mlrun 1.7.0rc17__py3-none-any.whl → 1.7.0rc19__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/__main__.py +5 -2
- mlrun/alerts/alert.py +1 -1
- mlrun/artifacts/manager.py +5 -1
- mlrun/common/constants.py +64 -3
- mlrun/common/formatters/__init__.py +16 -0
- mlrun/common/formatters/base.py +59 -0
- mlrun/common/formatters/function.py +41 -0
- mlrun/common/runtimes/constants.py +32 -4
- mlrun/common/schemas/__init__.py +1 -2
- mlrun/common/schemas/alert.py +31 -9
- mlrun/common/schemas/api_gateway.py +52 -0
- mlrun/common/schemas/client_spec.py +1 -0
- mlrun/common/schemas/frontend_spec.py +1 -0
- mlrun/common/schemas/function.py +4 -0
- mlrun/common/schemas/model_monitoring/__init__.py +9 -4
- mlrun/common/schemas/model_monitoring/constants.py +22 -8
- mlrun/common/schemas/model_monitoring/grafana.py +9 -5
- mlrun/common/schemas/model_monitoring/model_endpoints.py +17 -6
- mlrun/config.py +9 -2
- mlrun/data_types/to_pandas.py +5 -5
- mlrun/datastore/datastore.py +6 -2
- mlrun/datastore/redis.py +2 -2
- mlrun/datastore/s3.py +5 -0
- mlrun/datastore/sources.py +106 -7
- mlrun/datastore/store_resources.py +5 -1
- mlrun/datastore/targets.py +5 -4
- mlrun/datastore/utils.py +42 -0
- mlrun/db/base.py +5 -1
- mlrun/db/httpdb.py +22 -3
- mlrun/db/nopdb.py +5 -1
- mlrun/errors.py +6 -0
- mlrun/execution.py +16 -6
- mlrun/feature_store/ingestion.py +7 -6
- mlrun/feature_store/retrieval/conversion.py +5 -5
- mlrun/feature_store/retrieval/job.py +7 -3
- mlrun/feature_store/retrieval/spark_merger.py +2 -1
- mlrun/frameworks/_dl_common/loggers/tensorboard_logger.py +2 -2
- mlrun/frameworks/parallel_coordinates.py +2 -1
- mlrun/frameworks/tf_keras/__init__.py +4 -1
- mlrun/launcher/client.py +4 -2
- mlrun/launcher/local.py +8 -2
- mlrun/launcher/remote.py +8 -2
- mlrun/model.py +5 -1
- mlrun/model_monitoring/db/stores/__init__.py +0 -2
- mlrun/model_monitoring/db/stores/base/store.py +16 -4
- mlrun/model_monitoring/db/stores/sqldb/models/__init__.py +43 -21
- mlrun/model_monitoring/db/stores/sqldb/models/base.py +32 -2
- mlrun/model_monitoring/db/stores/sqldb/models/mysql.py +25 -5
- mlrun/model_monitoring/db/stores/sqldb/models/sqlite.py +5 -0
- mlrun/model_monitoring/db/stores/sqldb/sql_store.py +235 -166
- mlrun/model_monitoring/db/stores/v3io_kv/kv_store.py +190 -91
- mlrun/model_monitoring/db/tsdb/__init__.py +35 -6
- mlrun/model_monitoring/db/tsdb/base.py +232 -38
- mlrun/model_monitoring/db/tsdb/helpers.py +30 -0
- mlrun/model_monitoring/db/tsdb/tdengine/__init__.py +15 -0
- mlrun/model_monitoring/db/tsdb/tdengine/schemas.py +240 -0
- mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py +45 -0
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +397 -0
- mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +292 -104
- mlrun/model_monitoring/helpers.py +45 -0
- mlrun/model_monitoring/stream_processing.py +7 -4
- mlrun/model_monitoring/writer.py +50 -20
- mlrun/package/utils/_formatter.py +2 -2
- mlrun/projects/operations.py +8 -5
- mlrun/projects/pipelines.py +42 -15
- mlrun/projects/project.py +55 -14
- mlrun/render.py +8 -5
- mlrun/runtimes/base.py +2 -1
- mlrun/runtimes/databricks_job/databricks_wrapper.py +1 -1
- mlrun/runtimes/local.py +4 -1
- mlrun/runtimes/nuclio/api_gateway.py +32 -8
- mlrun/runtimes/nuclio/application/application.py +3 -3
- mlrun/runtimes/nuclio/function.py +1 -4
- mlrun/runtimes/utils.py +5 -6
- mlrun/serving/server.py +2 -1
- mlrun/utils/async_http.py +25 -5
- mlrun/utils/helpers.py +28 -7
- mlrun/utils/logger.py +28 -1
- mlrun/utils/notifications/notification/__init__.py +14 -9
- mlrun/utils/notifications/notification/slack.py +27 -7
- mlrun/utils/notifications/notification_pusher.py +47 -42
- mlrun/utils/v3io_clients.py +0 -1
- mlrun/utils/version/version.json +2 -2
- {mlrun-1.7.0rc17.dist-info → mlrun-1.7.0rc19.dist-info}/METADATA +9 -4
- {mlrun-1.7.0rc17.dist-info → mlrun-1.7.0rc19.dist-info}/RECORD +89 -82
- mlrun/model_monitoring/db/v3io_tsdb_reader.py +0 -134
- {mlrun-1.7.0rc17.dist-info → mlrun-1.7.0rc19.dist-info}/LICENSE +0 -0
- {mlrun-1.7.0rc17.dist-info → mlrun-1.7.0rc19.dist-info}/WHEEL +0 -0
- {mlrun-1.7.0rc17.dist-info → mlrun-1.7.0rc19.dist-info}/entry_points.txt +0 -0
- {mlrun-1.7.0rc17.dist-info → mlrun-1.7.0rc19.dist-info}/top_level.txt +0 -0
|
@@ -11,17 +11,22 @@
|
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
|
-
#
|
|
15
|
-
|
|
16
14
|
|
|
17
|
-
|
|
15
|
+
import typing
|
|
16
|
+
from abc import ABC, abstractmethod
|
|
17
|
+
from datetime import datetime
|
|
18
18
|
|
|
19
19
|
import pandas as pd
|
|
20
20
|
|
|
21
|
-
import mlrun.common.schemas.model_monitoring
|
|
21
|
+
import mlrun.common.schemas.model_monitoring as mm_schemas
|
|
22
|
+
import mlrun.model_monitoring.db.tsdb.helpers
|
|
23
|
+
import mlrun.model_monitoring.helpers
|
|
24
|
+
from mlrun.utils import logger
|
|
22
25
|
|
|
23
26
|
|
|
24
27
|
class TSDBConnector(ABC):
|
|
28
|
+
type: str = ""
|
|
29
|
+
|
|
25
30
|
def __init__(self, project: str):
|
|
26
31
|
"""
|
|
27
32
|
Initialize a new TSDB connector. The connector is used to interact with the TSDB and store monitoring data.
|
|
@@ -56,14 +61,13 @@ class TSDBConnector(ABC):
|
|
|
56
61
|
def write_application_event(
|
|
57
62
|
self,
|
|
58
63
|
event: dict,
|
|
59
|
-
kind:
|
|
60
|
-
):
|
|
64
|
+
kind: mm_schemas.WriterEventKind = mm_schemas.WriterEventKind.RESULT,
|
|
65
|
+
) -> None:
|
|
61
66
|
"""
|
|
62
67
|
Write a single application or metric to TSDB.
|
|
63
68
|
|
|
64
69
|
:raise mlrun.errors.MLRunRuntimeError: If an error occurred while writing the event.
|
|
65
70
|
"""
|
|
66
|
-
pass
|
|
67
71
|
|
|
68
72
|
def delete_tsdb_resources(self):
|
|
69
73
|
"""
|
|
@@ -76,8 +80,8 @@ class TSDBConnector(ABC):
|
|
|
76
80
|
self,
|
|
77
81
|
endpoint_id: str,
|
|
78
82
|
metrics: list[str],
|
|
79
|
-
start: str
|
|
80
|
-
end: str
|
|
83
|
+
start: str,
|
|
84
|
+
end: str,
|
|
81
85
|
) -> dict[str, list[tuple[str, float]]]:
|
|
82
86
|
"""
|
|
83
87
|
Getting real time metrics from the TSDB. There are pre-defined metrics for model endpoints such as
|
|
@@ -98,38 +102,228 @@ class TSDBConnector(ABC):
|
|
|
98
102
|
"""
|
|
99
103
|
pass
|
|
100
104
|
|
|
101
|
-
def
|
|
105
|
+
def create_tables(self) -> None:
|
|
106
|
+
"""
|
|
107
|
+
Create the TSDB tables using the TSDB connector. At the moment we support 3 types of tables:
|
|
108
|
+
- app_results: a detailed result that includes status, kind, extra data, etc.
|
|
109
|
+
- metrics: a basic key value that represents a numeric metric.
|
|
110
|
+
- predictions: latency of each prediction.
|
|
111
|
+
"""
|
|
112
|
+
|
|
113
|
+
@abstractmethod
|
|
114
|
+
def read_metrics_data(
|
|
102
115
|
self,
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
116
|
+
*,
|
|
117
|
+
endpoint_id: str,
|
|
118
|
+
start: datetime,
|
|
119
|
+
end: datetime,
|
|
120
|
+
metrics: list[mm_schemas.ModelEndpointMonitoringMetric],
|
|
121
|
+
type: typing.Literal["metrics", "results"],
|
|
122
|
+
) -> typing.Union[
|
|
123
|
+
list[
|
|
124
|
+
typing.Union[
|
|
125
|
+
mm_schemas.ModelEndpointMonitoringResultValues,
|
|
126
|
+
mm_schemas.ModelEndpointMonitoringMetricNoData,
|
|
127
|
+
],
|
|
128
|
+
],
|
|
129
|
+
list[
|
|
130
|
+
typing.Union[
|
|
131
|
+
mm_schemas.ModelEndpointMonitoringMetricValues,
|
|
132
|
+
mm_schemas.ModelEndpointMonitoringMetricNoData,
|
|
133
|
+
],
|
|
134
|
+
],
|
|
135
|
+
]:
|
|
136
|
+
"""
|
|
137
|
+
Read metrics OR results from the TSDB and return as a list.
|
|
123
138
|
|
|
124
|
-
:
|
|
125
|
-
:
|
|
139
|
+
:param endpoint_id: The model endpoint identifier.
|
|
140
|
+
:param start: The start time of the query.
|
|
141
|
+
:param end: The end time of the query.
|
|
142
|
+
:param metrics: The list of metrics to get the values for.
|
|
143
|
+
:param type: "metrics" or "results" - the type of each item in metrics.
|
|
144
|
+
:return: A list of result values or a list of metric values.
|
|
126
145
|
"""
|
|
127
|
-
pass
|
|
128
146
|
|
|
129
|
-
|
|
147
|
+
@abstractmethod
|
|
148
|
+
def read_predictions(
|
|
149
|
+
self,
|
|
150
|
+
*,
|
|
151
|
+
endpoint_id: str,
|
|
152
|
+
start: datetime,
|
|
153
|
+
end: datetime,
|
|
154
|
+
aggregation_window: typing.Optional[str] = None,
|
|
155
|
+
agg_funcs: typing.Optional[list[str]] = None,
|
|
156
|
+
limit: typing.Optional[int] = None,
|
|
157
|
+
) -> typing.Union[
|
|
158
|
+
mm_schemas.ModelEndpointMonitoringMetricValues,
|
|
159
|
+
mm_schemas.ModelEndpointMonitoringMetricNoData,
|
|
160
|
+
]:
|
|
130
161
|
"""
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
162
|
+
Read the "invocations" metric for the provided model endpoint in the given time range,
|
|
163
|
+
and return the metric values if any, otherwise signify with the "no data" object.
|
|
164
|
+
|
|
165
|
+
:param endpoint_id: The model endpoint identifier.
|
|
166
|
+
:param start: The start time of the query.
|
|
167
|
+
:param end: The end time of the query.
|
|
168
|
+
:param aggregation_window: On what time window length should the invocations be aggregated. If provided,
|
|
169
|
+
the `agg_funcs` must be provided as well. Provided as a string in the format of '1m',
|
|
170
|
+
'1h', etc.
|
|
171
|
+
:param agg_funcs: List of aggregation functions to apply on the invocations. If provided, the
|
|
172
|
+
`aggregation_window` must be provided as well. Provided as a list of strings in
|
|
173
|
+
the format of ['sum', 'avg', 'count', ...]
|
|
174
|
+
:param limit: The maximum number of records to return.
|
|
175
|
+
|
|
176
|
+
:raise mlrun.errors.MLRunInvalidArgumentError: If only one of `aggregation_window` and `agg_funcs` is provided.
|
|
177
|
+
:return: Metric values object or no data object.
|
|
134
178
|
"""
|
|
135
|
-
|
|
179
|
+
|
|
180
|
+
@abstractmethod
|
|
181
|
+
def read_prediction_metric_for_endpoint_if_exists(
|
|
182
|
+
self, endpoint_id: str
|
|
183
|
+
) -> typing.Optional[mm_schemas.ModelEndpointMonitoringMetric]:
|
|
184
|
+
"""
|
|
185
|
+
Read the "invocations" metric for the provided model endpoint, and return the metric object
|
|
186
|
+
if it exists.
|
|
187
|
+
|
|
188
|
+
:param endpoint_id: The model endpoint identifier.
|
|
189
|
+
:return: `None` if the invocations metric does not exist, otherwise return the
|
|
190
|
+
corresponding metric object.
|
|
191
|
+
"""
|
|
192
|
+
|
|
193
|
+
@staticmethod
|
|
194
|
+
def df_to_metrics_values(
|
|
195
|
+
*,
|
|
196
|
+
df: pd.DataFrame,
|
|
197
|
+
metrics: list[mm_schemas.ModelEndpointMonitoringMetric],
|
|
198
|
+
project: str,
|
|
199
|
+
) -> list[
|
|
200
|
+
typing.Union[
|
|
201
|
+
mm_schemas.ModelEndpointMonitoringMetricValues,
|
|
202
|
+
mm_schemas.ModelEndpointMonitoringMetricNoData,
|
|
203
|
+
]
|
|
204
|
+
]:
|
|
205
|
+
"""
|
|
206
|
+
Parse a time-indexed DataFrame of metrics from the TSDB into a list of
|
|
207
|
+
metrics values per distinct results.
|
|
208
|
+
When a metric is not found in the DataFrame, it is represented in a no-data object.
|
|
209
|
+
"""
|
|
210
|
+
metrics_without_data = {metric.full_name: metric for metric in metrics}
|
|
211
|
+
|
|
212
|
+
metrics_values: list[
|
|
213
|
+
typing.Union[
|
|
214
|
+
mm_schemas.ModelEndpointMonitoringMetricValues,
|
|
215
|
+
mm_schemas.ModelEndpointMonitoringMetricNoData,
|
|
216
|
+
]
|
|
217
|
+
] = []
|
|
218
|
+
if not df.empty:
|
|
219
|
+
grouped = df.groupby(
|
|
220
|
+
[
|
|
221
|
+
mm_schemas.WriterEvent.APPLICATION_NAME,
|
|
222
|
+
mm_schemas.MetricData.METRIC_NAME,
|
|
223
|
+
],
|
|
224
|
+
observed=False,
|
|
225
|
+
)
|
|
226
|
+
else:
|
|
227
|
+
logger.debug("No metrics", missing_metrics=metrics_without_data.keys())
|
|
228
|
+
grouped = []
|
|
229
|
+
for (app_name, name), sub_df in grouped:
|
|
230
|
+
full_name = mlrun.model_monitoring.helpers._compose_full_name(
|
|
231
|
+
project=project,
|
|
232
|
+
app=app_name,
|
|
233
|
+
name=name,
|
|
234
|
+
type=mm_schemas.ModelEndpointMonitoringMetricType.METRIC,
|
|
235
|
+
)
|
|
236
|
+
metrics_values.append(
|
|
237
|
+
mm_schemas.ModelEndpointMonitoringMetricValues(
|
|
238
|
+
full_name=full_name,
|
|
239
|
+
values=list(
|
|
240
|
+
zip(
|
|
241
|
+
sub_df.index,
|
|
242
|
+
sub_df[mm_schemas.MetricData.METRIC_VALUE],
|
|
243
|
+
)
|
|
244
|
+
), # pyright: ignore[reportArgumentType]
|
|
245
|
+
)
|
|
246
|
+
)
|
|
247
|
+
del metrics_without_data[full_name]
|
|
248
|
+
|
|
249
|
+
for metric in metrics_without_data.values():
|
|
250
|
+
metrics_values.append(
|
|
251
|
+
mm_schemas.ModelEndpointMonitoringMetricNoData(
|
|
252
|
+
full_name=metric.full_name,
|
|
253
|
+
type=mm_schemas.ModelEndpointMonitoringMetricType.METRIC,
|
|
254
|
+
)
|
|
255
|
+
)
|
|
256
|
+
|
|
257
|
+
return metrics_values
|
|
258
|
+
|
|
259
|
+
@staticmethod
|
|
260
|
+
def df_to_results_values(
|
|
261
|
+
*,
|
|
262
|
+
df: pd.DataFrame,
|
|
263
|
+
metrics: list[mm_schemas.ModelEndpointMonitoringMetric],
|
|
264
|
+
project: str,
|
|
265
|
+
) -> list[
|
|
266
|
+
typing.Union[
|
|
267
|
+
mm_schemas.ModelEndpointMonitoringResultValues,
|
|
268
|
+
mm_schemas.ModelEndpointMonitoringMetricNoData,
|
|
269
|
+
]
|
|
270
|
+
]:
|
|
271
|
+
"""
|
|
272
|
+
Parse a time-indexed DataFrame of results from the TSDB into a list of
|
|
273
|
+
results values per distinct results.
|
|
274
|
+
When a result is not found in the DataFrame, it is represented in no-data object.
|
|
275
|
+
"""
|
|
276
|
+
metrics_without_data = {metric.full_name: metric for metric in metrics}
|
|
277
|
+
|
|
278
|
+
metrics_values: list[
|
|
279
|
+
typing.Union[
|
|
280
|
+
mm_schemas.ModelEndpointMonitoringResultValues,
|
|
281
|
+
mm_schemas.ModelEndpointMonitoringMetricNoData,
|
|
282
|
+
]
|
|
283
|
+
] = []
|
|
284
|
+
if not df.empty:
|
|
285
|
+
grouped = df.groupby(
|
|
286
|
+
[
|
|
287
|
+
mm_schemas.WriterEvent.APPLICATION_NAME,
|
|
288
|
+
mm_schemas.ResultData.RESULT_NAME,
|
|
289
|
+
],
|
|
290
|
+
observed=False,
|
|
291
|
+
)
|
|
292
|
+
else:
|
|
293
|
+
grouped = []
|
|
294
|
+
logger.debug("No results", missing_results=metrics_without_data.keys())
|
|
295
|
+
for (app_name, name), sub_df in grouped:
|
|
296
|
+
result_kind = mlrun.model_monitoring.db.tsdb.helpers._get_result_kind(
|
|
297
|
+
sub_df
|
|
298
|
+
)
|
|
299
|
+
full_name = mlrun.model_monitoring.helpers._compose_full_name(
|
|
300
|
+
project=project, app=app_name, name=name
|
|
301
|
+
)
|
|
302
|
+
metrics_values.append(
|
|
303
|
+
mm_schemas.ModelEndpointMonitoringResultValues(
|
|
304
|
+
full_name=full_name,
|
|
305
|
+
result_kind=result_kind,
|
|
306
|
+
values=list(
|
|
307
|
+
zip(
|
|
308
|
+
sub_df.index,
|
|
309
|
+
sub_df[mm_schemas.ResultData.RESULT_VALUE],
|
|
310
|
+
sub_df[mm_schemas.ResultData.RESULT_STATUS],
|
|
311
|
+
)
|
|
312
|
+
), # pyright: ignore[reportArgumentType]
|
|
313
|
+
)
|
|
314
|
+
)
|
|
315
|
+
del metrics_without_data[full_name]
|
|
316
|
+
|
|
317
|
+
for metric in metrics_without_data.values():
|
|
318
|
+
if metric.full_name == mlrun.model_monitoring.helpers.get_invocations_fqn(
|
|
319
|
+
project
|
|
320
|
+
):
|
|
321
|
+
continue
|
|
322
|
+
metrics_values.append(
|
|
323
|
+
mm_schemas.ModelEndpointMonitoringMetricNoData(
|
|
324
|
+
full_name=metric.full_name,
|
|
325
|
+
type=mm_schemas.ModelEndpointMonitoringMetricType.RESULT,
|
|
326
|
+
)
|
|
327
|
+
)
|
|
328
|
+
|
|
329
|
+
return metrics_values
|
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
# Copyright 2024 Iguazio
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
import pandas as pd
|
|
15
|
+
|
|
16
|
+
import mlrun.common.schemas.model_monitoring as mm_schemas
|
|
17
|
+
from mlrun.utils import logger
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def _get_result_kind(result_df: pd.DataFrame) -> mm_schemas.ResultKindApp:
|
|
21
|
+
kind_series = result_df[mm_schemas.ResultData.RESULT_KIND]
|
|
22
|
+
unique_kinds = kind_series.unique()
|
|
23
|
+
if len(unique_kinds) > 1:
|
|
24
|
+
logger.warning(
|
|
25
|
+
"The result has more than one kind",
|
|
26
|
+
kinds=list(unique_kinds),
|
|
27
|
+
application_name=result_df[mm_schemas.WriterEvent.APPLICATION_NAME],
|
|
28
|
+
result_name=result_df[mm_schemas.ResultData.RESULT_NAME],
|
|
29
|
+
)
|
|
30
|
+
return unique_kinds[0]
|
|
@@ -0,0 +1,15 @@
|
|
|
1
|
+
# Copyright 2024 Iguazio
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from .tdengine_connector import TDEngineConnector
|
|
@@ -0,0 +1,240 @@
|
|
|
1
|
+
# Copyright 2024 Iguazio
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import datetime
|
|
16
|
+
from dataclasses import dataclass
|
|
17
|
+
from io import StringIO
|
|
18
|
+
from typing import Optional, Union
|
|
19
|
+
|
|
20
|
+
import mlrun.common.schemas.model_monitoring as mm_schemas
|
|
21
|
+
import mlrun.common.types
|
|
22
|
+
|
|
23
|
+
_MODEL_MONITORING_DATABASE = "mlrun_model_monitoring"
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class _TDEngineColumnType:
|
|
27
|
+
def __init__(self, data_type: str, length: int = None):
|
|
28
|
+
self.data_type = data_type
|
|
29
|
+
self.length = length
|
|
30
|
+
|
|
31
|
+
def __str__(self):
|
|
32
|
+
if self.length is not None:
|
|
33
|
+
return f"{self.data_type}({self.length})"
|
|
34
|
+
else:
|
|
35
|
+
return self.data_type
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class _TDEngineColumn(mlrun.common.types.StrEnum):
|
|
39
|
+
TIMESTAMP = _TDEngineColumnType("TIMESTAMP")
|
|
40
|
+
FLOAT = _TDEngineColumnType("FLOAT")
|
|
41
|
+
INT = _TDEngineColumnType("INT")
|
|
42
|
+
BINARY_40 = _TDEngineColumnType("BINARY", 40)
|
|
43
|
+
BINARY_64 = _TDEngineColumnType("BINARY", 64)
|
|
44
|
+
BINARY_10000 = _TDEngineColumnType("BINARY", 10000)
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
@dataclass
|
|
48
|
+
class TDEngineSchema:
|
|
49
|
+
"""
|
|
50
|
+
A class to represent a supertable schema in TDengine. Using this schema, you can generate the relevant queries to
|
|
51
|
+
create, insert, delete and query data from TDengine. At the moment, there are 3 schemas: AppResultTable,
|
|
52
|
+
Metrics, and Predictions.
|
|
53
|
+
"""
|
|
54
|
+
|
|
55
|
+
def __init__(
|
|
56
|
+
self,
|
|
57
|
+
super_table: str,
|
|
58
|
+
columns: dict[str, str],
|
|
59
|
+
tags: dict[str, str],
|
|
60
|
+
):
|
|
61
|
+
self.super_table = super_table
|
|
62
|
+
self.columns = columns
|
|
63
|
+
self.tags = tags
|
|
64
|
+
self.database = _MODEL_MONITORING_DATABASE
|
|
65
|
+
|
|
66
|
+
def _create_super_table_query(self) -> str:
|
|
67
|
+
columns = ", ".join(f"{col} {val}" for col, val in self.columns.items())
|
|
68
|
+
tags = ", ".join(f"{col} {val}" for col, val in self.tags.items())
|
|
69
|
+
return f"CREATE STABLE if NOT EXISTS {self.database}.{self.super_table} ({columns}) TAGS ({tags});"
|
|
70
|
+
|
|
71
|
+
def _create_subtable_query(
|
|
72
|
+
self,
|
|
73
|
+
subtable: str,
|
|
74
|
+
values: dict[str, Union[str, int, float, datetime.datetime]],
|
|
75
|
+
) -> str:
|
|
76
|
+
try:
|
|
77
|
+
values = ", ".join(f"'{values[val]}'" for val in self.tags)
|
|
78
|
+
except KeyError:
|
|
79
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
80
|
+
f"values must contain all tags: {self.tags.keys()}"
|
|
81
|
+
)
|
|
82
|
+
return f"CREATE TABLE if NOT EXISTS {self.database}.{subtable} USING {self.super_table} TAGS ({values});"
|
|
83
|
+
|
|
84
|
+
def _insert_subtable_query(
|
|
85
|
+
self,
|
|
86
|
+
subtable: str,
|
|
87
|
+
values: dict[str, Union[str, int, float, datetime.datetime]],
|
|
88
|
+
) -> str:
|
|
89
|
+
values = ", ".join(f"'{values[val]}'" for val in self.columns)
|
|
90
|
+
return f"INSERT INTO {self.database}.{subtable} VALUES ({values});"
|
|
91
|
+
|
|
92
|
+
def _delete_subtable_query(
|
|
93
|
+
self,
|
|
94
|
+
subtable: str,
|
|
95
|
+
values: dict[str, Union[str, int, float, datetime.datetime]],
|
|
96
|
+
) -> str:
|
|
97
|
+
values = " AND ".join(
|
|
98
|
+
f"{val} LIKE '{values[val]}'" for val in self.tags if val in values
|
|
99
|
+
)
|
|
100
|
+
if not values:
|
|
101
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
102
|
+
f"values must contain at least one tag: {self.tags.keys()}"
|
|
103
|
+
)
|
|
104
|
+
return f"DELETE FROM {self.database}.{subtable} WHERE {values};"
|
|
105
|
+
|
|
106
|
+
def _drop_subtable_query(
|
|
107
|
+
self,
|
|
108
|
+
subtable: str,
|
|
109
|
+
) -> str:
|
|
110
|
+
return f"DROP TABLE if EXISTS {self.database}.{subtable};"
|
|
111
|
+
|
|
112
|
+
def _get_subtables_query(
|
|
113
|
+
self,
|
|
114
|
+
values: dict[str, Union[str, int, float, datetime.datetime]],
|
|
115
|
+
) -> str:
|
|
116
|
+
values = " AND ".join(
|
|
117
|
+
f"{val} LIKE '{values[val]}'" for val in self.tags if val in values
|
|
118
|
+
)
|
|
119
|
+
if not values:
|
|
120
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
121
|
+
f"values must contain at least one tag: {self.tags.keys()}"
|
|
122
|
+
)
|
|
123
|
+
return f"SELECT tbname FROM {self.database}.{self.super_table} WHERE {values};"
|
|
124
|
+
|
|
125
|
+
@staticmethod
|
|
126
|
+
def _get_records_query(
|
|
127
|
+
table: str,
|
|
128
|
+
start: datetime,
|
|
129
|
+
end: datetime,
|
|
130
|
+
columns_to_filter: list[str] = None,
|
|
131
|
+
filter_query: Optional[str] = None,
|
|
132
|
+
interval: Optional[str] = None,
|
|
133
|
+
limit: int = 0,
|
|
134
|
+
agg_funcs: Optional[list] = None,
|
|
135
|
+
sliding_window_step: Optional[str] = None,
|
|
136
|
+
timestamp_column: str = "time",
|
|
137
|
+
database: str = _MODEL_MONITORING_DATABASE,
|
|
138
|
+
) -> str:
|
|
139
|
+
if agg_funcs and not columns_to_filter:
|
|
140
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
141
|
+
"`columns_to_filter` must be provided when using aggregate functions"
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
# if aggregate function or interval is provided, the other must be provided as well
|
|
145
|
+
if interval and not agg_funcs:
|
|
146
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
147
|
+
"`agg_funcs` must be provided when using interval"
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
if sliding_window_step and not interval:
|
|
151
|
+
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
152
|
+
"`interval` must be provided when using sliding window"
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
with StringIO() as query:
|
|
156
|
+
query.write("SELECT ")
|
|
157
|
+
if interval:
|
|
158
|
+
query.write("_wstart, _wend, ")
|
|
159
|
+
if agg_funcs:
|
|
160
|
+
query.write(
|
|
161
|
+
", ".join(
|
|
162
|
+
[f"{a}({col})" for a in agg_funcs for col in columns_to_filter]
|
|
163
|
+
)
|
|
164
|
+
)
|
|
165
|
+
elif columns_to_filter:
|
|
166
|
+
query.write(", ".join(columns_to_filter))
|
|
167
|
+
else:
|
|
168
|
+
query.write("*")
|
|
169
|
+
query.write(f" FROM {database}.{table}")
|
|
170
|
+
|
|
171
|
+
if any([filter_query, start, end]):
|
|
172
|
+
query.write(" WHERE ")
|
|
173
|
+
if filter_query:
|
|
174
|
+
query.write(f"{filter_query} AND ")
|
|
175
|
+
if start:
|
|
176
|
+
query.write(f"{timestamp_column} >= '{start}'" + " AND ")
|
|
177
|
+
if end:
|
|
178
|
+
query.write(f"{timestamp_column} <= '{end}'")
|
|
179
|
+
if interval:
|
|
180
|
+
query.write(f" INTERVAL({interval})")
|
|
181
|
+
if sliding_window_step:
|
|
182
|
+
query.write(f" SLIDING({sliding_window_step})")
|
|
183
|
+
if limit:
|
|
184
|
+
query.write(f" LIMIT {limit}")
|
|
185
|
+
query.write(";")
|
|
186
|
+
return query.getvalue()
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
@dataclass
|
|
190
|
+
class AppResultTable(TDEngineSchema):
|
|
191
|
+
super_table = mm_schemas.TDEngineSuperTables.APP_RESULTS
|
|
192
|
+
columns = {
|
|
193
|
+
mm_schemas.WriterEvent.END_INFER_TIME: _TDEngineColumn.TIMESTAMP,
|
|
194
|
+
mm_schemas.WriterEvent.START_INFER_TIME: _TDEngineColumn.TIMESTAMP,
|
|
195
|
+
mm_schemas.ResultData.RESULT_VALUE: _TDEngineColumn.FLOAT,
|
|
196
|
+
mm_schemas.ResultData.RESULT_STATUS: _TDEngineColumn.INT,
|
|
197
|
+
mm_schemas.ResultData.CURRENT_STATS: _TDEngineColumn.BINARY_10000,
|
|
198
|
+
}
|
|
199
|
+
|
|
200
|
+
tags = {
|
|
201
|
+
mm_schemas.EventFieldType.PROJECT: _TDEngineColumn.BINARY_64,
|
|
202
|
+
mm_schemas.WriterEvent.ENDPOINT_ID: _TDEngineColumn.BINARY_64,
|
|
203
|
+
mm_schemas.WriterEvent.APPLICATION_NAME: _TDEngineColumn.BINARY_64,
|
|
204
|
+
mm_schemas.ResultData.RESULT_NAME: _TDEngineColumn.BINARY_64,
|
|
205
|
+
mm_schemas.ResultData.RESULT_KIND: _TDEngineColumn.INT,
|
|
206
|
+
}
|
|
207
|
+
database = _MODEL_MONITORING_DATABASE
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
@dataclass
|
|
211
|
+
class Metrics(TDEngineSchema):
|
|
212
|
+
super_table = mm_schemas.TDEngineSuperTables.METRICS
|
|
213
|
+
columns = {
|
|
214
|
+
mm_schemas.WriterEvent.END_INFER_TIME: _TDEngineColumn.TIMESTAMP,
|
|
215
|
+
mm_schemas.WriterEvent.START_INFER_TIME: _TDEngineColumn.TIMESTAMP,
|
|
216
|
+
mm_schemas.MetricData.METRIC_VALUE: _TDEngineColumn.FLOAT,
|
|
217
|
+
}
|
|
218
|
+
|
|
219
|
+
tags = {
|
|
220
|
+
mm_schemas.EventFieldType.PROJECT: _TDEngineColumn.BINARY_64,
|
|
221
|
+
mm_schemas.WriterEvent.ENDPOINT_ID: _TDEngineColumn.BINARY_64,
|
|
222
|
+
mm_schemas.WriterEvent.APPLICATION_NAME: _TDEngineColumn.BINARY_64,
|
|
223
|
+
mm_schemas.MetricData.METRIC_NAME: _TDEngineColumn.BINARY_64,
|
|
224
|
+
}
|
|
225
|
+
database = _MODEL_MONITORING_DATABASE
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
@dataclass
|
|
229
|
+
class Predictions(TDEngineSchema):
|
|
230
|
+
super_table = mm_schemas.TDEngineSuperTables.PREDICTIONS
|
|
231
|
+
columns = {
|
|
232
|
+
mm_schemas.EventFieldType.TIME: _TDEngineColumn.TIMESTAMP,
|
|
233
|
+
mm_schemas.EventFieldType.LATENCY: _TDEngineColumn.FLOAT,
|
|
234
|
+
mm_schemas.EventKeyMetrics.CUSTOM_METRICS: _TDEngineColumn.BINARY_10000,
|
|
235
|
+
}
|
|
236
|
+
tags = {
|
|
237
|
+
mm_schemas.EventFieldType.PROJECT: _TDEngineColumn.BINARY_64,
|
|
238
|
+
mm_schemas.WriterEvent.ENDPOINT_ID: _TDEngineColumn.BINARY_64,
|
|
239
|
+
}
|
|
240
|
+
database = _MODEL_MONITORING_DATABASE
|
|
@@ -0,0 +1,45 @@
|
|
|
1
|
+
# Copyright 2024 Iguazio
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
#
|
|
15
|
+
|
|
16
|
+
import json
|
|
17
|
+
|
|
18
|
+
import mlrun.feature_store.steps
|
|
19
|
+
from mlrun.common.schemas.model_monitoring import (
|
|
20
|
+
EventFieldType,
|
|
21
|
+
EventKeyMetrics,
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
_TABLE_COLUMN = "table_column"
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class ProcessBeforeTDEngine(mlrun.feature_store.steps.MapClass):
|
|
28
|
+
def __init__(self, **kwargs):
|
|
29
|
+
"""
|
|
30
|
+
Process the data before writing to TDEngine. This step create the relevant keys for the TDEngine table,
|
|
31
|
+
including project name, custom metrics, time column, and table name column.
|
|
32
|
+
|
|
33
|
+
:returns: Event as a dictionary which will be written into the TDEngine Predictions table.
|
|
34
|
+
"""
|
|
35
|
+
super().__init__(**kwargs)
|
|
36
|
+
|
|
37
|
+
def do(self, event):
|
|
38
|
+
event[EventFieldType.PROJECT] = event[EventFieldType.FUNCTION_URI].split("/")[0]
|
|
39
|
+
event[EventKeyMetrics.CUSTOM_METRICS] = json.dumps(
|
|
40
|
+
event.get(EventFieldType.METRICS, {})
|
|
41
|
+
)
|
|
42
|
+
event[EventFieldType.TIME] = event.get(EventFieldType.TIMESTAMP)
|
|
43
|
+
event[EventFieldType.TABLE_COLUMN] = "_" + event.get(EventFieldType.ENDPOINT_ID)
|
|
44
|
+
|
|
45
|
+
return event
|