mlrun 1.6.2rc5__py3-none-any.whl → 1.6.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/artifacts/model.py +28 -22
- mlrun/common/schemas/__init__.py +1 -0
- mlrun/common/schemas/model_monitoring/__init__.py +1 -0
- mlrun/common/schemas/model_monitoring/constants.py +21 -5
- mlrun/config.py +32 -12
- mlrun/data_types/data_types.py +4 -0
- mlrun/datastore/v3io.py +27 -50
- mlrun/db/auth_utils.py +152 -0
- mlrun/db/httpdb.py +51 -30
- mlrun/lists.py +2 -0
- mlrun/model.py +26 -2
- mlrun/model_monitoring/controller.py +0 -7
- mlrun/model_monitoring/features_drift_table.py +6 -0
- mlrun/model_monitoring/helpers.py +4 -1
- mlrun/model_monitoring/stream_processing.py +50 -37
- mlrun/projects/pipelines.py +30 -6
- mlrun/projects/project.py +20 -23
- mlrun/render.py +13 -4
- mlrun/run.py +2 -0
- mlrun/runtimes/pod.py +5 -5
- mlrun/utils/async_http.py +25 -5
- mlrun/utils/helpers.py +12 -0
- mlrun/utils/logger.py +11 -6
- mlrun/utils/version/version.json +2 -2
- {mlrun-1.6.2rc5.dist-info → mlrun-1.6.3.dist-info}/METADATA +9 -7
- {mlrun-1.6.2rc5.dist-info → mlrun-1.6.3.dist-info}/RECORD +30 -30
- mlrun/datastore/helpers.py +0 -18
- {mlrun-1.6.2rc5.dist-info → mlrun-1.6.3.dist-info}/LICENSE +0 -0
- {mlrun-1.6.2rc5.dist-info → mlrun-1.6.3.dist-info}/WHEEL +0 -0
- {mlrun-1.6.2rc5.dist-info → mlrun-1.6.3.dist-info}/entry_points.txt +0 -0
- {mlrun-1.6.2rc5.dist-info → mlrun-1.6.3.dist-info}/top_level.txt +0 -0
mlrun/artifacts/model.py
CHANGED
|
@@ -13,8 +13,9 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
import tempfile
|
|
15
15
|
from os import path
|
|
16
|
-
from typing import
|
|
16
|
+
from typing import Any
|
|
17
17
|
|
|
18
|
+
import pandas as pd
|
|
18
19
|
import yaml
|
|
19
20
|
from deprecated import deprecated
|
|
20
21
|
|
|
@@ -68,8 +69,8 @@ class ModelArtifactSpec(ArtifactSpec):
|
|
|
68
69
|
model_file=None,
|
|
69
70
|
metrics=None,
|
|
70
71
|
paraemeters=None,
|
|
71
|
-
inputs:
|
|
72
|
-
outputs:
|
|
72
|
+
inputs: list[Feature] = None,
|
|
73
|
+
outputs: list[Feature] = None,
|
|
73
74
|
framework=None,
|
|
74
75
|
algorithm=None,
|
|
75
76
|
feature_vector=None,
|
|
@@ -91,8 +92,8 @@ class ModelArtifactSpec(ArtifactSpec):
|
|
|
91
92
|
self.model_file = model_file
|
|
92
93
|
self.metrics = metrics or {}
|
|
93
94
|
self.parameters = paraemeters or {}
|
|
94
|
-
self.inputs:
|
|
95
|
-
self.outputs:
|
|
95
|
+
self.inputs: list[Feature] = inputs or []
|
|
96
|
+
self.outputs: list[Feature] = outputs or []
|
|
96
97
|
self.framework = framework
|
|
97
98
|
self.algorithm = algorithm
|
|
98
99
|
self.feature_vector = feature_vector
|
|
@@ -101,21 +102,21 @@ class ModelArtifactSpec(ArtifactSpec):
|
|
|
101
102
|
self.model_target_file = model_target_file
|
|
102
103
|
|
|
103
104
|
@property
|
|
104
|
-
def inputs(self) ->
|
|
105
|
+
def inputs(self) -> list[Feature]:
|
|
105
106
|
"""input feature list"""
|
|
106
107
|
return self._inputs
|
|
107
108
|
|
|
108
109
|
@inputs.setter
|
|
109
|
-
def inputs(self, inputs:
|
|
110
|
+
def inputs(self, inputs: list[Feature]):
|
|
110
111
|
self._inputs = ObjectList.from_list(Feature, inputs)
|
|
111
112
|
|
|
112
113
|
@property
|
|
113
|
-
def outputs(self) ->
|
|
114
|
+
def outputs(self) -> list[Feature]:
|
|
114
115
|
"""output feature list"""
|
|
115
116
|
return self._outputs
|
|
116
117
|
|
|
117
118
|
@outputs.setter
|
|
118
|
-
def outputs(self, outputs:
|
|
119
|
+
def outputs(self, outputs: list[Feature]):
|
|
119
120
|
self._outputs = ObjectList.from_list(Feature, outputs)
|
|
120
121
|
|
|
121
122
|
|
|
@@ -175,22 +176,22 @@ class ModelArtifact(Artifact):
|
|
|
175
176
|
self._spec = self._verify_dict(spec, "spec", ModelArtifactSpec)
|
|
176
177
|
|
|
177
178
|
@property
|
|
178
|
-
def inputs(self) ->
|
|
179
|
+
def inputs(self) -> list[Feature]:
|
|
179
180
|
"""input feature list"""
|
|
180
181
|
return self.spec.inputs
|
|
181
182
|
|
|
182
183
|
@inputs.setter
|
|
183
|
-
def inputs(self, inputs:
|
|
184
|
+
def inputs(self, inputs: list[Feature]):
|
|
184
185
|
"""input feature list"""
|
|
185
186
|
self.spec.inputs = inputs
|
|
186
187
|
|
|
187
188
|
@property
|
|
188
|
-
def outputs(self) ->
|
|
189
|
+
def outputs(self) -> list[Feature]:
|
|
189
190
|
"""input feature list"""
|
|
190
191
|
return self.spec.outputs
|
|
191
192
|
|
|
192
193
|
@outputs.setter
|
|
193
|
-
def outputs(self, outputs:
|
|
194
|
+
def outputs(self, outputs: list[Feature]):
|
|
194
195
|
"""input feature list"""
|
|
195
196
|
self.spec.outputs = outputs
|
|
196
197
|
|
|
@@ -260,6 +261,7 @@ class ModelArtifact(Artifact):
|
|
|
260
261
|
"""
|
|
261
262
|
subset = df
|
|
262
263
|
inferer = get_infer_interface(subset)
|
|
264
|
+
numeric_columns = self._extract_numeric_features(df)
|
|
263
265
|
if label_columns:
|
|
264
266
|
if not isinstance(label_columns, list):
|
|
265
267
|
label_columns = [label_columns]
|
|
@@ -273,9 +275,13 @@ class ModelArtifact(Artifact):
|
|
|
273
275
|
)
|
|
274
276
|
if with_stats:
|
|
275
277
|
self.spec.feature_stats = inferer.get_stats(
|
|
276
|
-
df, options=InferOptions.Histogram, num_bins=num_bins
|
|
278
|
+
df[numeric_columns], options=InferOptions.Histogram, num_bins=num_bins
|
|
277
279
|
)
|
|
278
280
|
|
|
281
|
+
@staticmethod
|
|
282
|
+
def _extract_numeric_features(df: pd.DataFrame) -> list[Any]:
|
|
283
|
+
return [col for col in df.columns if pd.api.types.is_numeric_dtype(df[col])]
|
|
284
|
+
|
|
279
285
|
@property
|
|
280
286
|
def is_dir(self):
|
|
281
287
|
return True
|
|
@@ -445,8 +451,8 @@ class LegacyModelArtifact(LegacyArtifact):
|
|
|
445
451
|
self.model_file = model_file
|
|
446
452
|
self.parameters = parameters or {}
|
|
447
453
|
self.metrics = metrics or {}
|
|
448
|
-
self.inputs:
|
|
449
|
-
self.outputs:
|
|
454
|
+
self.inputs: list[Feature] = inputs or []
|
|
455
|
+
self.outputs: list[Feature] = outputs or []
|
|
450
456
|
self.extra_data = extra_data or {}
|
|
451
457
|
self.framework = framework
|
|
452
458
|
self.algorithm = algorithm
|
|
@@ -456,21 +462,21 @@ class LegacyModelArtifact(LegacyArtifact):
|
|
|
456
462
|
self.model_target_file = model_target_file
|
|
457
463
|
|
|
458
464
|
@property
|
|
459
|
-
def inputs(self) ->
|
|
465
|
+
def inputs(self) -> list[Feature]:
|
|
460
466
|
"""input feature list"""
|
|
461
467
|
return self._inputs
|
|
462
468
|
|
|
463
469
|
@inputs.setter
|
|
464
|
-
def inputs(self, inputs:
|
|
470
|
+
def inputs(self, inputs: list[Feature]):
|
|
465
471
|
self._inputs = ObjectList.from_list(Feature, inputs)
|
|
466
472
|
|
|
467
473
|
@property
|
|
468
|
-
def outputs(self) ->
|
|
474
|
+
def outputs(self) -> list[Feature]:
|
|
469
475
|
"""output feature list"""
|
|
470
476
|
return self._outputs
|
|
471
477
|
|
|
472
478
|
@outputs.setter
|
|
473
|
-
def outputs(self, outputs:
|
|
479
|
+
def outputs(self, outputs: list[Feature]):
|
|
474
480
|
self._outputs = ObjectList.from_list(Feature, outputs)
|
|
475
481
|
|
|
476
482
|
def infer_from_df(self, df, label_columns=None, with_stats=True, num_bins=None):
|
|
@@ -642,8 +648,8 @@ def update_model(
|
|
|
642
648
|
parameters: dict = None,
|
|
643
649
|
metrics: dict = None,
|
|
644
650
|
extra_data: dict = None,
|
|
645
|
-
inputs:
|
|
646
|
-
outputs:
|
|
651
|
+
inputs: list[Feature] = None,
|
|
652
|
+
outputs: list[Feature] = None,
|
|
647
653
|
feature_vector: str = None,
|
|
648
654
|
feature_weights: list = None,
|
|
649
655
|
key_prefix: str = "",
|
mlrun/common/schemas/__init__.py
CHANGED
|
@@ -77,6 +77,26 @@ class EventFieldType:
|
|
|
77
77
|
SAMPLE_PARQUET_PATH = "sample_parquet_path"
|
|
78
78
|
|
|
79
79
|
|
|
80
|
+
class MonitoringStrEnum(StrEnum):
|
|
81
|
+
@classmethod
|
|
82
|
+
def list(cls):
|
|
83
|
+
return list(map(lambda c: c.value, cls))
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
class FeatureSetFeatures(MonitoringStrEnum):
|
|
87
|
+
LATENCY = EventFieldType.LATENCY
|
|
88
|
+
ERROR_COUNT = EventFieldType.ERROR_COUNT
|
|
89
|
+
METRICS = EventFieldType.METRICS
|
|
90
|
+
|
|
91
|
+
@classmethod
|
|
92
|
+
def time_stamp(cls):
|
|
93
|
+
return EventFieldType.TIMESTAMP
|
|
94
|
+
|
|
95
|
+
@classmethod
|
|
96
|
+
def entity(cls):
|
|
97
|
+
return EventFieldType.ENDPOINT_ID
|
|
98
|
+
|
|
99
|
+
|
|
80
100
|
class ApplicationEvent:
|
|
81
101
|
APPLICATION_NAME = "application_name"
|
|
82
102
|
CURRENT_STATS = "current_stats"
|
|
@@ -89,7 +109,7 @@ class ApplicationEvent:
|
|
|
89
109
|
OUTPUT_STREAM_URI = "output_stream_uri"
|
|
90
110
|
|
|
91
111
|
|
|
92
|
-
class WriterEvent(
|
|
112
|
+
class WriterEvent(MonitoringStrEnum):
|
|
93
113
|
APPLICATION_NAME = "application_name"
|
|
94
114
|
ENDPOINT_ID = "endpoint_id"
|
|
95
115
|
START_INFER_TIME = "start_infer_time"
|
|
@@ -101,10 +121,6 @@ class WriterEvent(StrEnum):
|
|
|
101
121
|
RESULT_EXTRA_DATA = "result_extra_data"
|
|
102
122
|
CURRENT_STATS = "current_stats"
|
|
103
123
|
|
|
104
|
-
@classmethod
|
|
105
|
-
def list(cls):
|
|
106
|
-
return list(map(lambda c: c.value, cls))
|
|
107
|
-
|
|
108
124
|
|
|
109
125
|
class EventLiveStats:
|
|
110
126
|
LATENCY_AVG_5M = "latency_avg_5m"
|
mlrun/config.py
CHANGED
|
@@ -611,8 +611,9 @@ default_config = {
|
|
|
611
611
|
},
|
|
612
612
|
"workflows": {
|
|
613
613
|
"default_workflow_runner_name": "workflow-runner-{}",
|
|
614
|
-
# Default timeout seconds for retrieving workflow id after execution
|
|
615
|
-
|
|
614
|
+
# Default timeout seconds for retrieving workflow id after execution
|
|
615
|
+
# Remote workflow timeout is the maximum between remote and the inner engine timeout
|
|
616
|
+
"timeouts": {"local": 120, "kfp": 60, "remote": 60 * 5},
|
|
616
617
|
},
|
|
617
618
|
"log_collector": {
|
|
618
619
|
"address": "localhost:8282",
|
|
@@ -671,6 +672,10 @@ default_config = {
|
|
|
671
672
|
"access_key": "",
|
|
672
673
|
},
|
|
673
674
|
"grafana_url": "",
|
|
675
|
+
"auth_with_client_id": {
|
|
676
|
+
"enabled": False,
|
|
677
|
+
"request_timeout": 5,
|
|
678
|
+
},
|
|
674
679
|
}
|
|
675
680
|
|
|
676
681
|
_is_running_as_api = None
|
|
@@ -1061,7 +1066,7 @@ class Config:
|
|
|
1061
1066
|
target: str = "online",
|
|
1062
1067
|
artifact_path: str = None,
|
|
1063
1068
|
application_name: str = None,
|
|
1064
|
-
) -> str:
|
|
1069
|
+
) -> typing.Union[str, list[str]]:
|
|
1065
1070
|
"""Get the full path from the configuration based on the provided project and kind.
|
|
1066
1071
|
|
|
1067
1072
|
:param project: Project name.
|
|
@@ -1077,7 +1082,8 @@ class Config:
|
|
|
1077
1082
|
relative artifact path will be taken from the global MLRun artifact path.
|
|
1078
1083
|
:param application_name: Application name, None for model_monitoring_stream.
|
|
1079
1084
|
|
|
1080
|
-
:return: Full configured path for the provided kind.
|
|
1085
|
+
:return: Full configured path for the provided kind. Can be either a single path
|
|
1086
|
+
or a list of paths in the case of the online model monitoring stream path.
|
|
1081
1087
|
"""
|
|
1082
1088
|
|
|
1083
1089
|
if target != "offline":
|
|
@@ -1098,12 +1104,22 @@ class Config:
|
|
|
1098
1104
|
if application_name is None
|
|
1099
1105
|
else f"{kind}-{application_name.lower()}",
|
|
1100
1106
|
)
|
|
1101
|
-
return mlrun.
|
|
1102
|
-
|
|
1103
|
-
|
|
1104
|
-
|
|
1105
|
-
|
|
1106
|
-
|
|
1107
|
+
elif kind == "stream": # return list for mlrun<1.6.3 BC
|
|
1108
|
+
return [
|
|
1109
|
+
mlrun.mlconf.model_endpoint_monitoring.store_prefixes.default.format(
|
|
1110
|
+
project=project,
|
|
1111
|
+
kind=kind,
|
|
1112
|
+
), # old stream uri (pipelines) for BC ML-6043
|
|
1113
|
+
mlrun.mlconf.model_endpoint_monitoring.store_prefixes.user_space.format(
|
|
1114
|
+
project=project,
|
|
1115
|
+
kind=kind,
|
|
1116
|
+
), # new stream uri (projects)
|
|
1117
|
+
]
|
|
1118
|
+
else:
|
|
1119
|
+
return mlrun.mlconf.model_endpoint_monitoring.store_prefixes.default.format(
|
|
1120
|
+
project=project,
|
|
1121
|
+
kind=kind,
|
|
1122
|
+
)
|
|
1107
1123
|
|
|
1108
1124
|
# Get the current offline path from the configuration
|
|
1109
1125
|
file_path = mlrun.mlconf.model_endpoint_monitoring.offline_storage_path.format(
|
|
@@ -1360,10 +1376,14 @@ def read_env(env=None, prefix=env_prefix):
|
|
|
1360
1376
|
if log_formatter_name := config.get("log_formatter"):
|
|
1361
1377
|
import mlrun.utils.logger
|
|
1362
1378
|
|
|
1363
|
-
log_formatter = mlrun.utils.
|
|
1379
|
+
log_formatter = mlrun.utils.resolve_formatter_by_kind(
|
|
1364
1380
|
mlrun.utils.FormatterKinds(log_formatter_name)
|
|
1365
1381
|
)
|
|
1366
|
-
mlrun.utils.logger.get_handler("default")
|
|
1382
|
+
current_handler = mlrun.utils.logger.get_handler("default")
|
|
1383
|
+
current_formatter_name = current_handler.formatter.__class__.__name__
|
|
1384
|
+
desired_formatter_name = log_formatter.__name__
|
|
1385
|
+
if current_formatter_name != desired_formatter_name:
|
|
1386
|
+
current_handler.setFormatter(log_formatter())
|
|
1367
1387
|
|
|
1368
1388
|
# The default function pod resource values are of type str; however, when reading from environment variable numbers,
|
|
1369
1389
|
# it converts them to type int if contains only number, so we want to convert them to str.
|
mlrun/data_types/data_types.py
CHANGED
|
@@ -41,6 +41,7 @@ class ValueType(str, Enum):
|
|
|
41
41
|
BYTES = "bytes"
|
|
42
42
|
STRING = "str"
|
|
43
43
|
DATETIME = "datetime"
|
|
44
|
+
LIST = "List"
|
|
44
45
|
BYTES_LIST = "List[bytes]"
|
|
45
46
|
STRING_LIST = "List[string]"
|
|
46
47
|
INT32_LIST = "List[int32]"
|
|
@@ -48,6 +49,7 @@ class ValueType(str, Enum):
|
|
|
48
49
|
DOUBLE_LIST = "List[float]"
|
|
49
50
|
FLOAT_LIST = "List[float32]"
|
|
50
51
|
BOOL_LIST = "List[bool]"
|
|
52
|
+
Tuple = "Tuple"
|
|
51
53
|
|
|
52
54
|
|
|
53
55
|
def pd_schema_to_value_type(value):
|
|
@@ -102,6 +104,8 @@ def python_type_to_value_type(value_type):
|
|
|
102
104
|
"datetime64[ns]": ValueType.INT64,
|
|
103
105
|
"datetime64[ns, tz]": ValueType.INT64,
|
|
104
106
|
"category": ValueType.STRING,
|
|
107
|
+
"list": ValueType.LIST,
|
|
108
|
+
"tuple": ValueType.Tuple,
|
|
105
109
|
}
|
|
106
110
|
|
|
107
111
|
if type_name in type_map:
|
mlrun/datastore/v3io.py
CHANGED
|
@@ -12,8 +12,6 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
|
|
15
|
-
import mmap
|
|
16
|
-
import os
|
|
17
15
|
import time
|
|
18
16
|
from datetime import datetime
|
|
19
17
|
|
|
@@ -22,7 +20,6 @@ import v3io
|
|
|
22
20
|
from v3io.dataplane.response import HttpResponseError
|
|
23
21
|
|
|
24
22
|
import mlrun
|
|
25
|
-
from mlrun.datastore.helpers import ONE_GB, ONE_MB
|
|
26
23
|
|
|
27
24
|
from ..platforms.iguazio import parse_path, split_path
|
|
28
25
|
from .base import (
|
|
@@ -32,6 +29,7 @@ from .base import (
|
|
|
32
29
|
)
|
|
33
30
|
|
|
34
31
|
V3IO_LOCAL_ROOT = "v3io"
|
|
32
|
+
V3IO_DEFAULT_UPLOAD_CHUNK_SIZE = 1024 * 1024 * 100
|
|
35
33
|
|
|
36
34
|
|
|
37
35
|
class V3ioStore(DataStore):
|
|
@@ -94,46 +92,28 @@ class V3ioStore(DataStore):
|
|
|
94
92
|
)
|
|
95
93
|
return self._sanitize_storage_options(res)
|
|
96
94
|
|
|
97
|
-
def _upload(
|
|
95
|
+
def _upload(
|
|
96
|
+
self,
|
|
97
|
+
key: str,
|
|
98
|
+
src_path: str,
|
|
99
|
+
max_chunk_size: int = V3IO_DEFAULT_UPLOAD_CHUNK_SIZE,
|
|
100
|
+
):
|
|
98
101
|
"""helper function for upload method, allows for controlling max_chunk_size in testing"""
|
|
99
102
|
container, path = split_path(self._join(key))
|
|
100
|
-
file_size = os.path.getsize(src_path) # in bytes
|
|
101
|
-
if file_size <= ONE_MB:
|
|
102
|
-
with open(src_path, "rb") as source_file:
|
|
103
|
-
data = source_file.read()
|
|
104
|
-
self._do_object_request(
|
|
105
|
-
self.object.put,
|
|
106
|
-
container=container,
|
|
107
|
-
path=path,
|
|
108
|
-
body=data,
|
|
109
|
-
append=False,
|
|
110
|
-
)
|
|
111
|
-
return
|
|
112
|
-
# chunk must be a multiple of the ALLOCATIONGRANULARITY
|
|
113
|
-
# https://docs.python.org/3/library/mmap.html
|
|
114
|
-
if residue := max_chunk_size % mmap.ALLOCATIONGRANULARITY:
|
|
115
|
-
# round down to the nearest multiple of ALLOCATIONGRANULARITY
|
|
116
|
-
max_chunk_size -= residue
|
|
117
|
-
|
|
118
103
|
with open(src_path, "rb") as file_obj:
|
|
119
|
-
|
|
120
|
-
while
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
path=path,
|
|
133
|
-
body=mmap_obj,
|
|
134
|
-
append=append,
|
|
135
|
-
)
|
|
136
|
-
file_offset += chunk_size
|
|
104
|
+
append = False
|
|
105
|
+
while True:
|
|
106
|
+
data = memoryview(file_obj.read(max_chunk_size))
|
|
107
|
+
if not data:
|
|
108
|
+
break
|
|
109
|
+
self._do_object_request(
|
|
110
|
+
self.object.put,
|
|
111
|
+
container=container,
|
|
112
|
+
path=path,
|
|
113
|
+
body=data,
|
|
114
|
+
append=append,
|
|
115
|
+
)
|
|
116
|
+
append = True
|
|
137
117
|
|
|
138
118
|
def upload(self, key, src_path):
|
|
139
119
|
return self._upload(key, src_path)
|
|
@@ -148,19 +128,16 @@ class V3ioStore(DataStore):
|
|
|
148
128
|
num_bytes=size,
|
|
149
129
|
).body
|
|
150
130
|
|
|
151
|
-
def _put(
|
|
131
|
+
def _put(
|
|
132
|
+
self,
|
|
133
|
+
key,
|
|
134
|
+
data,
|
|
135
|
+
append=False,
|
|
136
|
+
max_chunk_size: int = V3IO_DEFAULT_UPLOAD_CHUNK_SIZE,
|
|
137
|
+
):
|
|
152
138
|
"""helper function for put method, allows for controlling max_chunk_size in testing"""
|
|
153
139
|
container, path = split_path(self._join(key))
|
|
154
140
|
buffer_size = len(data) # in bytes
|
|
155
|
-
if buffer_size <= ONE_MB:
|
|
156
|
-
self._do_object_request(
|
|
157
|
-
self.object.put,
|
|
158
|
-
container=container,
|
|
159
|
-
path=path,
|
|
160
|
-
body=data,
|
|
161
|
-
append=append,
|
|
162
|
-
)
|
|
163
|
-
return
|
|
164
141
|
buffer_offset = 0
|
|
165
142
|
try:
|
|
166
143
|
data = memoryview(data)
|
mlrun/db/auth_utils.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
1
|
+
# Copyright 2024 Iguazio
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from abc import ABC, abstractmethod
|
|
16
|
+
from datetime import datetime, timedelta
|
|
17
|
+
|
|
18
|
+
import requests
|
|
19
|
+
|
|
20
|
+
import mlrun.errors
|
|
21
|
+
from mlrun.utils import logger
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class TokenProvider(ABC):
|
|
25
|
+
@abstractmethod
|
|
26
|
+
def get_token(self):
|
|
27
|
+
pass
|
|
28
|
+
|
|
29
|
+
@abstractmethod
|
|
30
|
+
def is_iguazio_session(self):
|
|
31
|
+
pass
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class StaticTokenProvider(TokenProvider):
|
|
35
|
+
def __init__(self, token: str):
|
|
36
|
+
self.token = token
|
|
37
|
+
|
|
38
|
+
def get_token(self):
|
|
39
|
+
return self.token
|
|
40
|
+
|
|
41
|
+
def is_iguazio_session(self):
|
|
42
|
+
return mlrun.platforms.iguazio.is_iguazio_session(self.token)
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class OAuthClientIDTokenProvider(TokenProvider):
|
|
46
|
+
def __init__(
|
|
47
|
+
self, token_endpoint: str, client_id: str, client_secret: str, timeout=5
|
|
48
|
+
):
|
|
49
|
+
if not token_endpoint or not client_id or not client_secret:
|
|
50
|
+
raise mlrun.errors.MLRunValueError(
|
|
51
|
+
"Invalid client_id configuration for authentication. Must provide token endpoint, client-id and secret"
|
|
52
|
+
)
|
|
53
|
+
self.token_endpoint = token_endpoint
|
|
54
|
+
self.client_id = client_id
|
|
55
|
+
self.client_secret = client_secret
|
|
56
|
+
self.timeout = timeout
|
|
57
|
+
|
|
58
|
+
# Since we're only issuing POST requests, which are actually a disguised GET, then it's ok to allow retries
|
|
59
|
+
# on them.
|
|
60
|
+
self._session = mlrun.utils.HTTPSessionWithRetry(
|
|
61
|
+
retry_on_post=True,
|
|
62
|
+
verbose=True,
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
self._cleanup()
|
|
66
|
+
self._refresh_token_if_needed()
|
|
67
|
+
|
|
68
|
+
def get_token(self):
|
|
69
|
+
self._refresh_token_if_needed()
|
|
70
|
+
return self.token
|
|
71
|
+
|
|
72
|
+
def is_iguazio_session(self):
|
|
73
|
+
return False
|
|
74
|
+
|
|
75
|
+
def _cleanup(self):
|
|
76
|
+
self.token = self.token_expiry_time = self.token_refresh_time = None
|
|
77
|
+
|
|
78
|
+
def _refresh_token_if_needed(self):
|
|
79
|
+
now = datetime.now()
|
|
80
|
+
if self.token:
|
|
81
|
+
if self.token_refresh_time and now <= self.token_refresh_time:
|
|
82
|
+
return self.token
|
|
83
|
+
|
|
84
|
+
# We only cleanup if token was really expired - even if we fail in refreshing the token, we can still
|
|
85
|
+
# use the existing one given that it's not expired.
|
|
86
|
+
if now >= self.token_expiry_time:
|
|
87
|
+
self._cleanup()
|
|
88
|
+
|
|
89
|
+
self._issue_token_request()
|
|
90
|
+
return self.token
|
|
91
|
+
|
|
92
|
+
def _issue_token_request(self, raise_on_error=False):
|
|
93
|
+
try:
|
|
94
|
+
headers = {"Content-Type": "application/x-www-form-urlencoded"}
|
|
95
|
+
request_body = {
|
|
96
|
+
"grant_type": "client_credentials",
|
|
97
|
+
"client_id": self.client_id,
|
|
98
|
+
"client_secret": self.client_secret,
|
|
99
|
+
}
|
|
100
|
+
response = self._session.request(
|
|
101
|
+
"POST",
|
|
102
|
+
self.token_endpoint,
|
|
103
|
+
timeout=self.timeout,
|
|
104
|
+
headers=headers,
|
|
105
|
+
data=request_body,
|
|
106
|
+
)
|
|
107
|
+
except requests.RequestException as exc:
|
|
108
|
+
error = f"Retrieving token failed: {mlrun.errors.err_to_str(exc)}"
|
|
109
|
+
if raise_on_error:
|
|
110
|
+
raise mlrun.errors.MLRunRuntimeError(error) from exc
|
|
111
|
+
else:
|
|
112
|
+
logger.warning(error)
|
|
113
|
+
return
|
|
114
|
+
|
|
115
|
+
if not response.ok:
|
|
116
|
+
error = "No error available"
|
|
117
|
+
if response.content:
|
|
118
|
+
try:
|
|
119
|
+
data = response.json()
|
|
120
|
+
error = data.get("error")
|
|
121
|
+
except Exception:
|
|
122
|
+
pass
|
|
123
|
+
logger.warning(
|
|
124
|
+
"Retrieving token failed", status=response.status_code, error=error
|
|
125
|
+
)
|
|
126
|
+
if raise_on_error:
|
|
127
|
+
mlrun.errors.raise_for_status(response)
|
|
128
|
+
return
|
|
129
|
+
|
|
130
|
+
self._parse_response(response.json())
|
|
131
|
+
|
|
132
|
+
def _parse_response(self, data: dict):
|
|
133
|
+
# Response is described in https://datatracker.ietf.org/doc/html/rfc6749#section-4.4.3
|
|
134
|
+
# According to spec, there isn't a refresh token - just the access token and its expiry time (in seconds).
|
|
135
|
+
self.token = data.get("access_token")
|
|
136
|
+
expires_in = data.get("expires_in")
|
|
137
|
+
if not self.token or not expires_in:
|
|
138
|
+
token_str = "****" if self.token else "missing"
|
|
139
|
+
logger.warning(
|
|
140
|
+
"Failed to parse token response", token=token_str, expires_in=expires_in
|
|
141
|
+
)
|
|
142
|
+
return
|
|
143
|
+
|
|
144
|
+
now = datetime.now()
|
|
145
|
+
self.token_expiry_time = now + timedelta(seconds=expires_in)
|
|
146
|
+
self.token_refresh_time = now + timedelta(seconds=expires_in / 2)
|
|
147
|
+
logger.info(
|
|
148
|
+
"Successfully retrieved client-id token",
|
|
149
|
+
expires_in=expires_in,
|
|
150
|
+
expiry=str(self.token_expiry_time),
|
|
151
|
+
refresh=str(self.token_refresh_time),
|
|
152
|
+
)
|