mlrun 1.7.0rc1__py3-none-any.whl → 1.7.0rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: mlrun
3
- Version: 1.7.0rc1
3
+ Version: 1.7.0rc2
4
4
  Summary: Tracking and config of machine learning runs
5
5
  Home-page: https://github.com/mlrun/mlrun
6
6
  Author: Yaron Haviv
@@ -36,7 +36,7 @@ Requires-Dist: pyarrow <15,>=10.0
36
36
  Requires-Dist: pyyaml ~=5.1
37
37
  Requires-Dist: requests ~=2.31
38
38
  Requires-Dist: tabulate ~=0.8.6
39
- Requires-Dist: v3io ~=0.5.21
39
+ Requires-Dist: v3io ~=0.6.2
40
40
  Requires-Dist: pydantic >=1.10.8,~=1.10
41
41
  Requires-Dist: mergedeep ~=1.3
42
42
  Requires-Dist: v3io-frames ~=0.10.12
@@ -44,7 +44,7 @@ Requires-Dist: semver ~=3.0
44
44
  Requires-Dist: dependency-injector ~=4.41
45
45
  Requires-Dist: fsspec ==2023.9.2
46
46
  Requires-Dist: v3iofs ~=0.1.17
47
- Requires-Dist: storey ~=1.6.18
47
+ Requires-Dist: storey ~=1.7.3
48
48
  Requires-Dist: inflection ~=0.5.0
49
49
  Requires-Dist: python-dotenv ~=0.17.0
50
50
  Requires-Dist: setuptools ~=68.2
@@ -78,7 +78,7 @@ Requires-Dist: redis ~=4.3 ; extra == 'all'
78
78
  Requires-Dist: s3fs ==2023.9.2 ; extra == 'all'
79
79
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'all'
80
80
  Provides-Extra: api
81
- Requires-Dist: uvicorn ~=0.23.2 ; extra == 'api'
81
+ Requires-Dist: uvicorn ~=0.27.1 ; extra == 'api'
82
82
  Requires-Dist: dask-kubernetes ~=0.11.0 ; extra == 'api'
83
83
  Requires-Dist: apscheduler !=3.10.2,~=3.6 ; extra == 'api'
84
84
  Requires-Dist: sqlite3-to-mysql ~=1.4 ; extra == 'api'
@@ -155,7 +155,7 @@ Requires-Dist: s3fs ==2023.9.2 ; extra == 'complete-api'
155
155
  Requires-Dist: sqlalchemy ~=1.4 ; extra == 'complete-api'
156
156
  Requires-Dist: sqlite3-to-mysql ~=1.4 ; extra == 'complete-api'
157
157
  Requires-Dist: timelength ~=1.1 ; extra == 'complete-api'
158
- Requires-Dist: uvicorn ~=0.23.2 ; extra == 'complete-api'
158
+ Requires-Dist: uvicorn ~=0.27.1 ; extra == 'complete-api'
159
159
  Provides-Extra: dask
160
160
  Requires-Dist: dask ~=2023.9.0 ; extra == 'dask'
161
161
  Requires-Dist: distributed ~=2023.9.0 ; extra == 'dask'
@@ -222,7 +222,7 @@ In MLRun the assets, metadata, and services (data, functions, jobs, artifacts, m
222
222
  Projects can be imported/exported as a whole, mapped to git repositories or IDE projects (in PyCharm, VSCode, etc.), which enables versioning, collaboration, and CI/CD.
223
223
  Project access can be restricted to a set of users and roles.
224
224
 
225
- See: **Docs:** [Projects and Automation](https://docs.mlrun.org/en/latest/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/latest/projects/ci-integration.html), **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html), **Video:** [quick start](https://youtu.be/xI8KVGLlj7Q).
225
+ See: **Docs:** [Projects and Automation](https://docs.mlrun.org/en/latest/projects/project.html), [CI/CD Integration](https://docs.mlrun.org/en/latest/projects/ci-integration.html), **Tutorials:** [Quick start](https://docs.mlrun.org/en/latest/tutorials/01-mlrun-basics.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html), **Video:** [Quick start](https://youtu.be/xI8KVGLlj7Q).
226
226
 
227
227
  ### Ingest and process data
228
228
 
@@ -235,13 +235,13 @@ See: **Docs:** [Ingest and process data](https://docs.mlrun.org/en/latest/data-p
235
235
 
236
236
  MLRun allows you to easily build ML pipelines that take data from various sources or the Feature Store and process it, train models at scale with multiple parameters, test models, tracks each experiments, register, version and deploy models, etc. MLRun provides scalable built-in or custom model training services, integrate with any framework and can work with 3rd party training/auto-ML services. You can also bring your own pre-trained model and use it in the pipeline.
237
237
 
238
- See: **Docs:** [Develop and train models](https://docs.mlrun.org/en/latest/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/latest/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html); **Tutorials:** [Train & Eval Models](https://docs.mlrun.org/en/latest/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html); **Video:** [Training models](https://youtu.be/bZgBsmLMdQo).
238
+ See: **Docs:** [Develop and train models](https://docs.mlrun.org/en/latest/development/index.html), [Model Training and Tracking](https://docs.mlrun.org/en/latest/development/model-training-tracking.html), [Batch Runs and Workflows](https://docs.mlrun.org/en/latest/concepts/runs-workflows.html); **Tutorials:** [Train, compare, and register models](https://docs.mlrun.org/en/latest/tutorials/02-model-training.html), [Automated ML Pipeline](https://docs.mlrun.org/en/latest/tutorials/04-pipeline.html); **Video:** [Train and compare models](https://youtu.be/bZgBsmLMdQo).
239
239
 
240
240
  ### Deploy models and applications
241
241
 
242
242
  MLRun rapidly deploys and manages production-grade real-time or batch application pipelines using elastic and resilient serverless functions. MLRun addresses the entire ML application: intercepting application/user requests, running data processing tasks, inferencing using one or more models, driving actions, and integrating with the application logic.
243
243
 
244
- See: **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/latest/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/latest/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/latest/concepts/TBD.html), **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/latest/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html); **Video:** [Serving models](https://youtu.be/OUjOus4dZfw).
244
+ See: **Docs:** [Deploy models and applications](https://docs.mlrun.org/en/latest/deployment/index.html), [Realtime Pipelines](https://docs.mlrun.org/en/latest/serving/serving-graph.html), [Batch Inference](https://docs.mlrun.org/en/latest/deployment/batch_inference.html), **Tutorials:** [Realtime Serving](https://docs.mlrun.org/en/latest/tutorials/03-model-serving.html), [Batch Inference](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html), [Advanced Pipeline](https://docs.mlrun.org/en/latest/tutorials/07-batch-infer.html); **Video:** [Serving pre-trained models](https://youtu.be/OUjOus4dZfw).
245
245
 
246
246
  ### Monitor and alert
247
247
 
@@ -259,9 +259,9 @@ MLRun includes the following major components:
259
259
 
260
260
  [**Project Management:**](https://docs.mlrun.org/en/latest/projects/project.html) A service (API, SDK, DB, UI) that manages the different project assets (data, functions, jobs, workflows, secrets, etc.) and provides central control and metadata layer.
261
261
 
262
- [**Serverless Functions:**](https://docs.mlrun.org/en/latest/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
262
+ [**Functions:**](https://docs.mlrun.org/en/latest/runtimes/functions.html) automatically deployed software package with one or more methods and runtime-specific attributes (such as image, libraries, command, arguments, resources, etc.).
263
263
 
264
- [**Data & Artifacts:**](https://docs.mlrun.org/en/latest/concepts/data-feature-store.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
264
+ [**Data & Artifacts:**](https://docs.mlrun.org/en/latest/concepts/data.html) Glueless connectivity to various data sources, metadata management, catalog, and versioning for structures/unstructured artifacts.
265
265
 
266
266
  [**Feature Store:**](https://docs.mlrun.org/en/latest/feature-store/feature-store.html) automatically collects, prepares, catalogs, and serves production data features for development (offline) and real-time (online) deployment using minimal engineering effort.
267
267
 
@@ -1,10 +1,10 @@
1
1
  mlrun/__init__.py,sha256=o9dHUfVFADfsi6GnOPLr2OkfkHdPvOnA7rkoECen0-I,7248
2
2
  mlrun/__main__.py,sha256=vg-HMhJqQ3OYt31YmijjBh6-6AZQVe4FvDYn4MwEpYs,49229
3
- mlrun/config.py,sha256=ICEgs65oSa73iguQ83kP8vP_tIOLuxJ6lvVk3AEsPM8,61809
3
+ mlrun/config.py,sha256=r0femFEHG8hKF1PQLF02ChbPkwUap0EOhNehTTuaMJE,62152
4
4
  mlrun/errors.py,sha256=HmOAdfpL0bCDisZMUoJPOumneq71ko49Ph-XBL-A4xA,7080
5
5
  mlrun/execution.py,sha256=Qp7B-vn8KJaeeu0uoW1o16XMs9XawTa5si9_ehECKFc,40864
6
- mlrun/features.py,sha256=JryUIiUOmvEyYlufEv1Ue86DzpAgXI6HyQIccE2JyjI,15593
7
- mlrun/k8s_utils.py,sha256=RpKAtEcQ0TNCjH0HR0IfEgRzv2IPJSTtFPe14yQwAYI,5344
6
+ mlrun/features.py,sha256=nPDvy8tJuxwbRr843oWcnLBrqMJDPUanzn2Sb3BBi6w,15569
7
+ mlrun/k8s_utils.py,sha256=b59hFUbNFjjfYlCjqlwxirBBCulC52chEN0Ct4QsLfI,6830
8
8
  mlrun/kfpops.py,sha256=RZ4S9_5v_l0czK42eEb6zXaBGDwsGmfBUsXsRfO6qGc,30125
9
9
  mlrun/lists.py,sha256=ev-gLBPc_az03yQEHrKyDPq_Bjosa4D_XFiVbRIpmRY,8286
10
10
  mlrun/model.py,sha256=oCeNHZlEU2UYtQsceMP8NEezrk0t8VN2QRXsdASu2tU,70340
@@ -16,7 +16,7 @@ mlrun/artifacts/__init__.py,sha256=LxEWcMYPawJYvNOl6H2_UvrxdLTNYfKeZcMEKFZnGgA,1
16
16
  mlrun/artifacts/base.py,sha256=qAM4Tjcduf3unCvYTVV3jzMTqDWgMhYft2O-fVv5kbQ,34970
17
17
  mlrun/artifacts/dataset.py,sha256=hKdKtyAJqPWUGs1yefOAxa10s_ar3o7MaO7oiiD_HqU,22360
18
18
  mlrun/artifacts/manager.py,sha256=f6AOD5-zbzrh5krTkiOgbouSntv0Zvm5w936J79BpYE,14311
19
- mlrun/artifacts/model.py,sha256=hYTE9Qb94b4y3XwnCtonsMrv7JrMrTSB-TtdHMaG7vs,24914
19
+ mlrun/artifacts/model.py,sha256=DXT24CH1ZgQLz9HcWBfjRAEhCBfznoa7-pB52N9qMOI,25205
20
20
  mlrun/artifacts/plots.py,sha256=dHt7Ardo4yZWaPtlUN3b78eB8NXV8XKigPP0u0poRl0,15701
21
21
  mlrun/common/__init__.py,sha256=xY3wHC4TEJgez7qtnn1pQvHosi8-5UJOCtyGBS7FcGE,571
22
22
  mlrun/common/constants.py,sha256=NpBgZV-ReSvPeMKPFp3DKzNWgiVebjGZrZ19pG_ZfRE,660
@@ -24,7 +24,7 @@ mlrun/common/helpers.py,sha256=BAhyuUnZvD_BT43i0_1EszuSbKgZx7bFy2KRIWP0XeA,1087
24
24
  mlrun/common/secrets.py,sha256=vc8WV82EZsCB5ENjUkObFOzZP59aZ1w8F82PTnqwBnc,5181
25
25
  mlrun/common/types.py,sha256=V_jCEFCJZcycFVsPzEToCRQja5bqW0zRAAVaGN_QYxQ,790
26
26
  mlrun/common/db/__init__.py,sha256=xY3wHC4TEJgez7qtnn1pQvHosi8-5UJOCtyGBS7FcGE,571
27
- mlrun/common/db/sql_session.py,sha256=diuZxUBNw1mtbubSAWYtsnjuxZUN1e-ebrG15xfoX8I,2514
27
+ mlrun/common/db/sql_session.py,sha256=Znc8KE2oLy4lg3_vRki1sVlNx59TgDSOTCXfU561hBU,2659
28
28
  mlrun/common/model_monitoring/__init__.py,sha256=x0EMEvxVjHsm858J1t6IEA9dtKTdFpJ9sKhss10ld8A,721
29
29
  mlrun/common/model_monitoring/helpers.py,sha256=S3VT3k2jonTNwr3xQ8Axt8dy3EwNV9z8RHEGw4d59Bc,4140
30
30
  mlrun/common/schemas/__init__.py,sha256=rVaJGgeh0eX3u-i6fNUTlM94Ua6EvaDfbsnfVZZOD8c,4685
@@ -65,9 +65,9 @@ mlrun/data_types/spark.py,sha256=qKQ2TIAPQWDgmIOmpyV5_uuyUX3AnXWSq6GPpVjVIek,945
65
65
  mlrun/data_types/to_pandas.py,sha256=_8_M9WclYNkPeHLo0eXhrnLE6SiLkvNTreeqfJ9G5yY,9945
66
66
  mlrun/datastore/__init__.py,sha256=bsRzu39UOocQAAl_nOKCbhxrZhWUEXrAc8WV3zs0VyI,4118
67
67
  mlrun/datastore/azure_blob.py,sha256=zYHUN5WDvWje4f06GzLDlwJ__ePnjsckgSYbYJt8NF4,8728
68
- mlrun/datastore/base.py,sha256=dNpBct2pcLtD2cqSCNCY3tnN-9qyyVeHoulzlcQiQlE,25614
68
+ mlrun/datastore/base.py,sha256=KN120uIJIkGdeZvG1gVZzbXH-BAgup3wrxpY4OQVz4A,24750
69
69
  mlrun/datastore/datastore.py,sha256=xnK-zKrDwTkiZQgzLpcz8d629avpjYtU9UN3WZpdjww,8810
70
- mlrun/datastore/datastore_profile.py,sha256=4_T5aOEpyfxph8ucei5pyI7Hht-B9rFd0TMBWgLXOAU,14045
70
+ mlrun/datastore/datastore_profile.py,sha256=1mTtIFUCm562rqlVZKBwDGv6Pt6uxA-u8QUxkTC5QC0,14836
71
71
  mlrun/datastore/dbfs_store.py,sha256=5IkxnFQXkW0fdx-ca5jjQnUdTsTfNdJzMvV31ZpDNrM,6634
72
72
  mlrun/datastore/filestore.py,sha256=nS3Ie6jG41NDiW_as9tF8Nu5maaSVEKYKUr1IQtPhuA,3767
73
73
  mlrun/datastore/google_cloud_storage.py,sha256=IQMjKh7jzQzFxYhWQkxsjVGEqZqhANh2qU861vSF5Y0,6029
@@ -75,13 +75,13 @@ mlrun/datastore/helpers.py,sha256=-bKveE9rteLd0hJd6OSMuMbfz09W_OXyu1G5O2ihZjs,62
75
75
  mlrun/datastore/inmem.py,sha256=6PAltUk7uyYlDgnsaJPOkg_P98iku1ys2e2wpAmPRkc,2779
76
76
  mlrun/datastore/redis.py,sha256=DDA1FsixfnzNwjVUU9MgVCKFo3X3tYvPDcREKyy9zS4,5517
77
77
  mlrun/datastore/s3.py,sha256=BCyVDznEsmU1M1HtRROdLo4HkLOy4fjEmgpNrTpsoW0,8030
78
- mlrun/datastore/sources.py,sha256=gbXjDEoBUBBpbJh1FUVrmK6gfRrAjQYS4vl7Sm5b6l8,40825
78
+ mlrun/datastore/sources.py,sha256=pS4n7ITpgz46do8dEBmJkyI0gAsjRPjtS7nXfbaqig4,40706
79
79
  mlrun/datastore/spark_udf.py,sha256=NnnB3DZxZb-rqpRy7b-NC7QWXuuqFn3XkBDc86tU4mQ,1498
80
80
  mlrun/datastore/spark_utils.py,sha256=50rllp6xXpXY__1LbU7aTXUU5ca8dKAfoskPre3npZo,1611
81
81
  mlrun/datastore/store_resources.py,sha256=dfMdFy2urilECtlwLJr5CSG12MA645b-NPYDnbr5s1A,6839
82
- mlrun/datastore/targets.py,sha256=JJeo8_fyNPABiu2xQG9p7fcQIIkHnrtNIGCACZjTsMI,70051
82
+ mlrun/datastore/targets.py,sha256=qQ0Hjko0vRZ7P5zQZDZyqCNboRPye4UHfEXH0n--WOA,70196
83
83
  mlrun/datastore/utils.py,sha256=x0gLcXHIhExwUt9U2qbmF8HuCWCFpmSl-YoReIrnpck,7029
84
- mlrun/datastore/v3io.py,sha256=PJVPMUaIDopGKrmdp3vA7fRkoEoTnn-LNDduhDMZf5o,8303
84
+ mlrun/datastore/v3io.py,sha256=OyldGthdycuk7thQYHuCY-2XrGIef_14c2ReqgHh_7I,9188
85
85
  mlrun/datastore/wasbfs/__init__.py,sha256=s5Ul-0kAhYqFjKDR2X0O2vDGDbLQQduElb32Ev56Te4,1343
86
86
  mlrun/datastore/wasbfs/fs.py,sha256=MnSj7Q4OKA2L55ihCmUnj2t3GA3B77oLMdAw-yxvN9w,6151
87
87
  mlrun/db/__init__.py,sha256=WqJ4x8lqJ7ZoKbhEyFqkYADd9P6E3citckx9e9ZLcIU,1163
@@ -90,12 +90,12 @@ mlrun/db/factory.py,sha256=wTEKHEmdDkylM6IkTYvmEYVF8gn2HdjLoLoWICCyatI,2403
90
90
  mlrun/db/httpdb.py,sha256=F2-9lFlc2s6x-uMwikaUII7V5Pf3_ArQ7Mj4mPK1bnE,155870
91
91
  mlrun/db/nopdb.py,sha256=7SnfMdusNvtxM0GmFIYLCBnkB-fSnvUtM2hQoF1q--I,14514
92
92
  mlrun/feature_store/__init__.py,sha256=n1F5m1svFW2chbE2dJdWzZJJiYS4E-y8PQsG9Q-F0lU,1584
93
- mlrun/feature_store/api.py,sha256=AUOMNAdbnU6pF-kVBc_rWHNVR0t-WWBir7uKAZEL_9o,49480
93
+ mlrun/feature_store/api.py,sha256=bO5I_lkIPLv8j3AXYOAseSBI8RrsGwQ9m7isepuADkw,49480
94
94
  mlrun/feature_store/common.py,sha256=DKmoRk04NCS1gv7qZuEUa2-g8WsfR6IWjYctcrqKVlg,12853
95
- mlrun/feature_store/feature_set.py,sha256=LS76ONq5apwUS2SXNbL-X9de0gF1kyKA9zK9emDkyPo,55376
96
- mlrun/feature_store/feature_vector.py,sha256=ON-caAu05MEKP9pwm3z7VQEgmBGxO4MxBLXQCAglGqs,36230
95
+ mlrun/feature_store/feature_set.py,sha256=iIEFt85Bpc4Q0jNqNXLptVZfULpFBHT5iLSzrZVYvbY,55295
96
+ mlrun/feature_store/feature_vector.py,sha256=njv093y-fSyK7mGG7sfuczBC0IcCtGFADQ07w4HMKOs,43574
97
97
  mlrun/feature_store/ingestion.py,sha256=GZkrke5_JJfA_PGOFc6ekbHKujHgMgqr6t4vop5n_bg,11210
98
- mlrun/feature_store/steps.py,sha256=uSIjhqSm5O7GXtwYpOqvesYn51cp9PbC8f1De_s3h64,29143
98
+ mlrun/feature_store/steps.py,sha256=bx9pjdiV2teE1wNrigriT2Xp4RQ_TwC46-yboLnpQw0,28882
99
99
  mlrun/feature_store/retrieval/__init__.py,sha256=bwA4copPpLQi8fyoUAYtOyrlw0-6f3-Knct8GbJSvRg,1282
100
100
  mlrun/feature_store/retrieval/base.py,sha256=XUX4D_0CrgppwdF-Ca4zVf43rjlg4sYPlaNlSaciP7Q,30004
101
101
  mlrun/feature_store/retrieval/conversion.py,sha256=y7A5yNAR9CRjsGz7XytJFRt3Ngf6XNRBZys94NzSVE4,11654
@@ -205,7 +205,7 @@ mlrun/model_monitoring/features_drift_table.py,sha256=YUwKr3SjKPQxb99pE-RAyiT3L0
205
205
  mlrun/model_monitoring/helpers.py,sha256=25aTNY3jINyzE6KZfcLaWD7bHRyUDzRF1li3xD59i4Q,6955
206
206
  mlrun/model_monitoring/model_endpoint.py,sha256=BBtxdY5ciormI_al4zshmIp0GN7hGhOCn-hLgpCXek0,3938
207
207
  mlrun/model_monitoring/prometheus.py,sha256=cUR4y73GutJB_pA_VCBDl9YtK4PcIJp2wj2rnLVmYi4,7578
208
- mlrun/model_monitoring/stream_processing.py,sha256=EuVc9_djbvsF0ERkxSo6f6yCa3cnX56iXA9ecGQXQa8,48714
208
+ mlrun/model_monitoring/stream_processing.py,sha256=o2EmztZH3SZTawZwcvwCsaxGwNWmoZdw3YS1-YJJG0o,48113
209
209
  mlrun/model_monitoring/tracking_policy.py,sha256=9P0oRjFMfoqKY7Zv2rv7abKgnKkiepFJfimWx-LOm0M,5283
210
210
  mlrun/model_monitoring/writer.py,sha256=IWPzPenoAkfIxlvn0IdcdB19Nxqmg4mjbo3-RnYWw9A,8669
211
211
  mlrun/model_monitoring/stores/__init__.py,sha256=adU_G07jkD3JUT8__d0jAxs9nNomL7igKmd6uVM9L50,4525
@@ -239,7 +239,7 @@ mlrun/platforms/other.py,sha256=T1BibmEBNggM62YJ6oejRmcVv_1besfH5DDHhCaDkRg,1182
239
239
  mlrun/projects/__init__.py,sha256=Lv5rfxyXJrw6WGOWJKhBz66M6t3_zsNMCfUD6waPwx4,1153
240
240
  mlrun/projects/operations.py,sha256=SiDHd7cqh9u23AVpETbkJE6WmOnB434zBrwM-StZLQY,18538
241
241
  mlrun/projects/pipelines.py,sha256=P3oQm7gNqaErEdgReFuGHvtxKNHmFqasBUzw7cc2huU,39512
242
- mlrun/projects/project.py,sha256=ThY_sEoEnvznVa00xC3QGbXJ58TzqQmf4fQaMyqWpwU,150861
242
+ mlrun/projects/project.py,sha256=Hhdu9TrAW_XIKQZZj-nnKNTaHm7L5ipixvH5oYZaxEY,152222
243
243
  mlrun/runtimes/__init__.py,sha256=vsoNA9ts_VPvGN9YPYKAjkxZe1RaZu22D5t-tiMyP-4,7034
244
244
  mlrun/runtimes/base.py,sha256=yebymfKgjSSebHGpgN5JRT4wDkB7khBW7Fofbc8eXyM,35654
245
245
  mlrun/runtimes/constants.py,sha256=oP3OxdYCpbvadJ3zP1JGkqGBKaBheNkCnJISWha9x58,9513
@@ -268,14 +268,14 @@ mlrun/runtimes/sparkjob/__init__.py,sha256=_KPvk0qefeLtHO6lxQE_AMOGiMTG_OT48eRCE
268
268
  mlrun/runtimes/sparkjob/spark3job.py,sha256=Cwz4UippGBxUihsSgKFgmTjU3fBOQNNEo1ioZomFHUE,41187
269
269
  mlrun/serving/__init__.py,sha256=_6HRAOuS2Ehjo3vwx5h1aI_-JppxEAsl4VfEERAbGFE,1078
270
270
  mlrun/serving/merger.py,sha256=PXLn3A21FiLteJHaDSLm5xKNT-80eTTjfHUJnBX1gKY,6116
271
- mlrun/serving/remote.py,sha256=XtCgEY-azxcP0VUG1TupZXQ_dttPkAKIAtszW-GfGpQ,18038
272
- mlrun/serving/routers.py,sha256=GRPogPoxxP0NDwNZcxWX8BOXngrXnuO2PcJ6SQfwk9g,54756
271
+ mlrun/serving/remote.py,sha256=FatO7D1zuqPQugH2Wds378_XXyteic18hkbhskNn0sE,17934
272
+ mlrun/serving/routers.py,sha256=YN8k6eWWraqWOU3SqYFda7ky-oV_O0--zAuPEGwKdPI,54976
273
273
  mlrun/serving/server.py,sha256=UlUab_-RwbI9xr7WIgaN768oWqSpPI6DAbFzeyAxMus,21340
274
274
  mlrun/serving/serving_wrapper.py,sha256=R670-S6PX_d5ER6jiHtRvacuPyFzQH0mEf2K0sBIIOM,836
275
- mlrun/serving/states.py,sha256=m5iGNXZZTq4UWds0PWETRFwmcKi1zNVjMqYZUUKvYnw,55593
275
+ mlrun/serving/states.py,sha256=XNThYLypAA_h3lofQl5S61AnCBJNACaNn0DU9vp8B6o,55648
276
276
  mlrun/serving/utils.py,sha256=WO0n_YTO0YVPTjp_90zxRl4vey4flDgw5vaOHK5p_qY,3871
277
277
  mlrun/serving/v1_serving.py,sha256=by4myxlnwyZ0ijQ5fURilGCK1sUpdQL2Il1VR3Xqpxg,11805
278
- mlrun/serving/v2_serving.py,sha256=DAw7zdIgbcMYkV0XSHnvdKVhfj1Xe-_BmgyOG_2v-lw,21817
278
+ mlrun/serving/v2_serving.py,sha256=z1jTy0ObRFpV5nxMk-FGL2PoTQf-L01sYjfdA6_NqJc,23559
279
279
  mlrun/track/__init__.py,sha256=LWRUHJt8JyFW17FyNPOVyWd-NXTf1iptzsK9KFj5fuY,765
280
280
  mlrun/track/tracker.py,sha256=y-UdhC2nzM6r-yHCwvrfiHRr93xsr4JRsZTxDrTTRJo,3541
281
281
  mlrun/track/tracker_manager.py,sha256=IYBl99I62IC6VCCmG1yt6JoHNOQXa53C4DURJ2sWgio,5726
@@ -287,10 +287,10 @@ mlrun/utils/azure_vault.py,sha256=IEFizrDGDbAaoWwDr1WoA88S_EZ0T--vjYtY-i0cvYQ,34
287
287
  mlrun/utils/clones.py,sha256=mJpx4nyFiY6jlBCvFABsNuyi_mr1mvfPWn81vlafpOU,7361
288
288
  mlrun/utils/condition_evaluator.py,sha256=-nGfRmZzivn01rHTroiGY4rqEv8T1irMyhzxEei-sKc,1897
289
289
  mlrun/utils/db.py,sha256=KEa-vzicUhzIwo1wBXax2ZuXtYgf5to7wnsY3CYCiOQ,1713
290
- mlrun/utils/helpers.py,sha256=XEKUMmQ7cWXtC9mV1ntLtqn8427qzoKepXmLmi-pZP0,49991
290
+ mlrun/utils/helpers.py,sha256=5egDED5x9oWoL2mPmueFVWBx41NoFSKouDa_jY_LG4Q,50116
291
291
  mlrun/utils/http.py,sha256=Ekhe403hbGYstxrDVL9CGa0ToOtjVbh7MwNEVkmS16U,8698
292
292
  mlrun/utils/logger.py,sha256=MCj18mxDbDV86CV_R2l7_8PoAWZPU-GtmkSbWFkss4w,8135
293
- mlrun/utils/regex.py,sha256=V0kaw1-zuehkN20g_Pq6SgkJTBLRdBqNkXOGN_2TJEw,4430
293
+ mlrun/utils/regex.py,sha256=Nd7xnDHU9PEOsse6rFwLNVgU4AaYCyuwMmQ9qgx2-Vw,4581
294
294
  mlrun/utils/retryer.py,sha256=BsST2dbGCHcY46wyGG3zWel_O9YquO0c57P3rcBxXU0,7522
295
295
  mlrun/utils/singleton.py,sha256=p1Y-X0mPSs_At092GS-pZCA8CTR62HOqPU07_ZH6-To,869
296
296
  mlrun/utils/v3io_clients.py,sha256=7eReciHBPLuLW6b5DIc8emnmrjh4D8hXPuqZDooR6HQ,1284
@@ -305,11 +305,11 @@ mlrun/utils/notifications/notification/ipython.py,sha256=d47s-fW4TgqOJZOSdmzBQvd
305
305
  mlrun/utils/notifications/notification/slack.py,sha256=5JysqIpUYUZKXPSeeZtbl7qb2L9dj7p2NvnEBcEsZkA,3898
306
306
  mlrun/utils/notifications/notification/webhook.py,sha256=QHezCuN5uXkLcroAGxGrhGHaxAdUvkDLIsp27_Yrfd4,2390
307
307
  mlrun/utils/version/__init__.py,sha256=7kkrB7hEZ3cLXoWj1kPoDwo4MaswsI2JVOBpbKgPAgc,614
308
- mlrun/utils/version/version.json,sha256=EU8yQ0hns88u_ioC4B6ZtmURG3_wF1GAKN0SshtP3lA,88
308
+ mlrun/utils/version/version.json,sha256=7HI-z4UHGmV3UDFAy8IBDjo6qOdOdaijlUv8yUL04pQ,88
309
309
  mlrun/utils/version/version.py,sha256=eEW0tqIAkU9Xifxv8Z9_qsYnNhn3YH7NRAfM-pPLt1g,1878
310
- mlrun-1.7.0rc1.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
311
- mlrun-1.7.0rc1.dist-info/METADATA,sha256=arsJwtTut4_kQ9Zli13zt9rKys7wMlltykrz9cD_V3Q,18391
312
- mlrun-1.7.0rc1.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
313
- mlrun-1.7.0rc1.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
314
- mlrun-1.7.0rc1.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
315
- mlrun-1.7.0rc1.dist-info/RECORD,,
310
+ mlrun-1.7.0rc2.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
311
+ mlrun-1.7.0rc2.dist-info/METADATA,sha256=Yj5FN2TRkU2c3LcmvNoAWa5X7oNXFXaDPzP3H41ZXt0,18415
312
+ mlrun-1.7.0rc2.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
313
+ mlrun-1.7.0rc2.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
314
+ mlrun-1.7.0rc2.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
315
+ mlrun-1.7.0rc2.dist-info/RECORD,,