mlrun 1.10.0rc40__py3-none-any.whl → 1.11.0rc16__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of mlrun might be problematic. Click here for more details.
- mlrun/__init__.py +3 -2
- mlrun/__main__.py +0 -4
- mlrun/artifacts/dataset.py +2 -2
- mlrun/artifacts/plots.py +1 -1
- mlrun/{model_monitoring/db/tsdb/tdengine → auth}/__init__.py +2 -3
- mlrun/auth/nuclio.py +89 -0
- mlrun/auth/providers.py +429 -0
- mlrun/auth/utils.py +415 -0
- mlrun/common/constants.py +7 -0
- mlrun/common/model_monitoring/helpers.py +41 -4
- mlrun/common/runtimes/constants.py +28 -0
- mlrun/common/schemas/__init__.py +13 -3
- mlrun/common/schemas/alert.py +2 -2
- mlrun/common/schemas/api_gateway.py +3 -0
- mlrun/common/schemas/auth.py +10 -10
- mlrun/common/schemas/client_spec.py +4 -0
- mlrun/common/schemas/constants.py +25 -0
- mlrun/common/schemas/frontend_spec.py +1 -8
- mlrun/common/schemas/function.py +24 -0
- mlrun/common/schemas/hub.py +3 -2
- mlrun/common/schemas/model_monitoring/__init__.py +1 -1
- mlrun/common/schemas/model_monitoring/constants.py +2 -2
- mlrun/common/schemas/secret.py +17 -2
- mlrun/common/secrets.py +95 -1
- mlrun/common/types.py +10 -10
- mlrun/config.py +53 -15
- mlrun/data_types/infer.py +2 -2
- mlrun/datastore/__init__.py +2 -3
- mlrun/datastore/base.py +274 -10
- mlrun/datastore/datastore.py +1 -1
- mlrun/datastore/datastore_profile.py +49 -17
- mlrun/datastore/model_provider/huggingface_provider.py +6 -2
- mlrun/datastore/model_provider/model_provider.py +2 -2
- mlrun/datastore/model_provider/openai_provider.py +2 -2
- mlrun/datastore/s3.py +15 -16
- mlrun/datastore/sources.py +1 -1
- mlrun/datastore/store_resources.py +4 -4
- mlrun/datastore/storeytargets.py +16 -10
- mlrun/datastore/targets.py +1 -1
- mlrun/datastore/utils.py +16 -3
- mlrun/datastore/v3io.py +1 -1
- mlrun/db/base.py +36 -12
- mlrun/db/httpdb.py +316 -101
- mlrun/db/nopdb.py +29 -11
- mlrun/errors.py +4 -2
- mlrun/execution.py +11 -12
- mlrun/feature_store/api.py +1 -1
- mlrun/feature_store/common.py +1 -1
- mlrun/feature_store/feature_vector_utils.py +1 -1
- mlrun/feature_store/steps.py +8 -6
- mlrun/frameworks/_common/utils.py +3 -3
- mlrun/frameworks/_dl_common/loggers/logger.py +1 -1
- mlrun/frameworks/_dl_common/loggers/tensorboard_logger.py +2 -1
- mlrun/frameworks/_ml_common/loggers/mlrun_logger.py +1 -1
- mlrun/frameworks/_ml_common/utils.py +2 -1
- mlrun/frameworks/auto_mlrun/auto_mlrun.py +4 -3
- mlrun/frameworks/lgbm/mlrun_interfaces/mlrun_interface.py +2 -1
- mlrun/frameworks/onnx/dataset.py +2 -1
- mlrun/frameworks/onnx/mlrun_interface.py +2 -1
- mlrun/frameworks/pytorch/callbacks/logging_callback.py +5 -4
- mlrun/frameworks/pytorch/callbacks/mlrun_logging_callback.py +2 -1
- mlrun/frameworks/pytorch/callbacks/tensorboard_logging_callback.py +2 -1
- mlrun/frameworks/pytorch/utils.py +2 -1
- mlrun/frameworks/sklearn/metric.py +2 -1
- mlrun/frameworks/tf_keras/callbacks/logging_callback.py +5 -4
- mlrun/frameworks/tf_keras/callbacks/mlrun_logging_callback.py +2 -1
- mlrun/frameworks/tf_keras/callbacks/tensorboard_logging_callback.py +2 -1
- mlrun/hub/__init__.py +37 -0
- mlrun/hub/base.py +142 -0
- mlrun/hub/module.py +67 -76
- mlrun/hub/step.py +113 -0
- mlrun/launcher/base.py +2 -1
- mlrun/launcher/local.py +2 -1
- mlrun/model.py +12 -2
- mlrun/model_monitoring/__init__.py +0 -1
- mlrun/model_monitoring/api.py +2 -2
- mlrun/model_monitoring/applications/base.py +20 -6
- mlrun/model_monitoring/applications/context.py +1 -0
- mlrun/model_monitoring/controller.py +7 -17
- mlrun/model_monitoring/db/_schedules.py +2 -16
- mlrun/model_monitoring/db/_stats.py +2 -13
- mlrun/model_monitoring/db/tsdb/__init__.py +9 -7
- mlrun/model_monitoring/db/tsdb/base.py +2 -4
- mlrun/model_monitoring/db/tsdb/preaggregate.py +234 -0
- mlrun/model_monitoring/db/tsdb/stream_graph_steps.py +63 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/queries/timescaledb_metrics_queries.py +414 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/queries/timescaledb_predictions_queries.py +376 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/queries/timescaledb_results_queries.py +590 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/timescaledb_connection.py +434 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/timescaledb_connector.py +541 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/timescaledb_operations.py +808 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/timescaledb_schema.py +502 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/timescaledb_stream.py +163 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/timescaledb_stream_graph_steps.py +60 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/utils/timescaledb_dataframe_processor.py +141 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/utils/timescaledb_query_builder.py +585 -0
- mlrun/model_monitoring/db/tsdb/timescaledb/writer_graph_steps.py +73 -0
- mlrun/model_monitoring/db/tsdb/v3io/stream_graph_steps.py +4 -6
- mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +147 -79
- mlrun/model_monitoring/features_drift_table.py +2 -1
- mlrun/model_monitoring/helpers.py +2 -1
- mlrun/model_monitoring/stream_processing.py +18 -16
- mlrun/model_monitoring/writer.py +4 -3
- mlrun/package/__init__.py +2 -1
- mlrun/platforms/__init__.py +0 -44
- mlrun/platforms/iguazio.py +1 -1
- mlrun/projects/operations.py +11 -10
- mlrun/projects/project.py +81 -82
- mlrun/run.py +4 -7
- mlrun/runtimes/__init__.py +2 -204
- mlrun/runtimes/base.py +89 -21
- mlrun/runtimes/constants.py +225 -0
- mlrun/runtimes/daskjob.py +4 -2
- mlrun/runtimes/databricks_job/databricks_runtime.py +2 -1
- mlrun/runtimes/mounts.py +5 -0
- mlrun/runtimes/nuclio/__init__.py +12 -8
- mlrun/runtimes/nuclio/api_gateway.py +36 -6
- mlrun/runtimes/nuclio/application/application.py +200 -32
- mlrun/runtimes/nuclio/function.py +154 -49
- mlrun/runtimes/nuclio/serving.py +55 -42
- mlrun/runtimes/pod.py +59 -10
- mlrun/secrets.py +46 -2
- mlrun/serving/__init__.py +2 -0
- mlrun/serving/remote.py +5 -5
- mlrun/serving/routers.py +3 -3
- mlrun/serving/server.py +46 -43
- mlrun/serving/serving_wrapper.py +6 -2
- mlrun/serving/states.py +554 -207
- mlrun/serving/steps.py +1 -1
- mlrun/serving/system_steps.py +42 -33
- mlrun/track/trackers/mlflow_tracker.py +29 -31
- mlrun/utils/helpers.py +89 -16
- mlrun/utils/http.py +9 -2
- mlrun/utils/notifications/notification/git.py +1 -1
- mlrun/utils/notifications/notification/mail.py +39 -16
- mlrun/utils/notifications/notification_pusher.py +2 -2
- mlrun/utils/version/version.json +2 -2
- mlrun/utils/version/version.py +3 -4
- {mlrun-1.10.0rc40.dist-info → mlrun-1.11.0rc16.dist-info}/METADATA +39 -49
- {mlrun-1.10.0rc40.dist-info → mlrun-1.11.0rc16.dist-info}/RECORD +144 -130
- mlrun/db/auth_utils.py +0 -152
- mlrun/model_monitoring/db/tsdb/tdengine/schemas.py +0 -343
- mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py +0 -75
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connection.py +0 -281
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py +0 -1368
- mlrun/model_monitoring/db/tsdb/tdengine/writer_graph_steps.py +0 -51
- {mlrun-1.10.0rc40.dist-info → mlrun-1.11.0rc16.dist-info}/WHEEL +0 -0
- {mlrun-1.10.0rc40.dist-info → mlrun-1.11.0rc16.dist-info}/entry_points.txt +0 -0
- {mlrun-1.10.0rc40.dist-info → mlrun-1.11.0rc16.dist-info}/licenses/LICENSE +0 -0
- {mlrun-1.10.0rc40.dist-info → mlrun-1.11.0rc16.dist-info}/top_level.txt +0 -0
mlrun/db/auth_utils.py
DELETED
|
@@ -1,152 +0,0 @@
|
|
|
1
|
-
# Copyright 2024 Iguazio
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
from abc import ABC, abstractmethod
|
|
16
|
-
from datetime import datetime, timedelta
|
|
17
|
-
|
|
18
|
-
import requests
|
|
19
|
-
|
|
20
|
-
import mlrun.errors
|
|
21
|
-
from mlrun.utils import logger
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
class TokenProvider(ABC):
|
|
25
|
-
@abstractmethod
|
|
26
|
-
def get_token(self):
|
|
27
|
-
pass
|
|
28
|
-
|
|
29
|
-
@abstractmethod
|
|
30
|
-
def is_iguazio_session(self):
|
|
31
|
-
pass
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
class StaticTokenProvider(TokenProvider):
|
|
35
|
-
def __init__(self, token: str):
|
|
36
|
-
self.token = token
|
|
37
|
-
|
|
38
|
-
def get_token(self):
|
|
39
|
-
return self.token
|
|
40
|
-
|
|
41
|
-
def is_iguazio_session(self):
|
|
42
|
-
return mlrun.platforms.iguazio.is_iguazio_session(self.token)
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
class OAuthClientIDTokenProvider(TokenProvider):
|
|
46
|
-
def __init__(
|
|
47
|
-
self, token_endpoint: str, client_id: str, client_secret: str, timeout=5
|
|
48
|
-
):
|
|
49
|
-
if not token_endpoint or not client_id or not client_secret:
|
|
50
|
-
raise mlrun.errors.MLRunValueError(
|
|
51
|
-
"Invalid client_id configuration for authentication. Must provide token endpoint, client-id and secret"
|
|
52
|
-
)
|
|
53
|
-
self.token_endpoint = token_endpoint
|
|
54
|
-
self.client_id = client_id
|
|
55
|
-
self.client_secret = client_secret
|
|
56
|
-
self.timeout = timeout
|
|
57
|
-
|
|
58
|
-
# Since we're only issuing POST requests, which are actually a disguised GET, then it's ok to allow retries
|
|
59
|
-
# on them.
|
|
60
|
-
self._session = mlrun.utils.HTTPSessionWithRetry(
|
|
61
|
-
retry_on_post=True,
|
|
62
|
-
verbose=True,
|
|
63
|
-
)
|
|
64
|
-
|
|
65
|
-
self._cleanup()
|
|
66
|
-
self._refresh_token_if_needed()
|
|
67
|
-
|
|
68
|
-
def get_token(self):
|
|
69
|
-
self._refresh_token_if_needed()
|
|
70
|
-
return self.token
|
|
71
|
-
|
|
72
|
-
def is_iguazio_session(self):
|
|
73
|
-
return False
|
|
74
|
-
|
|
75
|
-
def _cleanup(self):
|
|
76
|
-
self.token = self.token_expiry_time = self.token_refresh_time = None
|
|
77
|
-
|
|
78
|
-
def _refresh_token_if_needed(self):
|
|
79
|
-
now = datetime.now()
|
|
80
|
-
if self.token:
|
|
81
|
-
if self.token_refresh_time and now <= self.token_refresh_time:
|
|
82
|
-
return self.token
|
|
83
|
-
|
|
84
|
-
# We only cleanup if token was really expired - even if we fail in refreshing the token, we can still
|
|
85
|
-
# use the existing one given that it's not expired.
|
|
86
|
-
if now >= self.token_expiry_time:
|
|
87
|
-
self._cleanup()
|
|
88
|
-
|
|
89
|
-
self._issue_token_request()
|
|
90
|
-
return self.token
|
|
91
|
-
|
|
92
|
-
def _issue_token_request(self, raise_on_error=False):
|
|
93
|
-
try:
|
|
94
|
-
headers = {"Content-Type": "application/x-www-form-urlencoded"}
|
|
95
|
-
request_body = {
|
|
96
|
-
"grant_type": "client_credentials",
|
|
97
|
-
"client_id": self.client_id,
|
|
98
|
-
"client_secret": self.client_secret,
|
|
99
|
-
}
|
|
100
|
-
response = self._session.request(
|
|
101
|
-
"POST",
|
|
102
|
-
self.token_endpoint,
|
|
103
|
-
timeout=self.timeout,
|
|
104
|
-
headers=headers,
|
|
105
|
-
data=request_body,
|
|
106
|
-
)
|
|
107
|
-
except requests.RequestException as exc:
|
|
108
|
-
error = f"Retrieving token failed: {mlrun.errors.err_to_str(exc)}"
|
|
109
|
-
if raise_on_error:
|
|
110
|
-
raise mlrun.errors.MLRunRuntimeError(error) from exc
|
|
111
|
-
else:
|
|
112
|
-
logger.warning(error)
|
|
113
|
-
return
|
|
114
|
-
|
|
115
|
-
if not response.ok:
|
|
116
|
-
error = "No error available"
|
|
117
|
-
if response.content:
|
|
118
|
-
try:
|
|
119
|
-
data = response.json()
|
|
120
|
-
error = data.get("error")
|
|
121
|
-
except Exception:
|
|
122
|
-
pass
|
|
123
|
-
logger.warning(
|
|
124
|
-
"Retrieving token failed", status=response.status_code, error=error
|
|
125
|
-
)
|
|
126
|
-
if raise_on_error:
|
|
127
|
-
mlrun.errors.raise_for_status(response)
|
|
128
|
-
return
|
|
129
|
-
|
|
130
|
-
self._parse_response(response.json())
|
|
131
|
-
|
|
132
|
-
def _parse_response(self, data: dict):
|
|
133
|
-
# Response is described in https://datatracker.ietf.org/doc/html/rfc6749#section-4.4.3
|
|
134
|
-
# According to spec, there isn't a refresh token - just the access token and its expiry time (in seconds).
|
|
135
|
-
self.token = data.get("access_token")
|
|
136
|
-
expires_in = data.get("expires_in")
|
|
137
|
-
if not self.token or not expires_in:
|
|
138
|
-
token_str = "****" if self.token else "missing"
|
|
139
|
-
logger.warning(
|
|
140
|
-
"Failed to parse token response", token=token_str, expires_in=expires_in
|
|
141
|
-
)
|
|
142
|
-
return
|
|
143
|
-
|
|
144
|
-
now = datetime.now()
|
|
145
|
-
self.token_expiry_time = now + timedelta(seconds=expires_in)
|
|
146
|
-
self.token_refresh_time = now + timedelta(seconds=expires_in / 2)
|
|
147
|
-
logger.info(
|
|
148
|
-
"Successfully retrieved client-id token",
|
|
149
|
-
expires_in=expires_in,
|
|
150
|
-
expiry=str(self.token_expiry_time),
|
|
151
|
-
refresh=str(self.token_refresh_time),
|
|
152
|
-
)
|
|
@@ -1,343 +0,0 @@
|
|
|
1
|
-
# Copyright 2024 Iguazio
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
import datetime
|
|
16
|
-
from dataclasses import dataclass
|
|
17
|
-
from io import StringIO
|
|
18
|
-
from typing import Optional, Union
|
|
19
|
-
|
|
20
|
-
import taosws
|
|
21
|
-
|
|
22
|
-
import mlrun.common.schemas.model_monitoring as mm_schemas
|
|
23
|
-
import mlrun.common.types
|
|
24
|
-
|
|
25
|
-
_MODEL_MONITORING_DATABASE = "mlrun_model_monitoring"
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
class _TDEngineColumnType:
|
|
29
|
-
def __init__(self, data_type: str, length: Optional[int] = None):
|
|
30
|
-
self.data_type = data_type
|
|
31
|
-
self.length = length
|
|
32
|
-
|
|
33
|
-
def values_to_column(self, values):
|
|
34
|
-
raise NotImplementedError()
|
|
35
|
-
|
|
36
|
-
def __str__(self):
|
|
37
|
-
if self.length is not None:
|
|
38
|
-
return f"{self.data_type}({self.length})"
|
|
39
|
-
else:
|
|
40
|
-
return self.data_type
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
class _TDEngineColumn(mlrun.common.types.StrEnum):
|
|
44
|
-
TIMESTAMP = _TDEngineColumnType("TIMESTAMP")
|
|
45
|
-
FLOAT = _TDEngineColumnType("FLOAT")
|
|
46
|
-
INT = _TDEngineColumnType("INT")
|
|
47
|
-
BINARY_40 = _TDEngineColumnType("BINARY", 40)
|
|
48
|
-
BINARY_64 = _TDEngineColumnType("BINARY", 64)
|
|
49
|
-
BINARY_1000 = _TDEngineColumnType("BINARY", 1000)
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
def values_to_column(values, column_type):
|
|
53
|
-
if column_type == _TDEngineColumn.TIMESTAMP:
|
|
54
|
-
timestamps = [round(timestamp.timestamp() * 1000) for timestamp in values]
|
|
55
|
-
return taosws.millis_timestamps_to_column(timestamps)
|
|
56
|
-
if column_type == _TDEngineColumn.FLOAT:
|
|
57
|
-
return taosws.floats_to_column(values)
|
|
58
|
-
if column_type == _TDEngineColumn.INT:
|
|
59
|
-
return taosws.ints_to_column(values)
|
|
60
|
-
if column_type == _TDEngineColumn.BINARY_40:
|
|
61
|
-
return taosws.binary_to_column(values)
|
|
62
|
-
if column_type == _TDEngineColumn.BINARY_64:
|
|
63
|
-
return taosws.binary_to_column(values)
|
|
64
|
-
if column_type == _TDEngineColumn.BINARY_1000:
|
|
65
|
-
return taosws.binary_to_column(values)
|
|
66
|
-
|
|
67
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
68
|
-
f"unsupported column type '{column_type}'"
|
|
69
|
-
)
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
@dataclass
|
|
73
|
-
class TDEngineSchema:
|
|
74
|
-
"""
|
|
75
|
-
A class to represent a supertable schema in TDengine. Using this schema, you can generate the relevant queries to
|
|
76
|
-
create, insert, delete and query data from TDengine. At the moment, there are 3 schemas: AppResultTable,
|
|
77
|
-
Metrics, and Predictions.
|
|
78
|
-
"""
|
|
79
|
-
|
|
80
|
-
def __init__(
|
|
81
|
-
self,
|
|
82
|
-
super_table: str,
|
|
83
|
-
columns: dict[str, _TDEngineColumn],
|
|
84
|
-
tags: dict[str, str],
|
|
85
|
-
project: str,
|
|
86
|
-
database: Optional[str] = None,
|
|
87
|
-
):
|
|
88
|
-
self.super_table = f"{super_table}_{project.replace('-', '_')}"
|
|
89
|
-
self.columns = columns
|
|
90
|
-
self.tags = tags
|
|
91
|
-
self.database = database or _MODEL_MONITORING_DATABASE
|
|
92
|
-
|
|
93
|
-
def _create_super_table_query(self) -> str:
|
|
94
|
-
columns = ", ".join(f"{col} {val}" for col, val in self.columns.items())
|
|
95
|
-
tags = ", ".join(f"{col} {val}" for col, val in self.tags.items())
|
|
96
|
-
return f"CREATE STABLE if NOT EXISTS {self.database}.{self.super_table} ({columns}) TAGS ({tags});"
|
|
97
|
-
|
|
98
|
-
def _create_subtable_sql(
|
|
99
|
-
self,
|
|
100
|
-
subtable: str,
|
|
101
|
-
values: dict[str, Union[str, int, float, datetime.datetime]],
|
|
102
|
-
) -> str:
|
|
103
|
-
try:
|
|
104
|
-
tags = ", ".join(f"'{values[val]}'" for val in self.tags)
|
|
105
|
-
except KeyError:
|
|
106
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
107
|
-
f"values must contain all tags: {self.tags.keys()}"
|
|
108
|
-
)
|
|
109
|
-
return f"CREATE TABLE if NOT EXISTS {self.database}.{subtable} USING {self.super_table} TAGS ({tags});"
|
|
110
|
-
|
|
111
|
-
def _delete_subtable_query(
|
|
112
|
-
self,
|
|
113
|
-
subtable: str,
|
|
114
|
-
values: dict[str, Union[str, int, float, datetime.datetime]],
|
|
115
|
-
) -> str:
|
|
116
|
-
values = " AND ".join(
|
|
117
|
-
f"{val} LIKE '{values[val]}'" for val in self.tags if val in values
|
|
118
|
-
)
|
|
119
|
-
if not values:
|
|
120
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
121
|
-
f"values must contain at least one tag: {self.tags.keys()}"
|
|
122
|
-
)
|
|
123
|
-
return f"DELETE FROM {self.database}.{subtable} WHERE {values};"
|
|
124
|
-
|
|
125
|
-
def drop_subtable_query(self, subtable: str) -> str:
|
|
126
|
-
return f"DROP TABLE if EXISTS {self.database}.`{subtable}`;"
|
|
127
|
-
|
|
128
|
-
def drop_supertable_query(self) -> str:
|
|
129
|
-
return f"DROP STABLE if EXISTS {self.database}.{self.super_table};"
|
|
130
|
-
|
|
131
|
-
def _get_subtables_query_by_tag(
|
|
132
|
-
self,
|
|
133
|
-
filter_tag: str,
|
|
134
|
-
filter_values: list[str],
|
|
135
|
-
operator: str = "OR",
|
|
136
|
-
) -> str:
|
|
137
|
-
if filter_tag not in self.tags:
|
|
138
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
139
|
-
f"`filter_tag` must be one of the tags: {self.tags.keys()}"
|
|
140
|
-
)
|
|
141
|
-
|
|
142
|
-
values = f" {operator} ".join(
|
|
143
|
-
f"{filter_tag} LIKE '{val}'" for val in filter_values
|
|
144
|
-
)
|
|
145
|
-
return self._get_tables_query_by_condition(values)
|
|
146
|
-
|
|
147
|
-
def _get_tables_query_by_condition(self, condition: str) -> str:
|
|
148
|
-
return f"SELECT DISTINCT TBNAME FROM {self.database}.{self.super_table} WHERE {condition};"
|
|
149
|
-
|
|
150
|
-
@staticmethod
|
|
151
|
-
def _get_records_query(
|
|
152
|
-
table: str,
|
|
153
|
-
start: datetime.datetime,
|
|
154
|
-
end: datetime.datetime,
|
|
155
|
-
columns_to_filter: Optional[list[str]] = None,
|
|
156
|
-
filter_query: Optional[str] = None,
|
|
157
|
-
interval: Optional[str] = None,
|
|
158
|
-
limit: int = 0,
|
|
159
|
-
agg_funcs: Optional[list] = None,
|
|
160
|
-
sliding_window_step: Optional[str] = None,
|
|
161
|
-
timestamp_column: str = "time",
|
|
162
|
-
database: str = _MODEL_MONITORING_DATABASE,
|
|
163
|
-
group_by: Optional[Union[list[str], str]] = None,
|
|
164
|
-
preform_agg_funcs_columns: Optional[list[str]] = None,
|
|
165
|
-
order_by: Optional[str] = None,
|
|
166
|
-
desc: Optional[bool] = None,
|
|
167
|
-
partition_by: Optional[str] = None,
|
|
168
|
-
) -> str:
|
|
169
|
-
if agg_funcs and not columns_to_filter:
|
|
170
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
171
|
-
"`columns_to_filter` must be provided when using aggregate functions"
|
|
172
|
-
)
|
|
173
|
-
|
|
174
|
-
# if aggregate function or interval is provided, the other must be provided as well
|
|
175
|
-
if interval and not agg_funcs:
|
|
176
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
177
|
-
"`agg_funcs` must be provided when using interval"
|
|
178
|
-
)
|
|
179
|
-
if partition_by and not agg_funcs:
|
|
180
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
181
|
-
"`agg_funcs` must be provided when using partition by"
|
|
182
|
-
)
|
|
183
|
-
if sliding_window_step and not interval:
|
|
184
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
185
|
-
"`interval` must be provided when using sliding window"
|
|
186
|
-
)
|
|
187
|
-
if group_by and not agg_funcs:
|
|
188
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
189
|
-
"aggregate functions must be provided when using group by"
|
|
190
|
-
)
|
|
191
|
-
if desc and not order_by:
|
|
192
|
-
raise mlrun.errors.MLRunInvalidArgumentError(
|
|
193
|
-
"`order_by` must be provided when using descending"
|
|
194
|
-
)
|
|
195
|
-
|
|
196
|
-
with StringIO() as query:
|
|
197
|
-
query.write("SELECT ")
|
|
198
|
-
if interval:
|
|
199
|
-
query.write("_wstart, _wend, ")
|
|
200
|
-
if agg_funcs:
|
|
201
|
-
preform_agg_funcs_columns = (
|
|
202
|
-
columns_to_filter
|
|
203
|
-
if preform_agg_funcs_columns is None
|
|
204
|
-
else preform_agg_funcs_columns
|
|
205
|
-
)
|
|
206
|
-
query.write(
|
|
207
|
-
", ".join(
|
|
208
|
-
[
|
|
209
|
-
f"{a}({col})"
|
|
210
|
-
if col.upper()
|
|
211
|
-
in map(
|
|
212
|
-
str.upper, preform_agg_funcs_columns
|
|
213
|
-
) # Case-insensitive check
|
|
214
|
-
else f"{col}"
|
|
215
|
-
for a in agg_funcs
|
|
216
|
-
for col in columns_to_filter
|
|
217
|
-
]
|
|
218
|
-
)
|
|
219
|
-
)
|
|
220
|
-
elif columns_to_filter:
|
|
221
|
-
query.write(", ".join(columns_to_filter))
|
|
222
|
-
else:
|
|
223
|
-
query.write("*")
|
|
224
|
-
query.write(f" FROM {database}.{table}")
|
|
225
|
-
|
|
226
|
-
if any([filter_query, start, end]):
|
|
227
|
-
query.write(" WHERE ")
|
|
228
|
-
if filter_query:
|
|
229
|
-
query.write(f"{filter_query} AND ")
|
|
230
|
-
if start:
|
|
231
|
-
query.write(f"{timestamp_column} >= '{start}' AND ")
|
|
232
|
-
if end:
|
|
233
|
-
query.write(f"{timestamp_column} <= '{end}'")
|
|
234
|
-
if group_by:
|
|
235
|
-
if isinstance(group_by, list):
|
|
236
|
-
group_by = ", ".join(group_by)
|
|
237
|
-
query.write(f" GROUP BY {group_by}")
|
|
238
|
-
if partition_by:
|
|
239
|
-
query.write(f" PARTITION BY {partition_by}")
|
|
240
|
-
if order_by:
|
|
241
|
-
desc = " DESC" if desc else ""
|
|
242
|
-
query.write(f" ORDER BY {order_by}{desc}")
|
|
243
|
-
if interval:
|
|
244
|
-
query.write(f" INTERVAL({interval})")
|
|
245
|
-
if sliding_window_step:
|
|
246
|
-
query.write(f" SLIDING({sliding_window_step})")
|
|
247
|
-
if limit:
|
|
248
|
-
query.write(f" LIMIT {limit}")
|
|
249
|
-
query.write(";")
|
|
250
|
-
return query.getvalue()
|
|
251
|
-
|
|
252
|
-
|
|
253
|
-
@dataclass
|
|
254
|
-
class AppResultTable(TDEngineSchema):
|
|
255
|
-
def __init__(self, project: str, database: Optional[str] = None):
|
|
256
|
-
super_table = mm_schemas.TDEngineSuperTables.APP_RESULTS
|
|
257
|
-
columns = {
|
|
258
|
-
mm_schemas.WriterEvent.END_INFER_TIME: _TDEngineColumn.TIMESTAMP,
|
|
259
|
-
mm_schemas.WriterEvent.START_INFER_TIME: _TDEngineColumn.TIMESTAMP,
|
|
260
|
-
mm_schemas.ResultData.RESULT_VALUE: _TDEngineColumn.FLOAT,
|
|
261
|
-
mm_schemas.ResultData.RESULT_STATUS: _TDEngineColumn.INT,
|
|
262
|
-
mm_schemas.ResultData.RESULT_EXTRA_DATA: _TDEngineColumn.BINARY_1000,
|
|
263
|
-
}
|
|
264
|
-
tags = {
|
|
265
|
-
mm_schemas.WriterEvent.ENDPOINT_ID: _TDEngineColumn.BINARY_64,
|
|
266
|
-
mm_schemas.WriterEvent.APPLICATION_NAME: _TDEngineColumn.BINARY_64,
|
|
267
|
-
mm_schemas.ResultData.RESULT_NAME: _TDEngineColumn.BINARY_64,
|
|
268
|
-
mm_schemas.ResultData.RESULT_KIND: _TDEngineColumn.INT,
|
|
269
|
-
}
|
|
270
|
-
super().__init__(
|
|
271
|
-
super_table=super_table,
|
|
272
|
-
columns=columns,
|
|
273
|
-
tags=tags,
|
|
274
|
-
database=database,
|
|
275
|
-
project=project,
|
|
276
|
-
)
|
|
277
|
-
|
|
278
|
-
|
|
279
|
-
@dataclass
|
|
280
|
-
class Metrics(TDEngineSchema):
|
|
281
|
-
def __init__(self, project: str, database: Optional[str] = None):
|
|
282
|
-
super_table = mm_schemas.TDEngineSuperTables.METRICS
|
|
283
|
-
columns = {
|
|
284
|
-
mm_schemas.WriterEvent.END_INFER_TIME: _TDEngineColumn.TIMESTAMP,
|
|
285
|
-
mm_schemas.WriterEvent.START_INFER_TIME: _TDEngineColumn.TIMESTAMP,
|
|
286
|
-
mm_schemas.MetricData.METRIC_VALUE: _TDEngineColumn.FLOAT,
|
|
287
|
-
}
|
|
288
|
-
tags = {
|
|
289
|
-
mm_schemas.WriterEvent.ENDPOINT_ID: _TDEngineColumn.BINARY_64,
|
|
290
|
-
mm_schemas.WriterEvent.APPLICATION_NAME: _TDEngineColumn.BINARY_64,
|
|
291
|
-
mm_schemas.MetricData.METRIC_NAME: _TDEngineColumn.BINARY_64,
|
|
292
|
-
}
|
|
293
|
-
super().__init__(
|
|
294
|
-
super_table=super_table,
|
|
295
|
-
columns=columns,
|
|
296
|
-
tags=tags,
|
|
297
|
-
database=database,
|
|
298
|
-
project=project,
|
|
299
|
-
)
|
|
300
|
-
|
|
301
|
-
|
|
302
|
-
@dataclass
|
|
303
|
-
class Predictions(TDEngineSchema):
|
|
304
|
-
def __init__(self, project: str, database: Optional[str] = None):
|
|
305
|
-
super_table = mm_schemas.TDEngineSuperTables.PREDICTIONS
|
|
306
|
-
columns = {
|
|
307
|
-
mm_schemas.EventFieldType.TIME: _TDEngineColumn.TIMESTAMP,
|
|
308
|
-
mm_schemas.EventFieldType.LATENCY: _TDEngineColumn.FLOAT,
|
|
309
|
-
mm_schemas.EventKeyMetrics.CUSTOM_METRICS: _TDEngineColumn.BINARY_1000,
|
|
310
|
-
mm_schemas.EventFieldType.ESTIMATED_PREDICTION_COUNT: _TDEngineColumn.FLOAT,
|
|
311
|
-
mm_schemas.EventFieldType.EFFECTIVE_SAMPLE_COUNT: _TDEngineColumn.INT,
|
|
312
|
-
}
|
|
313
|
-
tags = {
|
|
314
|
-
mm_schemas.WriterEvent.ENDPOINT_ID: _TDEngineColumn.BINARY_64,
|
|
315
|
-
}
|
|
316
|
-
super().__init__(
|
|
317
|
-
super_table=super_table,
|
|
318
|
-
columns=columns,
|
|
319
|
-
tags=tags,
|
|
320
|
-
database=database,
|
|
321
|
-
project=project,
|
|
322
|
-
)
|
|
323
|
-
|
|
324
|
-
|
|
325
|
-
@dataclass
|
|
326
|
-
class Errors(TDEngineSchema):
|
|
327
|
-
def __init__(self, project: str, database: Optional[str] = None):
|
|
328
|
-
super_table = mm_schemas.TDEngineSuperTables.ERRORS
|
|
329
|
-
columns = {
|
|
330
|
-
mm_schemas.EventFieldType.TIME: _TDEngineColumn.TIMESTAMP,
|
|
331
|
-
mm_schemas.EventFieldType.MODEL_ERROR: _TDEngineColumn.BINARY_1000,
|
|
332
|
-
}
|
|
333
|
-
tags = {
|
|
334
|
-
mm_schemas.WriterEvent.ENDPOINT_ID: _TDEngineColumn.BINARY_64,
|
|
335
|
-
mm_schemas.EventFieldType.ERROR_TYPE: _TDEngineColumn.BINARY_64,
|
|
336
|
-
}
|
|
337
|
-
super().__init__(
|
|
338
|
-
super_table=super_table,
|
|
339
|
-
columns=columns,
|
|
340
|
-
tags=tags,
|
|
341
|
-
database=database,
|
|
342
|
-
project=project,
|
|
343
|
-
)
|
|
@@ -1,75 +0,0 @@
|
|
|
1
|
-
# Copyright 2024 Iguazio
|
|
2
|
-
#
|
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
-
# you may not use this file except in compliance with the License.
|
|
5
|
-
# You may obtain a copy of the License at
|
|
6
|
-
#
|
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
-
#
|
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
-
# See the License for the specific language governing permissions and
|
|
13
|
-
# limitations under the License.
|
|
14
|
-
|
|
15
|
-
import json
|
|
16
|
-
from datetime import datetime
|
|
17
|
-
|
|
18
|
-
import mlrun.feature_store.steps
|
|
19
|
-
from mlrun.common.schemas.model_monitoring import (
|
|
20
|
-
EventFieldType,
|
|
21
|
-
EventKeyMetrics,
|
|
22
|
-
)
|
|
23
|
-
from mlrun.utils import logger
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
class ProcessBeforeTDEngine(mlrun.feature_store.steps.MapClass):
|
|
27
|
-
def __init__(self, **kwargs):
|
|
28
|
-
"""
|
|
29
|
-
Process the data before writing to TDEngine. This step create the relevant keys for the TDEngine table,
|
|
30
|
-
including project name, custom metrics, time column, and table name column.
|
|
31
|
-
|
|
32
|
-
:returns: Event as a dictionary which will be written into the TDEngine Predictions table.
|
|
33
|
-
"""
|
|
34
|
-
super().__init__(**kwargs)
|
|
35
|
-
|
|
36
|
-
def do(self, event):
|
|
37
|
-
event[EventFieldType.PROJECT] = event[EventFieldType.FUNCTION_URI].split("/")[0]
|
|
38
|
-
event[EventKeyMetrics.CUSTOM_METRICS] = json.dumps(
|
|
39
|
-
event.get(EventFieldType.METRICS, {})
|
|
40
|
-
)
|
|
41
|
-
event[EventFieldType.TIME] = event.get(EventFieldType.TIMESTAMP)
|
|
42
|
-
event[EventFieldType.TABLE_COLUMN] = "_" + event.get(EventFieldType.ENDPOINT_ID)
|
|
43
|
-
|
|
44
|
-
return event
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
class ErrorExtractor(mlrun.feature_store.steps.MapClass):
|
|
48
|
-
def __init__(self, **kwargs):
|
|
49
|
-
"""
|
|
50
|
-
Prepare the event for insertion into the TDEngine error table
|
|
51
|
-
"""
|
|
52
|
-
super().__init__(**kwargs)
|
|
53
|
-
|
|
54
|
-
def do(self, event):
|
|
55
|
-
error = str(event.get("error"))
|
|
56
|
-
if len(error) > 1000:
|
|
57
|
-
error = error[-1000:]
|
|
58
|
-
logger.warning(
|
|
59
|
-
f"Error message exceeds 1000 chars: The error message writen to TSDB will be it last "
|
|
60
|
-
f"1000 chars, Error: {error}",
|
|
61
|
-
event=event,
|
|
62
|
-
)
|
|
63
|
-
timestamp = datetime.fromisoformat(event.get("when"))
|
|
64
|
-
endpoint_id = event[EventFieldType.ENDPOINT_ID]
|
|
65
|
-
event = {
|
|
66
|
-
EventFieldType.MODEL_ERROR: error,
|
|
67
|
-
EventFieldType.ERROR_TYPE: EventFieldType.INFER_ERROR,
|
|
68
|
-
EventFieldType.ENDPOINT_ID: endpoint_id,
|
|
69
|
-
EventFieldType.TIME: timestamp,
|
|
70
|
-
EventFieldType.PROJECT: event[EventFieldType.FUNCTION_URI].split("/")[0],
|
|
71
|
-
EventFieldType.TABLE_COLUMN: "_err_"
|
|
72
|
-
+ event.get(EventFieldType.ENDPOINT_ID),
|
|
73
|
-
}
|
|
74
|
-
logger.info("Write error to errors TSDB table", event=event)
|
|
75
|
-
return event
|