mlrun 1.7.0rc26__py3-none-any.whl → 1.7.0rc27__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (48) hide show
  1. mlrun/__main__.py +7 -7
  2. mlrun/alerts/alert.py +13 -1
  3. mlrun/artifacts/manager.py +5 -0
  4. mlrun/common/constants.py +2 -2
  5. mlrun/common/formatters/base.py +9 -9
  6. mlrun/common/schemas/alert.py +4 -8
  7. mlrun/common/schemas/api_gateway.py +7 -0
  8. mlrun/common/schemas/constants.py +3 -0
  9. mlrun/common/schemas/model_monitoring/constants.py +20 -9
  10. mlrun/config.py +6 -11
  11. mlrun/datastore/datastore.py +3 -3
  12. mlrun/datastore/snowflake_utils.py +3 -1
  13. mlrun/datastore/sources.py +23 -9
  14. mlrun/datastore/targets.py +27 -13
  15. mlrun/db/base.py +9 -0
  16. mlrun/db/httpdb.py +39 -30
  17. mlrun/db/nopdb.py +9 -1
  18. mlrun/execution.py +18 -10
  19. mlrun/feature_store/retrieval/spark_merger.py +2 -1
  20. mlrun/model.py +21 -0
  21. mlrun/model_monitoring/db/stores/__init__.py +5 -3
  22. mlrun/model_monitoring/db/stores/base/store.py +36 -1
  23. mlrun/model_monitoring/db/stores/sqldb/sql_store.py +4 -38
  24. mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +19 -27
  25. mlrun/model_monitoring/db/tsdb/__init__.py +4 -7
  26. mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +4 -1
  27. mlrun/model_monitoring/helpers.py +9 -5
  28. mlrun/projects/project.py +63 -68
  29. mlrun/render.py +10 -5
  30. mlrun/run.py +2 -2
  31. mlrun/runtimes/nuclio/function.py +20 -0
  32. mlrun/runtimes/pod.py +5 -29
  33. mlrun/serving/routers.py +75 -59
  34. mlrun/serving/server.py +1 -0
  35. mlrun/serving/v2_serving.py +8 -1
  36. mlrun/utils/helpers.py +33 -1
  37. mlrun/utils/notifications/notification/base.py +4 -0
  38. mlrun/utils/notifications/notification/git.py +21 -0
  39. mlrun/utils/notifications/notification/slack.py +8 -0
  40. mlrun/utils/notifications/notification/webhook.py +29 -0
  41. mlrun/utils/notifications/notification_pusher.py +1 -1
  42. mlrun/utils/version/version.json +2 -2
  43. {mlrun-1.7.0rc26.dist-info → mlrun-1.7.0rc27.dist-info}/METADATA +4 -4
  44. {mlrun-1.7.0rc26.dist-info → mlrun-1.7.0rc27.dist-info}/RECORD +48 -48
  45. {mlrun-1.7.0rc26.dist-info → mlrun-1.7.0rc27.dist-info}/WHEEL +1 -1
  46. {mlrun-1.7.0rc26.dist-info → mlrun-1.7.0rc27.dist-info}/LICENSE +0 -0
  47. {mlrun-1.7.0rc26.dist-info → mlrun-1.7.0rc27.dist-info}/entry_points.txt +0 -0
  48. {mlrun-1.7.0rc26.dist-info → mlrun-1.7.0rc27.dist-info}/top_level.txt +0 -0
mlrun/render.py CHANGED
@@ -283,9 +283,14 @@ function copyToClipboard(fld) {
283
283
  }
284
284
  function expandPanel(el) {
285
285
  const panelName = "#" + el.getAttribute('paneName');
286
- console.log(el.title);
287
286
 
288
- document.querySelector(panelName + "-title").innerHTML = el.title
287
+ // Get the base URL of the current notebook
288
+ var baseUrl = window.location.origin;
289
+
290
+ // Construct the full URL
291
+ var fullUrl = new URL(el.title, baseUrl).href;
292
+
293
+ document.querySelector(panelName + "-title").innerHTML = fullUrl
289
294
  iframe = document.querySelector(panelName + "-body");
290
295
 
291
296
  const tblcss = `<style> body { font-family: Arial, Helvetica, sans-serif;}
@@ -299,7 +304,7 @@ function expandPanel(el) {
299
304
  }
300
305
 
301
306
  function reqListener () {
302
- if (el.title.endsWith(".csv")) {
307
+ if (fullUrl.endsWith(".csv")) {
303
308
  iframe.setAttribute("srcdoc", tblcss + csvToHtmlTable(this.responseText));
304
309
  } else {
305
310
  iframe.setAttribute("srcdoc", this.responseText);
@@ -309,11 +314,11 @@ function expandPanel(el) {
309
314
 
310
315
  const oReq = new XMLHttpRequest();
311
316
  oReq.addEventListener("load", reqListener);
312
- oReq.open("GET", el.title);
317
+ oReq.open("GET", fullUrl);
313
318
  oReq.send();
314
319
 
315
320
 
316
- //iframe.src = el.title;
321
+ //iframe.src = fullUrl;
317
322
  const resultPane = document.querySelector(panelName + "-pane");
318
323
  if (resultPane.classList.contains("hidden")) {
319
324
  resultPane.classList.remove("hidden");
mlrun/run.py CHANGED
@@ -63,11 +63,11 @@ from .runtimes.funcdoc import update_function_entry_points
63
63
  from .runtimes.nuclio.application import ApplicationRuntime
64
64
  from .runtimes.utils import add_code_metadata, global_context
65
65
  from .utils import (
66
+ RunKeys,
66
67
  extend_hub_uri_if_needed,
67
68
  get_in,
68
69
  logger,
69
70
  retry_until_successful,
70
- run_keys,
71
71
  update_in,
72
72
  )
73
73
 
@@ -280,7 +280,7 @@ def get_or_create_ctx(
280
280
  artifact_path = mlrun.utils.helpers.template_artifact_path(
281
281
  mlconf.artifact_path, project or mlconf.default_project
282
282
  )
283
- update_in(newspec, ["spec", run_keys.output_path], artifact_path)
283
+ update_in(newspec, ["spec", RunKeys.output_path], artifact_path)
284
284
 
285
285
  newspec.setdefault("metadata", {})
286
286
  update_in(newspec, "metadata.name", name, replace=False)
@@ -1327,3 +1327,23 @@ def get_nuclio_deploy_status(
1327
1327
  else:
1328
1328
  text = "\n".join(outputs) if outputs else ""
1329
1329
  return state, address, name, last_log_timestamp, text, function_status
1330
+
1331
+
1332
+ def enrich_nuclio_function_from_headers(
1333
+ func: RemoteRuntime,
1334
+ headers: dict,
1335
+ ):
1336
+ func.status.state = headers.get("x-mlrun-function-status", "")
1337
+ func.status.address = headers.get("x-mlrun-address", "")
1338
+ func.status.nuclio_name = headers.get("x-mlrun-name", "")
1339
+ func.status.internal_invocation_urls = (
1340
+ headers.get("x-mlrun-internal-invocation-urls", "").split(",")
1341
+ if headers.get("x-mlrun-internal-invocation-urls")
1342
+ else []
1343
+ )
1344
+ func.status.external_invocation_urls = (
1345
+ headers.get("x-mlrun-external-invocation-urls", "").split(",")
1346
+ if headers.get("x-mlrun-external-invocation-urls")
1347
+ else []
1348
+ )
1349
+ func.status.container_image = headers.get("x-mlrun-container-image", "")
mlrun/runtimes/pod.py CHANGED
@@ -532,7 +532,9 @@ class KubeResourceSpec(FunctionSpec):
532
532
  return
533
533
 
534
534
  # merge node selectors - precedence to existing node selector
535
- self.node_selector = {**node_selector, **self.node_selector}
535
+ self.node_selector = mlrun.utils.helpers.merge_with_precedence(
536
+ node_selector, self.node_selector
537
+ )
536
538
 
537
539
  def _merge_tolerations(
538
540
  self,
@@ -1038,32 +1040,6 @@ class KubeResource(BaseRuntime, KfpAdapterMixin):
1038
1040
  return True
1039
1041
  return False
1040
1042
 
1041
- def enrich_runtime_spec(
1042
- self,
1043
- project_node_selector: dict[str, str],
1044
- ):
1045
- """
1046
- Enriches the runtime spec with the project-level node selector.
1047
-
1048
- This method merges the project-level node selector with the existing function node_selector.
1049
- The merge logic used here combines the two dictionaries, giving precedence to
1050
- the keys in the runtime node_selector. If there are conflicting keys between the
1051
- two dictionaries, the values from self.spec.node_selector will overwrite the
1052
- values from project_node_selector.
1053
-
1054
- Example:
1055
- Suppose self.spec.node_selector = {"type": "gpu", "zone": "us-east-1"}
1056
- and project_node_selector = {"type": "cpu", "environment": "production"}.
1057
- After the merge, the resulting node_selector will be:
1058
- {"type": "gpu", "zone": "us-east-1", "environment": "production"}
1059
-
1060
- Note:
1061
- - The merge uses the ** operator, also known as the "unpacking" operator in Python,
1062
- combining key-value pairs from each dictionary. Later dictionaries take precedence
1063
- when there are conflicting keys.
1064
- """
1065
- self.spec.node_selector = {**project_node_selector, **self.spec.node_selector}
1066
-
1067
1043
  def _set_env(self, name, value=None, value_from=None):
1068
1044
  new_var = k8s_client.V1EnvVar(name=name, value=value, value_from=value_from)
1069
1045
 
@@ -1542,7 +1518,7 @@ def get_sanitized_attribute(spec, attribute_name: str):
1542
1518
 
1543
1519
  # check if attribute of type dict, and then check if type is sanitized
1544
1520
  if isinstance(attribute, dict):
1545
- if attribute_config["not_sanitized_class"] != dict:
1521
+ if not isinstance(attribute_config["not_sanitized_class"], dict):
1546
1522
  raise mlrun.errors.MLRunInvalidArgumentTypeError(
1547
1523
  f"expected to be of type {attribute_config.get('not_sanitized_class')} but got dict"
1548
1524
  )
@@ -1552,7 +1528,7 @@ def get_sanitized_attribute(spec, attribute_name: str):
1552
1528
  elif isinstance(attribute, list) and not isinstance(
1553
1529
  attribute[0], attribute_config["sub_attribute_type"]
1554
1530
  ):
1555
- if attribute_config["not_sanitized_class"] != list:
1531
+ if not isinstance(attribute_config["not_sanitized_class"], list):
1556
1532
  raise mlrun.errors.MLRunInvalidArgumentTypeError(
1557
1533
  f"expected to be of type {attribute_config.get('not_sanitized_class')} but got list"
1558
1534
  )
mlrun/serving/routers.py CHANGED
@@ -1030,74 +1030,90 @@ def _init_endpoint_record(
1030
1030
  function_uri=graph_server.function_uri, versioned_model=versioned_model_name
1031
1031
  ).uid
1032
1032
 
1033
- # If model endpoint object was found in DB, skip the creation process.
1034
1033
  try:
1035
- mlrun.get_run_db().get_model_endpoint(project=project, endpoint_id=endpoint_uid)
1036
-
1034
+ model_ep = mlrun.get_run_db().get_model_endpoint(
1035
+ project=project, endpoint_id=endpoint_uid
1036
+ )
1037
1037
  except mlrun.errors.MLRunNotFoundError:
1038
- logger.info("Creating a new model endpoint record", endpoint_id=endpoint_uid)
1038
+ model_ep = None
1039
+ except mlrun.errors.MLRunBadRequestError as err:
1040
+ logger.debug(
1041
+ f"Cant reach to model endpoints store, due to : {err}",
1042
+ )
1043
+ return
1039
1044
 
1040
- try:
1041
- # Get the children model endpoints ids
1042
- children_uids = []
1043
- for _, c in voting_ensemble.routes.items():
1044
- if hasattr(c, "endpoint_uid"):
1045
- children_uids.append(c.endpoint_uid)
1046
-
1047
- model_endpoint = mlrun.common.schemas.ModelEndpoint(
1048
- metadata=mlrun.common.schemas.ModelEndpointMetadata(
1049
- project=project, uid=endpoint_uid
1050
- ),
1051
- spec=mlrun.common.schemas.ModelEndpointSpec(
1052
- function_uri=graph_server.function_uri,
1053
- model=versioned_model_name,
1054
- model_class=voting_ensemble.__class__.__name__,
1055
- stream_path=config.model_endpoint_monitoring.store_prefixes.default.format(
1056
- project=project, kind="stream"
1057
- ),
1058
- active=True,
1059
- monitoring_mode=mlrun.common.schemas.model_monitoring.ModelMonitoringMode.enabled
1060
- if voting_ensemble.context.server.track_models
1061
- else mlrun.common.schemas.model_monitoring.ModelMonitoringMode.disabled,
1062
- ),
1063
- status=mlrun.common.schemas.ModelEndpointStatus(
1064
- children=list(voting_ensemble.routes.keys()),
1065
- endpoint_type=mlrun.common.schemas.model_monitoring.EndpointType.ROUTER,
1066
- children_uids=children_uids,
1045
+ if voting_ensemble.context.server.track_models and not model_ep:
1046
+ logger.info("Creating a new model endpoint record", endpoint_id=endpoint_uid)
1047
+ # Get the children model endpoints ids
1048
+ children_uids = []
1049
+ for _, c in voting_ensemble.routes.items():
1050
+ if hasattr(c, "endpoint_uid"):
1051
+ children_uids.append(c.endpoint_uid)
1052
+ model_endpoint = mlrun.common.schemas.ModelEndpoint(
1053
+ metadata=mlrun.common.schemas.ModelEndpointMetadata(
1054
+ project=project, uid=endpoint_uid
1055
+ ),
1056
+ spec=mlrun.common.schemas.ModelEndpointSpec(
1057
+ function_uri=graph_server.function_uri,
1058
+ model=versioned_model_name,
1059
+ model_class=voting_ensemble.__class__.__name__,
1060
+ stream_path=config.model_endpoint_monitoring.store_prefixes.default.format(
1061
+ project=project, kind="stream"
1067
1062
  ),
1068
- )
1063
+ active=True,
1064
+ monitoring_mode=mlrun.common.schemas.model_monitoring.ModelMonitoringMode.enabled,
1065
+ ),
1066
+ status=mlrun.common.schemas.ModelEndpointStatus(
1067
+ children=list(voting_ensemble.routes.keys()),
1068
+ endpoint_type=mlrun.common.schemas.model_monitoring.EndpointType.ROUTER,
1069
+ children_uids=children_uids,
1070
+ ),
1071
+ )
1069
1072
 
1070
- db = mlrun.get_run_db()
1073
+ db = mlrun.get_run_db()
1074
+
1075
+ db.create_model_endpoint(
1076
+ project=project,
1077
+ endpoint_id=model_endpoint.metadata.uid,
1078
+ model_endpoint=model_endpoint.dict(),
1079
+ )
1071
1080
 
1081
+ # Update model endpoint children type
1082
+ for model_endpoint in children_uids:
1083
+ current_endpoint = db.get_model_endpoint(
1084
+ project=project, endpoint_id=model_endpoint
1085
+ )
1086
+ current_endpoint.status.endpoint_type = (
1087
+ mlrun.common.schemas.model_monitoring.EndpointType.LEAF_EP
1088
+ )
1072
1089
  db.create_model_endpoint(
1073
1090
  project=project,
1074
- endpoint_id=model_endpoint.metadata.uid,
1075
- model_endpoint=model_endpoint.dict(),
1076
- )
1077
-
1078
- # Update model endpoint children type
1079
- for model_endpoint in children_uids:
1080
- current_endpoint = db.get_model_endpoint(
1081
- project=project, endpoint_id=model_endpoint
1082
- )
1083
- current_endpoint.status.endpoint_type = (
1084
- mlrun.common.schemas.model_monitoring.EndpointType.LEAF_EP
1085
- )
1086
- db.create_model_endpoint(
1087
- project=project,
1088
- endpoint_id=model_endpoint,
1089
- model_endpoint=current_endpoint,
1090
- )
1091
-
1092
- except Exception as exc:
1093
- logger.warning(
1094
- "Failed creating model endpoint record",
1095
- exc=err_to_str(exc),
1096
- traceback=traceback.format_exc(),
1091
+ endpoint_id=model_endpoint,
1092
+ model_endpoint=current_endpoint,
1097
1093
  )
1098
-
1099
- except Exception as e:
1100
- logger.error("Failed to retrieve model endpoint object", exc=err_to_str(e))
1094
+ elif (
1095
+ model_ep
1096
+ and (
1097
+ model_ep.spec.monitoring_mode
1098
+ == mlrun.common.schemas.model_monitoring.ModelMonitoringMode.enabled
1099
+ )
1100
+ != voting_ensemble.context.server.track_models
1101
+ ):
1102
+ monitoring_mode = (
1103
+ mlrun.common.schemas.model_monitoring.ModelMonitoringMode.enabled
1104
+ if voting_ensemble.context.server.track_models
1105
+ else mlrun.common.schemas.model_monitoring.ModelMonitoringMode.disabled
1106
+ )
1107
+ db = mlrun.get_run_db()
1108
+ db.patch_model_endpoint(
1109
+ project=project,
1110
+ endpoint_id=endpoint_uid,
1111
+ attributes={"monitoring_mode": monitoring_mode},
1112
+ )
1113
+ logger.debug(
1114
+ f"Updating model endpoint monitoring_mode to {monitoring_mode}",
1115
+ endpoint_id=endpoint_uid,
1116
+ )
1101
1117
 
1102
1118
  return endpoint_uid
1103
1119
 
mlrun/serving/server.py CHANGED
@@ -390,6 +390,7 @@ def v2_serving_handler(context, event, get_body=False):
390
390
  "kafka",
391
391
  "kafka-cluster",
392
392
  "v3ioStream",
393
+ "v3io-stream",
393
394
  ):
394
395
  event.path = "/"
395
396
 
@@ -531,7 +531,9 @@ def _init_endpoint_record(
531
531
  if model.model_path and model.model_path.startswith("store://"):
532
532
  # Enrich the model server with the model artifact metadata
533
533
  model.get_model()
534
- model.version = model.model_spec.tag
534
+ if not model.version:
535
+ # Enrich the model version with the model artifact tag
536
+ model.version = model.model_spec.tag
535
537
  model.labels = model.model_spec.labels
536
538
  versioned_model_name = f"{model.name}:{model.version}"
537
539
  else:
@@ -548,6 +550,11 @@ def _init_endpoint_record(
548
550
  )
549
551
  except mlrun.errors.MLRunNotFoundError:
550
552
  model_ep = None
553
+ except mlrun.errors.MLRunBadRequestError as err:
554
+ logger.debug(
555
+ f"Cant reach to model endpoints store, due to : {err}",
556
+ )
557
+ return
551
558
 
552
559
  if model.context.server.track_models and not model_ep:
553
560
  logger.debug("Creating a new model endpoint record", endpoint_id=uid)
mlrun/utils/helpers.py CHANGED
@@ -149,7 +149,7 @@ if is_ipython and config.nest_asyncio_enabled in ["1", "True"]:
149
149
  nest_asyncio.apply()
150
150
 
151
151
 
152
- class run_keys:
152
+ class RunKeys:
153
153
  input_path = "input_path"
154
154
  output_path = "output_path"
155
155
  inputs = "inputs"
@@ -160,6 +160,10 @@ class run_keys:
160
160
  secrets = "secret_sources"
161
161
 
162
162
 
163
+ # for Backward compatibility
164
+ run_keys = RunKeys
165
+
166
+
163
167
  def verify_field_regex(
164
168
  field_name,
165
169
  field_value,
@@ -1259,6 +1263,10 @@ def _fill_project_path_template(artifact_path, project):
1259
1263
  return artifact_path
1260
1264
 
1261
1265
 
1266
+ def to_non_empty_values_dict(input_dict: dict) -> dict:
1267
+ return {key: value for key, value in input_dict.items() if value}
1268
+
1269
+
1262
1270
  def str_to_timestamp(time_str: str, now_time: Timestamp = None):
1263
1271
  """convert fixed/relative time string to Pandas Timestamp
1264
1272
 
@@ -1606,6 +1614,30 @@ def additional_filters_warning(additional_filters, class_name):
1606
1614
  )
1607
1615
 
1608
1616
 
1617
+ def merge_with_precedence(first_dict: dict, second_dict: dict) -> dict:
1618
+ """
1619
+ Merge two dictionaries with precedence given to keys from the second dictionary.
1620
+
1621
+ This function merges two dictionaries, `first_dict` and `second_dict`, where keys from `second_dict`
1622
+ take precedence in case of conflicts. If both dictionaries contain the same key,
1623
+ the value from `second_dict` will overwrite the value from `first_dict`.
1624
+
1625
+ Example:
1626
+ >>> first_dict = {"key1": "value1", "key2": "value2"}
1627
+ >>> second_dict = {"key2": "new_value2", "key3": "value3"}
1628
+ >>> merge_with_precedence(first_dict, second_dict)
1629
+ {'key1': 'value1', 'key2': 'new_value2', 'key3': 'value3'}
1630
+
1631
+ Note:
1632
+ - The merge operation uses the ** operator in Python, which combines key-value pairs
1633
+ from each dictionary. Later dictionaries take precedence when there are conflicting keys.
1634
+ """
1635
+ return {
1636
+ **(first_dict or {}),
1637
+ **(second_dict or {}),
1638
+ }
1639
+
1640
+
1609
1641
  def validate_component_version_compatibility(
1610
1642
  component_name: typing.Literal["iguazio", "nuclio"], *min_versions: str
1611
1643
  ):
@@ -28,6 +28,10 @@ class NotificationBase:
28
28
  self.name = name
29
29
  self.params = params or {}
30
30
 
31
+ @classmethod
32
+ def validate_params(cls, params):
33
+ pass
34
+
31
35
  @property
32
36
  def active(self) -> bool:
33
37
  return True
@@ -30,6 +30,27 @@ class GitNotification(NotificationBase):
30
30
  API/Client notification for setting a rich run statuses git issue comment (github/gitlab)
31
31
  """
32
32
 
33
+ @classmethod
34
+ def validate_params(cls, params):
35
+ git_repo = params.get("repo", None)
36
+ git_issue = params.get("issue", None)
37
+ git_merge_request = params.get("merge_request", None)
38
+ token = (
39
+ params.get("token", None)
40
+ or params.get("GIT_TOKEN", None)
41
+ or params.get("GITHUB_TOKEN", None)
42
+ )
43
+ if not git_repo:
44
+ raise ValueError("Parameter 'repo' is required for GitNotification")
45
+
46
+ if not token:
47
+ raise ValueError("Parameter 'token' is required for GitNotification")
48
+
49
+ if not git_issue and not git_merge_request:
50
+ raise ValueError(
51
+ "At least one of 'issue' or 'merge_request' is required for GitNotification"
52
+ )
53
+
33
54
  async def push(
34
55
  self,
35
56
  message: str,
@@ -35,6 +35,14 @@ class SlackNotification(NotificationBase):
35
35
  "skipped": ":zzz:",
36
36
  }
37
37
 
38
+ @classmethod
39
+ def validate_params(cls, params):
40
+ webhook = params.get("webhook", None) or mlrun.get_secret_or_env(
41
+ "SLACK_WEBHOOK"
42
+ )
43
+ if not webhook:
44
+ raise ValueError("Parameter 'webhook' is required for SlackNotification")
45
+
38
46
  async def push(
39
47
  self,
40
48
  message: str,
@@ -28,6 +28,12 @@ class WebhookNotification(NotificationBase):
28
28
  API/Client notification for sending run statuses in a http request
29
29
  """
30
30
 
31
+ @classmethod
32
+ def validate_params(cls, params):
33
+ url = params.get("url", None)
34
+ if not url:
35
+ raise ValueError("Parameter 'url' is required for WebhookNotification")
36
+
31
37
  async def push(
32
38
  self,
33
39
  message: str,
@@ -63,6 +69,29 @@ class WebhookNotification(NotificationBase):
63
69
  request_body["custom_html"] = custom_html
64
70
 
65
71
  if override_body:
72
+ list_edit_runs = []
73
+ for run in runs:
74
+ if hasattr(run, "to_dict"):
75
+ run = run.to_dict()
76
+ if isinstance(run, dict):
77
+ parsed_run = {
78
+ "project": run["metadata"]["project"],
79
+ "name": run["metadata"]["name"],
80
+ "host": run["metadata"]["labels"]["host"],
81
+ "status": {"state": run["status"]["state"]},
82
+ }
83
+ if run["status"].get("error", None):
84
+ parsed_run["status"]["error"] = run["status"]["error"]
85
+ elif run["status"].get("results", None):
86
+ parsed_run["status"]["results"] = run["status"]["results"]
87
+ list_edit_runs.append(parsed_run)
88
+ runs_value = str(list_edit_runs)
89
+ if isinstance(override_body, dict):
90
+ for key, value in override_body.items():
91
+ if "{{ runs }}" in value:
92
+ override_body[key] = value.replace("{{ runs }}", runs_value)
93
+ elif "{{runs}}" in value:
94
+ override_body[key] = value.replace("{{runs}}", runs_value)
66
95
  request_body = override_body
67
96
 
68
97
  # Specify the `verify_ssl` parameter value only for HTTPS urls.
@@ -397,7 +397,7 @@ class NotificationPusher(_NotificationPusherBase):
397
397
  try:
398
398
  _run = db.list_runs(
399
399
  project=run.metadata.project,
400
- labels=f"mlrun_constants.MLRunInternalLabels.runner_pod={_step.node_name}",
400
+ labels=f"{mlrun_constants.MLRunInternalLabels.runner_pod}={_step.node_name}",
401
401
  )[0]
402
402
  except IndexError:
403
403
  _run = {
@@ -1,4 +1,4 @@
1
1
  {
2
- "git_commit": "f9d693aaac742edd784874d3f949053e9a5881e4",
3
- "version": "1.7.0-rc26"
2
+ "git_commit": "28e038b6e50ff4e491cbc2a5e1087f03eab8b085",
3
+ "version": "1.7.0-rc27"
4
4
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mlrun
3
- Version: 1.7.0rc26
3
+ Version: 1.7.0rc27
4
4
  Summary: Tracking and config of machine learning runs
5
5
  Home-page: https://github.com/mlrun/mlrun
6
6
  Author: Yaron Haviv
@@ -28,17 +28,17 @@ Requires-Dist: aiohttp-retry ~=2.8
28
28
  Requires-Dist: click ~=8.1
29
29
  Requires-Dist: nest-asyncio ~=1.0
30
30
  Requires-Dist: ipython ~=8.10
31
- Requires-Dist: nuclio-jupyter ~=0.9.17
31
+ Requires-Dist: nuclio-jupyter ~=0.10.0
32
32
  Requires-Dist: numpy <1.27.0,>=1.16.5
33
33
  Requires-Dist: pandas <2.2,>=1.2
34
34
  Requires-Dist: pyarrow <15,>=10.0
35
- Requires-Dist: pyyaml ~=5.1
35
+ Requires-Dist: pyyaml <7,>=5.4.1
36
36
  Requires-Dist: requests ~=2.31
37
37
  Requires-Dist: tabulate ~=0.8.6
38
38
  Requires-Dist: v3io ~=0.6.4
39
39
  Requires-Dist: pydantic <1.10.15,>=1.10.8
40
40
  Requires-Dist: mergedeep ~=1.3
41
- Requires-Dist: v3io-frames ~=0.10.12
41
+ Requires-Dist: v3io-frames ~=0.10.14
42
42
  Requires-Dist: semver ~=3.0
43
43
  Requires-Dist: dependency-injector ~=4.41
44
44
  Requires-Dist: fsspec <2024.4,>=2023.9.2