ==3.14.1 ; extra == 'google-cloud-bigquery'
|
|
185
|
-
Provides-Extra: google-cloud-storage
|
|
186
|
-
Requires-Dist: gcsfs <2024.4,>=2023.9.2 ; extra == 'google-cloud-storage'
|
|
194
|
+
Requires-Dist: gcsfs <2024.7,>=2023.9.2 ; extra == 'google-cloud'
|
|
187
195
|
Provides-Extra: graphviz
|
|
188
196
|
Requires-Dist: graphviz ~=0.20.0 ; extra == 'graphviz'
|
|
189
197
|
Provides-Extra: kafka
|
|
@@ -192,19 +200,20 @@ Requires-Dist: avro ~=1.11 ; extra == 'kafka'
|
|
|
192
200
|
Provides-Extra: mlflow
|
|
193
201
|
Requires-Dist: mlflow ~=2.8 ; extra == 'mlflow'
|
|
194
202
|
Provides-Extra: plotly
|
|
195
|
-
Requires-Dist: plotly
|
|
203
|
+
Requires-Dist: plotly ~=5.23 ; extra == 'plotly'
|
|
196
204
|
Provides-Extra: redis
|
|
197
205
|
Requires-Dist: redis ~=4.3 ; extra == 'redis'
|
|
198
206
|
Provides-Extra: s3
|
|
199
|
-
Requires-Dist: boto3 <1.
|
|
200
|
-
Requires-Dist: aiobotocore <2.
|
|
201
|
-
Requires-Dist: s3fs <2024.
|
|
207
|
+
Requires-Dist: boto3 <1.36,>=1.28.0 ; extra == 's3'
|
|
208
|
+
Requires-Dist: aiobotocore <2.16,>=2.5.0 ; extra == 's3'
|
|
209
|
+
Requires-Dist: s3fs <2024.7,>=2023.9.2 ; extra == 's3'
|
|
202
210
|
Provides-Extra: snowflake
|
|
203
211
|
Requires-Dist: snowflake-connector-python ~=3.7 ; extra == 'snowflake'
|
|
204
212
|
Provides-Extra: sqlalchemy
|
|
205
213
|
Requires-Dist: sqlalchemy ~=1.4 ; extra == 'sqlalchemy'
|
|
206
214
|
Provides-Extra: tdengine
|
|
207
|
-
Requires-Dist: taos-ws-py
|
|
215
|
+
Requires-Dist: taos-ws-py ==0.3.2 ; extra == 'tdengine'
|
|
216
|
+
Requires-Dist: taoswswrap ~=0.2.0 ; extra == 'tdengine'
|
|
208
217
|
|
|
209
218
|
<a id="top"></a>
|
|
210
219
|
[](https://github.com/mlrun/mlrun/actions/workflows/build.yaml?query=branch%3Adevelopment)
|
|
@@ -220,19 +229,86 @@ Requires-Dist: taos-ws-py ~=0.3.2 ; extra == 'tdengine'
|
|
|
220
229
|
|
|
221
230
|
# Using MLRun
|
|
222
231
|
|
|
223
|
-
MLRun is an open
|
|
232
|
+
MLRun is an open source AI orchestration platform for quickly building and managing continuous (gen) AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications.
|
|
233
|
+
MLRun significantly reduces engineering efforts, time to production, and computation resources.
|
|
224
234
|
With MLRun, you can choose any IDE on your local machine or on the cloud. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous improvements.
|
|
225
235
|
|
|
226
|
-
Get started with MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/
|
|
236
|
+
Get started with the MLRun [**Tutorials and Examples**](https://docs.mlrun.org/en/stable/tutorials/index.html) and the [**Installation and setup guide**](https://docs.mlrun.org/en/stable/install.html), or read about the [**MLRun Architecture**](https://docs.mlrun.org/en/stable/architecture.html).
|
|
237
|
+
|
|
238
|
+
This page explains how MLRun addresses the [**gen AI tasks**](#genai-tasks), [**MLOps tasks**](#mlops-tasks), and presents the [**MLRun core components**](#core-components).
|
|
239
|
+
|
|
240
|
+
See the supported data stores, development tools, services, platforms, etc., supported by MLRun's open architecture in **https://docs.mlrun.org/en/stable/ecosystem.html**.
|
|
241
|
+
|
|
242
|
+
## Gen AI tasks
|
|
243
|
+
|
|
244
|
+
<p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/ai-tasks.png" alt="ai-tasks" width="800"/></p><br>
|
|
245
|
+
|
|
246
|
+
Use MLRun to develop, scale, deploy, and monitor your AI model across your enterprise. The [**gen AI development workflow**](https://docs.mlrun.org/en/stable/genai/genai-flow.html)
|
|
247
|
+
section describes the different tasks and stages in detail.
|
|
248
|
+
|
|
249
|
+
### Data management
|
|
250
|
+
|
|
251
|
+
|
|
252
|
+
MLRun supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
|
|
253
|
+
Removing inappropriate data at an early stage saves resources that would otherwise be required later on.
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
**Docs:**
|
|
257
|
+
[Using LLMs to process unstructured data](https://docs.mlrun.org/en/stable/genai/data-mgmt/unstructured-data.html)
|
|
258
|
+
[Vector databases](https://docs.mlrun.org/en/stable/genai/data-mgmt/vector-databases.html)
|
|
259
|
+
[Guardrails for data management](https://docs.mlrun.org/en/stable/genai/data-mgmt/guardrails-data.html)
|
|
260
|
+
**Demo:**
|
|
261
|
+
[Call center demo](https://github.com/mlrun/demo-call-center>`
|
|
262
|
+
**Video:**
|
|
263
|
+
[Call center](https://youtu.be/YycMbxRgLBA>`
|
|
264
|
+
|
|
265
|
+
### Development
|
|
266
|
+
Use MLRun to build an automated ML pipeline to: collect data,
|
|
267
|
+
preprocess (prepare) the data, run the training pipeline, and evaluate the model.
|
|
268
|
+
|
|
269
|
+
**Docs:**
|
|
270
|
+
[Working with RAG](https://docs.mlrun.org/en/stable/genai/development/working-with-rag.html), [Evalating LLMs](https://docs.mlrun.org/en/stable/genai/development/evaluating-llms.html), [Fine tuning LLMS](https://docs.mlrun.org/en/stable/genai/development/fine-tuning-llms.html)
|
|
271
|
+
**Demos:**
|
|
272
|
+
[Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs](https://github.com/mlrun/demo-llm-bot/blob/main)
|
|
273
|
+
**Video:**
|
|
274
|
+
[Call center](https://youtu.be/YycMbxRgLBA)
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
### Deployment
|
|
278
|
+
MLRun serving can productize the newly trained LLM as a serverless function using real-time auto-scaling Nuclio serverless functions.
|
|
279
|
+
The application pipeline includes all the steps from accepting events or data, contextualizing it with a state preparing the required model features,
|
|
280
|
+
inferring results using one or more models, and driving actions.
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
**Docs:**
|
|
284
|
+
[Serving gen AI models](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving.html), GPU utilization](https://docs.mlrun.org/en/stable/genai/deployment/gpu_utilization.html), [Gen AI realtime serving graph](https://docs.mlrun.org/en/stable/genai/deployment/genai_serving_graph.html)
|
|
285
|
+
**Tutorial:**
|
|
286
|
+
[Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html)
|
|
287
|
+
**Demos:**
|
|
288
|
+
[Call center demo](https://github.com/mlrun/demo-call-center), [Build & deploy custom(fine-tuned)]LLM models and applications <https://github.com/mlrun/demo-llm-tuning/blob/main), [Interactive bot demo using LLMs]<https://github.com/mlrun/demo-llm-bot/blob/main)
|
|
289
|
+
**Video:**
|
|
290
|
+
[Call center]<https://youtu.be/YycMbxRgLBA)
|
|
291
|
+
|
|
292
|
+
|
|
293
|
+
### Live Ops
|
|
294
|
+
Monitor all resources, data, model and application metrics to ensure performance. Then identify risks, control costs, and measure business KPIs.
|
|
295
|
+
Collect production data, metadata, and metrics to tune the model and application further, and to enable governance and explainability.
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
**Docs:**
|
|
299
|
+
[Model monitoring <monitoring](https://docs.mlrun.org/en/stable/concepts/monitoring.html), [Alerts and notifications](https://docs.mlrun.org/en/stable/concepts/alerts-notifications.html)
|
|
300
|
+
**Tutorials:**
|
|
301
|
+
[Deploy LLM using MLRun](https://docs.mlrun.org/en/stable/tutorials/genai_01_basic_tutorial.html), [Model monitoring using LLM](https://docs.mlrun.org/en/stable/tutorials/genai-02-monitoring-llm.html)
|
|
302
|
+
**Demo:**
|
|
303
|
+
[Build & deploy custom (fine-tuned) LLM models and applications](https://github.com/mlrun/demo-llm-tuning/blob/main)
|
|
227
304
|
|
|
228
|
-
This page explains how MLRun addresses the [**MLOps Tasks**](#mlops-tasks) and the [**MLRun core components**](#core-components).
|
|
229
305
|
|
|
230
306
|
<a id="mlops-tasks"></a>
|
|
231
307
|
## MLOps tasks
|
|
232
308
|
|
|
233
309
|
<p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-task.png" alt="mlrun-tasks" width="800"/></p><br>
|
|
234
310
|
|
|
235
|
-
The [**MLOps development workflow**](https://docs.mlrun.org/en/
|
|
311
|
+
The [**MLOps development workflow**](https://docs.mlrun.org/en/stable/mlops-dev-flow.html) section describes the different tasks and stages in detail.
|
|
236
312
|
MLRun can be used to automate and orchestrate all the different tasks or just specific tasks (and integrate them with what you have already deployed).
|
|
237
313
|
|
|
238
314
|
### Project management and CI/CD automation
|
|
@@ -241,32 +317,40 @@ In MLRun the assets, metadata, and services (data, functions, jobs, artifacts, m
|
|
|
241
317
|
Projects can be imported/exported as a whole, mapped to git repositories or IDE projects (in PyCharm, VSCode, etc.), which enables versioning, collaboration, and CI/CD.
|
|
242
318
|
Project access can be restricted to a set of users and roles.
|
|
243
319
|
|
|
244
|
-
|
|
320
|
+
**Docs:** [Projects and Automation](https://docs.mlrun.org/en/stable/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/stable/projects/ci-integration.html)
|
|
321
|
+
**Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
|
|
322
|
+
**Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
|
|
245
323
|
|
|
246
324
|
### Ingest and process data
|
|
247
325
|
|
|
248
|
-
MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/
|
|
249
|
-
In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/
|
|
326
|
+
MLRun provides abstract interfaces to various offline and online [**data sources**](https://docs.mlrun.org/en/stable/store/datastore.html), supports batch or realtime data processing at scale, data lineage and versioning, structured and unstructured data, and more.
|
|
327
|
+
In addition, the MLRun [**Feature Store**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automates the collection, transformation, storage, catalog, serving, and monitoring of data features across the ML lifecycle and enables feature reuse and sharing.
|
|
250
328
|
|
|
251
|
-
See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/
|
|
329
|
+
See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/stable/data-prep/index.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/feature-store.html), [Data & Artifacts](https://docs.mlrun.org/en/stable/concepts/data.html)
|
|
330
|
+
**Tutorials:** [Quick start](https://docs.mlrun.org/en/stable/tutorials/01-mlrun-basics.html), [Feature Store](https://docs.mlrun.org/en/stable/feature-store/basic-demo.html).
|
|
252
331
|
|
|
253
332
|
### Develop and train models
|
|
254
333
|
|
|
255
334
|
MLRun allows you to easily build ML pipelines that take data from various sources or the Feature Store and process it, train models at scale with multiple parameters, test models, tracks each experiments, register, version and deploy models, etc. MLRun provides scalable built-in or custom model training services, integrate with any framework and can work with 3rd party training/auto-ML services. You can also bring your own pre-trained model and use it in the pipeline.
|
|
256
335
|
|
|
257
|
-
|
|
336
|
+
**Docs:** [Develop and train models](https://docs.mlrun.org/en/stable/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/stable/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html)
|
|
337
|
+
**Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/stable/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/stable/tutorials/04-pipeline.html)
|
|
338
|
+
**Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
|
|
258
339
|
|
|
259
340
|
### Deploy models and applications
|
|
260
341
|
|
|
261
342
|
MLRun rapidly deploys and manages production-grade real-time or batch application pipelines using elastic and resilient serverless functions. MLRun addresses the entire ML application: intercepting application/user requests, running data processing tasks, inferencing using one or more models, driving actions, and integrating with the application logic.
|
|
262
343
|
|
|
263
|
-
|
|
344
|
+
**Docs:** [Deploy models and applications](https://docs.mlrun.org/en/stable/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/stable/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/stable/deployment/batch_inference.html)
|
|
345
|
+
**Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/stable/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/stable/tutorials/07-batch-infer.html)
|
|
346
|
+
**Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
|
|
264
347
|
|
|
265
|
-
###
|
|
348
|
+
### Model Monitoring
|
|
266
349
|
|
|
267
350
|
Observability is built into the different MLRun objects (data, functions, jobs, models, pipelines, etc.), eliminating the need for complex integrations and code instrumentation. With MLRun, you can observe the application/model resource usage and model behavior (drift, performance, etc.), define custom app metrics, and trigger alerts or retraining jobs.
|
|
268
351
|
|
|
269
|
-
|
|
352
|
+
**Docs:** [Model monitoring](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html), [Model Monitoring Overview](https://docs.mlrun.org/en/stable/monitoring/model-monitoring-deployment.html)
|
|
353
|
+
**Tutorials:** [Model Monitoring & Drift Detection](https://docs.mlrun.org/en/stable/tutorials/05-model-monitoring.html).
|
|
270
354
|
|
|
271
355
|
|
|
272
356
|
<a id="core-components"></a>
|
|
@@ -274,18 +358,21 @@ See: **Docs:** [Monitor and alert](https://docs.mlrun.org/en/latest/monitoring/i
|
|
|
274
358
|
|
|
275
359
|
<p align="center"><img src="https://github.com/mlrun/mlrun/raw/development/docs/_static/images/mlops-core.png" alt="mlrun-core" width="800"/></p><br>
|
|
276
360
|
|
|
361
|
+
|
|
277
362
|
MLRun includes the following major components:
|
|
278
363
|
|
|
279
|
-
[**Project Management:**](https://docs.mlrun.org/en/
|
|
364
|
+
[**Project Management:**](https://docs.mlrun.org/en/stable/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
|
|
365
|
+
|
|
366
|
+
[**Functions:**](https://docs.mlrun.org/en/stable/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
|
|
280
367
|
|
|
281
|
-
[**
|
|
368
|
+
[**Data & Artifacts:**](https://docs.mlrun.org/en/stable/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
|
|
282
369
|
|
|
283
|
-
[**
|
|
370
|
+
[**Batch Runs & Workflows:**](https://docs.mlrun.org/en/stable/concepts/runs-workflows.html) Execute one or more functions with specific parameters and collect, track, and compare all their results and artifacts.
|
|
284
371
|
|
|
285
|
-
[**
|
|
372
|
+
[**Real-Time Serving Pipeline:**](https://docs.mlrun.org/en/stable/serving/serving-graph.html) Rapid deployment of scalable data and ML pipelines using real-time serverless technology, including API handling, data preparation/enrichment, model serving, ensembles, driving and measuring actions, etc.
|
|
286
373
|
|
|
287
|
-
[**
|
|
374
|
+
[**Model monitoring:**](https://docs.mlrun.org/en/stable/monitoring/index.html) monitors data, models, resources, and production components and provides a feedback loop for exploring production data, identifying drift, alerting on anomalies or data quality issues, triggering retraining jobs, measuring business impact, etc.
|
|
288
375
|
|
|
289
|
-
[**
|
|
376
|
+
[**Alerts and notifications:**](https://docs.mlrun.org/en/stable/concepts/model-monitoring.html) Use alerts to identify and inform you of possible problem situations. Use notifications to report status on runs and pipelines.
|
|
290
377
|
|
|
291
|
-
[**
|
|
378
|
+
[**Feature Store:**](https://docs.mlrun.org/en/stable/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
|