mlrun 1.10.0rc36__py3-none-any.whl → 1.10.0rc38__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

mlrun/config.py CHANGED
@@ -304,6 +304,7 @@ default_config = {
304
304
  "application": {
305
305
  "default_sidecar_internal_port": 8050,
306
306
  "default_authentication_mode": mlrun.common.schemas.APIGatewayAuthenticationMode.none,
307
+ "default_worker_number": 10000,
307
308
  },
308
309
  },
309
310
  # TODO: function defaults should be moved to the function spec config above
mlrun/db/base.py CHANGED
@@ -722,7 +722,9 @@ class RunDBInterface(ABC):
722
722
  tsdb_metrics: bool = False,
723
723
  metric_list: Optional[list[str]] = None,
724
724
  top_level: bool = False,
725
- modes: Optional[list[mm_constants.EndpointMode]] = None,
725
+ modes: Optional[
726
+ Union[mm_constants.EndpointMode, list[mm_constants.EndpointMode]]
727
+ ] = None,
726
728
  uids: Optional[list[str]] = None,
727
729
  latest_only: bool = False,
728
730
  ) -> mlrun.common.schemas.ModelEndpointList:
mlrun/db/httpdb.py CHANGED
@@ -3771,7 +3771,9 @@ class HTTPRunDB(RunDBInterface):
3771
3771
  tsdb_metrics: bool = False,
3772
3772
  metric_list: Optional[list[str]] = None,
3773
3773
  top_level: bool = False,
3774
- modes: Optional[list[mm_constants.EndpointMode]] = None,
3774
+ modes: Optional[
3775
+ Union[mm_constants.EndpointMode, list[mm_constants.EndpointMode]]
3776
+ ] = None,
3775
3777
  uids: Optional[list[str]] = None,
3776
3778
  latest_only: bool = False,
3777
3779
  ) -> mlrun.common.schemas.ModelEndpointList:
@@ -3802,8 +3804,13 @@ class HTTPRunDB(RunDBInterface):
3802
3804
  labels = self._parse_labels(labels)
3803
3805
  if names and isinstance(names, str):
3804
3806
  names = [names]
3805
- if isinstance(modes, mm_constants.EndpointMode):
3806
- modes = [modes]
3807
+ if modes:
3808
+ # Ensure backward compatibility with Python 3.9 clients by converting IntEnum modes to integer values
3809
+ modes = (
3810
+ [modes.value]
3811
+ if isinstance(modes, mm_constants.EndpointMode)
3812
+ else [mode.value for mode in modes]
3813
+ )
3807
3814
  response = self.api_call(
3808
3815
  method=mlrun.common.types.HTTPMethod.GET,
3809
3816
  path=path,
mlrun/db/nopdb.py CHANGED
@@ -626,7 +626,9 @@ class NopDB(RunDBInterface):
626
626
  tsdb_metrics: bool = False,
627
627
  metric_list: Optional[list[str]] = None,
628
628
  top_level: bool = False,
629
- modes: Optional[list[mm_constants.EndpointMode]] = None,
629
+ modes: Optional[
630
+ Union[mm_constants.EndpointMode, list[mm_constants.EndpointMode]]
631
+ ] = None,
630
632
  uids: Optional[list[str]] = None,
631
633
  latest_only: bool = False,
632
634
  ) -> mlrun.common.schemas.ModelEndpointList:
@@ -233,7 +233,7 @@ class ModelMonitoringApplicationBase(MonitoringApplicationToDict, ABC):
233
233
  try:
234
234
  yield endpoints_output, application_schedules.__enter__()
235
235
  finally:
236
- if write_output:
236
+ if write_output and any(endpoints_output.values()):
237
237
  logger.debug(
238
238
  "Pushing model monitoring application job data to the writer stream",
239
239
  passed_stream_profile=str(stream_profile),
@@ -344,7 +344,7 @@ class ModelMonitoringApplicationBase(MonitoringApplicationToDict, ABC):
344
344
  return result
345
345
 
346
346
  if endpoints is not None:
347
- resolved_endpoints = self._validate_endpoints(
347
+ resolved_endpoints = self._normalize_and_validate_endpoints(
348
348
  project=project, endpoints=endpoints
349
349
  )
350
350
  if (
@@ -390,6 +390,16 @@ class ModelMonitoringApplicationBase(MonitoringApplicationToDict, ABC):
390
390
  context.log_result(
391
391
  result_key, self._flatten_data_result(result)
392
392
  )
393
+ # Check if no result was produced for any endpoint (e.g., due to no data in all windows)
394
+ if not any(endpoints_output.values()):
395
+ context.logger.warning(
396
+ "No data was found for any of the specified endpoints. "
397
+ "No results were produced",
398
+ application_name=application_name,
399
+ endpoints=endpoints,
400
+ start=start,
401
+ end=end,
402
+ )
393
403
  else:
394
404
  result = call_do_tracking(
395
405
  mm_context.MonitoringApplicationContext._from_ml_ctx(
@@ -421,69 +431,97 @@ class ModelMonitoringApplicationBase(MonitoringApplicationToDict, ABC):
421
431
  )
422
432
 
423
433
  @classmethod
424
- def _validate_endpoints(
434
+ def _normalize_and_validate_endpoints(
425
435
  cls,
426
436
  project: "mlrun.MlrunProject",
427
437
  endpoints: Union[
428
438
  list[tuple[str, str]], list[list[str]], list[str], Literal["all"]
429
439
  ],
430
- ) -> Union[list[tuple[str, str]], list[list[str]]]:
431
- if not endpoints:
432
- raise mlrun.errors.MLRunValueError(
433
- "The endpoints list cannot be empty. If you want to run on all the endpoints, "
434
- 'use `endpoints="all"`.'
435
- )
436
-
437
- if isinstance(endpoints, list) and isinstance(endpoints[0], (tuple, list)):
438
- return endpoints
439
-
440
- if not (isinstance(endpoints, list) and isinstance(endpoints[0], str)):
441
- if isinstance(endpoints, str):
442
- if endpoints != "all":
443
- raise mlrun.errors.MLRunValueError(
444
- 'A string input for `endpoints` can only be "all" for all the model endpoints in '
445
- "the project. If you want to select a single model endpoint with the given name, "
446
- f'use a list: `endpoints=["{endpoints}"]`.'
440
+ ) -> list[tuple[str, str]]:
441
+ if isinstance(endpoints, list):
442
+ if all(
443
+ isinstance(endpoint, (tuple, list)) and len(endpoint) == 2
444
+ for endpoint in endpoints
445
+ ):
446
+ # A list of [(name, uid), ...] / [[name, uid], ...] tuples/lists
447
+ endpoint_uids_to_names = {
448
+ endpoint[1]: endpoint[0] for endpoint in endpoints
449
+ }
450
+ endpoints_list = project.list_model_endpoints(
451
+ uids=list(endpoint_uids_to_names.keys()), latest_only=True
452
+ ).endpoints
453
+
454
+ # Check for missing endpoint uids or name/uid mismatches
455
+ for endpoint in endpoints_list:
456
+ if (
457
+ endpoint_uids_to_names[cast(str, endpoint.metadata.uid)]
458
+ != endpoint.metadata.name
459
+ ):
460
+ raise mlrun.errors.MLRunNotFoundError(
461
+ "Could not find model endpoint with name "
462
+ f"'{endpoint_uids_to_names[cast(str, endpoint.metadata.uid)]}' "
463
+ f"and uid '{endpoint.metadata.uid}'"
464
+ )
465
+ missing = set(endpoint_uids_to_names.keys()) - {
466
+ cast(str, endpoint.metadata.uid) for endpoint in endpoints_list
467
+ }
468
+ if missing:
469
+ raise mlrun.errors.MLRunNotFoundError(
470
+ "Could not find model endpoints with the following uids: "
471
+ f"{missing}"
447
472
  )
448
- else:
449
- raise mlrun.errors.MLRunValueError(
450
- f"Could not resolve endpoints as list of [(name, uid)], {endpoints=}"
451
- )
452
473
 
453
- if endpoints == "all":
454
- endpoint_names = None
455
- else:
456
- endpoint_names = endpoints
457
-
458
- endpoints_list = project.list_model_endpoints(
459
- names=endpoint_names, latest_only=True
460
- ).endpoints
474
+ elif all(isinstance(endpoint, str) for endpoint in endpoints):
475
+ # A list of [name, ...] strings
476
+ endpoint_names = cast(list[str], endpoints)
477
+ endpoints_list = project.list_model_endpoints(
478
+ names=endpoint_names, latest_only=True
479
+ ).endpoints
461
480
 
462
- cls._check_endpoints_first_request(endpoints_list)
463
-
464
- if endpoints_list:
465
- list_endpoints_result = [
466
- (endpoint.metadata.name, endpoint.metadata.uid)
467
- for endpoint in endpoints_list
468
- ]
469
- if endpoints != "all":
481
+ # Check for missing endpoint names
470
482
  missing = set(endpoints) - {
471
- endpoint[0] for endpoint in list_endpoints_result
483
+ endpoint.metadata.name for endpoint in endpoints_list
472
484
  }
473
485
  if missing:
474
486
  logger.warning(
475
487
  "Could not list all the required endpoints",
476
- missing_endpoint=missing,
477
- endpoints=list_endpoints_result,
488
+ missing_endpoints=missing,
489
+ endpoints_list=endpoints_list,
478
490
  )
479
- return list_endpoints_result
491
+ else:
492
+ raise mlrun.errors.MLRunValueError(
493
+ "Could not resolve the following list as a list of endpoints:\n"
494
+ f"{endpoints}\n"
495
+ "The list must be either a list of (name, uid) tuples/lists or a list of names."
496
+ )
497
+ elif endpoints == "all":
498
+ endpoints_list = project.list_model_endpoints(latest_only=True).endpoints
499
+ elif isinstance(endpoints, str):
500
+ raise mlrun.errors.MLRunValueError(
501
+ 'A string input for `endpoints` can only be "all" for all the model endpoints in '
502
+ "the project. If you want to select a single model endpoint with the given name, "
503
+ f'use a list: `endpoints=["{endpoints}"]`.'
504
+ )
480
505
  else:
481
- if endpoints != "all":
482
- err_msg_suffix = f" named '{endpoints}'"
506
+ raise mlrun.errors.MLRunValueError(
507
+ "Could not resolve the `endpoints` parameter. The parameter must be either:\n"
508
+ "- a list of (name, uid) tuples/lists\n"
509
+ "- a list of names\n"
510
+ '- the string "all" for all the model endpoints in the project.'
511
+ )
512
+
513
+ if not endpoints_list:
483
514
  raise mlrun.errors.MLRunNotFoundError(
484
- f"Did not find any model endpoints {err_msg_suffix}"
515
+ f"Did not find any model endpoints {endpoints=}"
485
516
  )
486
517
 
518
+ cls._check_endpoints_first_request(endpoints_list)
519
+
520
+ return [
521
+ (endpoint.metadata.name, cast(str, endpoint.metadata.uid))
522
+ for endpoint in endpoints_list
523
+ ]
524
+
487
525
  @staticmethod
488
526
  def _validate_and_get_window_length(
489
527
  *, base_period: int, start_dt: datetime, end_dt: datetime
@@ -55,14 +55,12 @@ class TDEngineConnector(TSDBConnector):
55
55
  """
56
56
 
57
57
  type: str = mm_schemas.TSDBTarget.TDEngine
58
- database = f"{tdengine_schemas._MODEL_MONITORING_DATABASE}_{mlrun.mlconf.system_id}"
59
58
 
60
59
  def __init__(
61
60
  self,
62
61
  project: str,
63
62
  profile: DatastoreProfile,
64
63
  timestamp_precision: TDEngineTimestampPrecision = TDEngineTimestampPrecision.MICROSECOND,
65
- **kwargs,
66
64
  ):
67
65
  super().__init__(project=project)
68
66
 
@@ -72,6 +70,15 @@ class TDEngineConnector(TSDBConnector):
72
70
  timestamp_precision
73
71
  )
74
72
 
73
+ if not mlrun.mlconf.system_id:
74
+ raise mlrun.errors.MLRunInvalidArgumentError(
75
+ "system_id is not set in mlrun.mlconf. "
76
+ "TDEngineConnector requires system_id to be configured for database name construction. "
77
+ "Please ensure MLRun configuration is properly loaded before creating TDEngineConnector."
78
+ )
79
+ self.database = (
80
+ f"{tdengine_schemas._MODEL_MONITORING_DATABASE}_{mlrun.mlconf.system_id}"
81
+ )
75
82
  self._init_super_tables()
76
83
 
77
84
  @property
mlrun/run.py CHANGED
@@ -118,7 +118,25 @@ def function_to_module(code="", workdir=None, secrets=None, silent=False):
118
118
  raise ValueError("nothing to run, specify command or function")
119
119
 
120
120
  command = os.path.join(workdir or "", command)
121
- mod_name = mlrun.utils.helpers.get_module_name_from_path(command)
121
+
122
+ source_file_path_object, working_dir_path_object = (
123
+ mlrun.utils.helpers.get_source_and_working_dir_paths(command)
124
+ )
125
+ if source_file_path_object.is_relative_to(working_dir_path_object):
126
+ mod_name = mlrun.utils.helpers.get_relative_module_name_from_path(
127
+ source_file_path_object, working_dir_path_object
128
+ )
129
+ elif source_file_path_object.is_relative_to(
130
+ pathlib.Path(tempfile.gettempdir()).resolve()
131
+ ):
132
+ mod_name = Path(command).stem
133
+ else:
134
+ raise mlrun.errors.MLRunRuntimeError(
135
+ f"Cannot run source file '{command}': it must be located either under the current working "
136
+ f"directory ('{working_dir_path_object}') or the system temporary directory ('{tempfile.gettempdir()}'). "
137
+ f"This is required when running with local=True."
138
+ )
139
+
122
140
  spec = imputil.spec_from_file_location(mod_name, command)
123
141
  if spec is None:
124
142
  raise OSError(f"cannot import from {command!r}")
@@ -413,8 +413,7 @@ class ApplicationRuntime(RemoteRuntime):
413
413
  show_on_failure=show_on_failure,
414
414
  )
415
415
 
416
- # This is a class method that accepts a function instance, so we pass self as the function instance
417
- self._ensure_reverse_proxy_configurations(self)
416
+ self._ensure_reverse_proxy_configurations()
418
417
  self._configure_application_sidecar()
419
418
 
420
419
  # We only allow accessing the application via the API Gateway
@@ -799,27 +798,42 @@ class ApplicationRuntime(RemoteRuntime):
799
798
  with_mlrun=with_mlrun,
800
799
  )
801
800
 
802
- @staticmethod
803
- def _ensure_reverse_proxy_configurations(function: RemoteRuntime):
804
- if function.spec.build.functionSourceCode or function.status.container_image:
801
+ def _ensure_reverse_proxy_configurations(self):
802
+ # If an HTTP trigger already exists in the spec,
803
+ # it means the user explicitly defined a custom configuration,
804
+ # so, skip automatic creation.
805
+ skip_http_trigger_creation = False
806
+ for key, value in self.spec.config.items():
807
+ if key.startswith("spec.triggers"):
808
+ if isinstance(value, dict):
809
+ if value.get("kind") == "http":
810
+ skip_http_trigger_creation = True
811
+ break
812
+ if not skip_http_trigger_creation:
813
+ self.with_http(
814
+ workers=mlrun.mlconf.function.application.default_worker_number,
815
+ trigger_name="application-http",
816
+ )
817
+
818
+ if self.spec.build.functionSourceCode or self.status.container_image:
805
819
  return
806
820
 
807
821
  filename, handler = ApplicationRuntime.get_filename_and_handler()
808
822
  name, spec, code = nuclio.build_file(
809
823
  filename,
810
- name=function.metadata.name,
824
+ name=self.metadata.name,
811
825
  handler=handler,
812
826
  )
813
- function.spec.function_handler = mlrun.utils.get_in(spec, "spec.handler")
814
- function.spec.build.functionSourceCode = mlrun.utils.get_in(
827
+ self.spec.function_handler = mlrun.utils.get_in(spec, "spec.handler")
828
+ self.spec.build.functionSourceCode = mlrun.utils.get_in(
815
829
  spec, "spec.build.functionSourceCode"
816
830
  )
817
- function.spec.nuclio_runtime = mlrun.utils.get_in(spec, "spec.runtime")
831
+ self.spec.nuclio_runtime = mlrun.utils.get_in(spec, "spec.runtime")
818
832
 
819
833
  # default the reverse proxy logger level to info
820
834
  logger_sinks_key = "spec.loggerSinks"
821
- if not function.spec.config.get(logger_sinks_key):
822
- function.set_config(
835
+ if not self.spec.config.get(logger_sinks_key):
836
+ self.set_config(
823
837
  logger_sinks_key, [{"level": "info", "sink": "myStdoutLoggerSink"}]
824
838
  )
825
839
 
@@ -1224,10 +1224,17 @@ class RemoteRuntime(KubeResource):
1224
1224
  # try to infer the invocation url from the internal and if not exists, use external.
1225
1225
  # $$$$ we do not want to use the external invocation url (e.g.: ingress, nodePort, etc.)
1226
1226
 
1227
- # check function state before invocation
1228
- state, _, _ = self._get_state()
1229
- if state not in ["ready", "scaledToZero"]:
1230
- logger.warning(f"Function is in the {state} state")
1227
+ # if none of urls is set, function was deployed with watch=False
1228
+ # and status wasn't fetched with Nuclio
1229
+ # _get_state fetches the state and updates url
1230
+ if (
1231
+ not self.status.address
1232
+ and not self.status.internal_invocation_urls
1233
+ and not self.status.external_invocation_urls
1234
+ ):
1235
+ state, _, _ = self._get_state()
1236
+ if state not in ["ready", "scaledToZero"]:
1237
+ logger.warning(f"Function is in the {state} state")
1231
1238
 
1232
1239
  # prefer internal invocation url if running inside k8s cluster
1233
1240
  if (
@@ -679,9 +679,13 @@ class ServingRuntime(RemoteRuntime):
679
679
  f"function {function} is used in steps and is not defined, "
680
680
  "use the .add_child_function() to specify child function attributes"
681
681
  )
682
- if isinstance(self.spec.graph, RootFlowStep) and any(
683
- isinstance(step_type, mlrun.serving.states.ModelRunnerStep)
684
- for step_type in self.spec.graph.steps.values()
682
+ if (
683
+ isinstance(self.spec.graph, RootFlowStep)
684
+ and any(
685
+ isinstance(step_type, mlrun.serving.states.ModelRunnerStep)
686
+ for step_type in self.spec.graph.steps.values()
687
+ )
688
+ and self.spec.build.functionSourceCode
685
689
  ):
686
690
  # Add import for LLModel
687
691
  decoded_code = b64decode(self.spec.build.functionSourceCode).decode("utf-8")
mlrun/secrets.py CHANGED
@@ -11,9 +11,9 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
-
14
+ import json
15
15
  from ast import literal_eval
16
- from os import environ, getenv
16
+ from os import environ
17
17
  from typing import Callable, Optional, Union
18
18
 
19
19
  from .utils import AzureVaultStore, list2dict
@@ -161,6 +161,9 @@ def get_secret_or_env(
161
161
  4. An MLRun-generated env. variable, mounted from a project secret (to be used in MLRun runtimes)
162
162
  5. The default value
163
163
 
164
+ Also supports discovering the value inside any environment variable that contains a JSON-encoded list
165
+ of dicts with fields: {'name': 'KEY', 'value': 'VAL', 'value_from': ...}. This fallback is applied
166
+ after checking normal environment variables and before returning the default.
164
167
  Example::
165
168
 
166
169
  secrets = {"KEY1": "VALUE1"}
@@ -187,18 +190,56 @@ def get_secret_or_env(
187
190
  if prefix:
188
191
  key = f"{prefix}_{key}"
189
192
 
190
- value = None
191
193
  if secret_provider:
192
194
  if isinstance(secret_provider, (dict, SecretsStore)):
193
- value = secret_provider.get(key)
195
+ secret_value = secret_provider.get(key)
194
196
  else:
195
- value = secret_provider(key)
196
- if value:
197
- return value
197
+ secret_value = secret_provider(key)
198
+ if secret_value:
199
+ return secret_value
200
+
201
+ direct_environment_value = environ.get(key)
202
+ if direct_environment_value:
203
+ return direct_environment_value
204
+
205
+ json_list_value = _find_value_in_json_env_lists(key)
206
+ if json_list_value is not None:
207
+ return json_list_value
208
+
209
+ mlrun_env_key = SecretsStore.k8s_env_variable_name_for_secret(key)
210
+ mlrun_env_value = environ.get(mlrun_env_key)
211
+ if mlrun_env_value:
212
+ return mlrun_env_value
198
213
 
199
- return (
200
- value
201
- or getenv(key)
202
- or getenv(SecretsStore.k8s_env_variable_name_for_secret(key))
203
- or default
204
- )
214
+ return default
215
+
216
+
217
+ def _find_value_in_json_env_lists(
218
+ secret_name: str,
219
+ ) -> Optional[str]:
220
+ """
221
+ Scan all environment variables. If any env var contains a JSON-encoded list
222
+ of dicts shaped like {'name': str, 'value': str|None, 'value_from': ...},
223
+ return the 'value' for the entry whose 'name' matches secret_name.
224
+ """
225
+ for environment_variable_value in environ.values():
226
+ if not environment_variable_value or not isinstance(
227
+ environment_variable_value, str
228
+ ):
229
+ continue
230
+ # Fast precheck to skip obvious non-JSON strings
231
+ first_char = environment_variable_value.lstrip()[:1]
232
+ if first_char not in ("[", "{"):
233
+ continue
234
+ try:
235
+ parsed_value = json.loads(environment_variable_value)
236
+ except ValueError:
237
+ continue
238
+ if isinstance(parsed_value, list):
239
+ for entry in parsed_value:
240
+ if isinstance(entry, dict) and entry.get("name") == secret_name:
241
+ value_in_entry = entry.get("value")
242
+ # Match original semantics: empty string is treated as "not found"
243
+ if value_in_entry:
244
+ return value_in_entry
245
+ return None
mlrun/serving/server.py CHANGED
@@ -23,6 +23,7 @@ import os
23
23
  import socket
24
24
  import traceback
25
25
  import uuid
26
+ from collections import defaultdict
26
27
  from datetime import datetime, timezone
27
28
  from typing import Any, Optional, Union
28
29
 
@@ -50,7 +51,7 @@ from ..datastore.store_resources import ResourceCache
50
51
  from ..errors import MLRunInvalidArgumentError
51
52
  from ..execution import MLClientCtx
52
53
  from ..model import ModelObj
53
- from ..utils import get_caller_globals, get_module_name_from_path
54
+ from ..utils import get_caller_globals, get_relative_module_name_from_path
54
55
  from .states import (
55
56
  FlowStep,
56
57
  MonitoredStep,
@@ -522,10 +523,6 @@ def add_system_steps_to_graph(
522
523
  monitor_flow_step.after = [
523
524
  step_name,
524
525
  ]
525
- context.logger.info_with(
526
- "Server graph after adding system steps",
527
- graph=str(graph.steps),
528
- )
529
526
  return graph
530
527
 
531
528
 
@@ -583,7 +580,17 @@ async def async_execute_graph(
583
580
  batch_size: Optional[int],
584
581
  read_as_lists: bool,
585
582
  nest_under_inputs: bool,
586
- ) -> list[Any]:
583
+ ) -> None:
584
+ # Validate that data parameter is a DataItem and not passed via params
585
+ if not isinstance(data, DataItem):
586
+ raise MLRunInvalidArgumentError(
587
+ f"Parameter 'data' has type hint 'DataItem' but got {type(data).__name__} instead. "
588
+ f"Data files and artifacts must be passed via the 'inputs' parameter, not 'params'. "
589
+ f"The 'params' parameter is for simple configuration values (strings, numbers, booleans), "
590
+ f"while 'inputs' is for data files that need to be loaded. "
591
+ f"Example: run_function(..., inputs={{'data': 'path/to/data.csv'}}, params={{other_config: value}})"
592
+ )
593
+ run_call_count = 0
587
594
  spec = mlrun.utils.get_serving_spec()
588
595
  modname = None
589
596
  code = os.getenv("MLRUN_EXEC_CODE")
@@ -597,7 +604,17 @@ async def async_execute_graph(
597
604
  # gets set in local flow and not just in the remote pod
598
605
  source_file_path = spec.get("filename", None)
599
606
  if source_file_path:
600
- modname = get_module_name_from_path(source_file_path)
607
+ source_file_path_object, working_dir_path_object = (
608
+ mlrun.utils.helpers.get_source_and_working_dir_paths(source_file_path)
609
+ )
610
+ if not source_file_path_object.is_relative_to(working_dir_path_object):
611
+ raise mlrun.errors.MLRunRuntimeError(
612
+ f"Source file path '{source_file_path}' is not under the current working directory "
613
+ f"(which is required when running with local=True)"
614
+ )
615
+ modname = get_relative_module_name_from_path(
616
+ source_file_path_object, working_dir_path_object
617
+ )
601
618
 
602
619
  namespace = {}
603
620
  if modname:
@@ -672,7 +689,6 @@ async def async_execute_graph(
672
689
 
673
690
  if config.log_level.lower() == "debug":
674
691
  server.verbose = True
675
- context.logger.info_with("Initializing states", namespace=namespace)
676
692
  kwargs = {}
677
693
  if hasattr(context, "is_mock"):
678
694
  kwargs["is_mock"] = context.is_mock
@@ -690,6 +706,7 @@ async def async_execute_graph(
690
706
  context.logger.info(server.to_yaml())
691
707
 
692
708
  async def run(body):
709
+ nonlocal run_call_count
693
710
  event = storey.Event(id=index, body=body)
694
711
  if timestamp_column:
695
712
  if batching:
@@ -704,6 +721,7 @@ async def async_execute_graph(
704
721
  f"Event body '{body}' did not contain timestamp column '{timestamp_column}'"
705
722
  )
706
723
  event._original_timestamp = body[timestamp_column]
724
+ run_call_count += 1
707
725
  return await server.run(event, context)
708
726
 
709
727
  if batching and not batch_size:
@@ -761,7 +779,31 @@ async def async_execute_graph(
761
779
  model_endpoint_uids=model_endpoint_uids,
762
780
  )
763
781
 
764
- return responses
782
+ # log the results as artifacts
783
+ num_of_meps_in_the_graph = len(server.graph.model_endpoints_names)
784
+ artifact_path = None
785
+ if (
786
+ "{{run.uid}}" not in context.artifact_path
787
+ ): # TODO: delete when IG-22841 is resolved
788
+ artifact_path = "+/{{run.uid}}" # will be concatenated to the context's path in extend_artifact_path
789
+ if num_of_meps_in_the_graph <= 1:
790
+ context.log_dataset(
791
+ "prediction", df=pd.DataFrame(responses), artifact_path=artifact_path
792
+ )
793
+ else:
794
+ # turn this list of samples into a dict of lists, one per model endpoint
795
+ grouped = defaultdict(list)
796
+ for sample in responses:
797
+ for model_name, features in sample.items():
798
+ grouped[model_name].append(features)
799
+ # create a dataframe per model endpoint and log it
800
+ for model_name, features in grouped.items():
801
+ context.log_dataset(
802
+ f"prediction_{model_name}",
803
+ df=pd.DataFrame(features),
804
+ artifact_path=artifact_path,
805
+ )
806
+ context.log_result("num_rows", run_call_count)
765
807
 
766
808
 
767
809
  def _is_inside_asyncio_loop():
mlrun/serving/states.py CHANGED
@@ -522,7 +522,9 @@ class BaseStep(ModelObj):
522
522
 
523
523
  root = self._extract_root_step()
524
524
 
525
- if not isinstance(root, RootFlowStep):
525
+ if not isinstance(root, RootFlowStep) or (
526
+ isinstance(root, RootFlowStep) and root.engine != "async"
527
+ ):
526
528
  raise GraphError(
527
529
  "ModelRunnerStep can be added to 'Flow' topology graph only"
528
530
  )
@@ -1148,6 +1150,7 @@ class Model(storey.ParallelExecutionRunnable, ModelObj):
1148
1150
  "artifact_uri",
1149
1151
  "shared_runnable_name",
1150
1152
  "shared_proxy_mapping",
1153
+ "execution_mechanism",
1151
1154
  ]
1152
1155
  kind = "model"
1153
1156
 
@@ -1170,6 +1173,7 @@ class Model(storey.ParallelExecutionRunnable, ModelObj):
1170
1173
  self.model_artifact: Optional[ModelArtifact] = None
1171
1174
  self.model_provider: Optional[ModelProvider] = None
1172
1175
  self._artifact_were_loaded = False
1176
+ self._execution_mechanism = None
1173
1177
 
1174
1178
  def __init_subclass__(cls):
1175
1179
  super().__init_subclass__()
@@ -1189,6 +1193,20 @@ class Model(storey.ParallelExecutionRunnable, ModelObj):
1189
1193
  raise_missing_schema_exception=False,
1190
1194
  )
1191
1195
 
1196
+ # Check if the relevant predict method is implemented when trying to initialize the model
1197
+ if self._execution_mechanism == storey.ParallelExecutionMechanisms.asyncio:
1198
+ if self.__class__.predict_async is Model.predict_async:
1199
+ raise mlrun.errors.ModelRunnerError(
1200
+ f"{self.name} is running with {self._execution_mechanism} execution_mechanism but predict_async() "
1201
+ f"is not implemented"
1202
+ )
1203
+ else:
1204
+ if self.__class__.predict is Model.predict:
1205
+ raise mlrun.errors.ModelRunnerError(
1206
+ f"{self.name} is running with {self._execution_mechanism} execution_mechanism but predict() "
1207
+ f"is not implemented"
1208
+ )
1209
+
1192
1210
  def _load_artifacts(self) -> None:
1193
1211
  if not self._artifact_were_loaded:
1194
1212
  artifact = self._get_artifact_object()
@@ -1219,11 +1237,11 @@ class Model(storey.ParallelExecutionRunnable, ModelObj):
1219
1237
 
1220
1238
  def predict(self, body: Any, **kwargs) -> Any:
1221
1239
  """Override to implement prediction logic. If the logic requires asyncio, override predict_async() instead."""
1222
- return body
1240
+ raise NotImplementedError("predict() method not implemented")
1223
1241
 
1224
1242
  async def predict_async(self, body: Any, **kwargs) -> Any:
1225
1243
  """Override to implement prediction logic if the logic requires asyncio."""
1226
- return body
1244
+ raise NotImplementedError("predict_async() method not implemented")
1227
1245
 
1228
1246
  def run(self, body: Any, path: str, origin_name: Optional[str] = None) -> Any:
1229
1247
  return self.predict(body)
@@ -1644,6 +1662,8 @@ class ModelRunnerStep(MonitoredStep):
1644
1662
  Note when ModelRunnerStep is used in a graph, MLRun automatically imports
1645
1663
  the default language model class (LLModel) during function deployment.
1646
1664
 
1665
+ Note ModelRunnerStep can only be added to a graph that has the flow topology and running with async engine.
1666
+
1647
1667
  :param model_selector: ModelSelector instance whose select() method will be used to select models to run on each
1648
1668
  event. Optional. If not passed, all models will be run.
1649
1669
  :param raise_exception: If True, an error will be raised when model selection fails or if one of the models raised
@@ -2091,24 +2111,28 @@ class ModelRunnerStep(MonitoredStep):
2091
2111
  )
2092
2112
  model_objects = []
2093
2113
  for model, model_params in models.values():
2114
+ model_name = model_params.get("name")
2094
2115
  model_params[schemas.MonitoringData.INPUT_PATH] = (
2095
2116
  self.class_args.get(
2096
2117
  mlrun.common.schemas.ModelRunnerStepData.MONITORING_DATA, {}
2097
2118
  )
2098
- .get(model_params.get("name"), {})
2119
+ .get(model_name, {})
2099
2120
  .get(schemas.MonitoringData.INPUT_PATH)
2100
2121
  )
2101
2122
  model_params[schemas.MonitoringData.RESULT_PATH] = (
2102
2123
  self.class_args.get(
2103
2124
  mlrun.common.schemas.ModelRunnerStepData.MONITORING_DATA, {}
2104
2125
  )
2105
- .get(model_params.get("name"), {})
2126
+ .get(model_name, {})
2106
2127
  .get(schemas.MonitoringData.RESULT_PATH)
2107
2128
  )
2108
2129
  model = get_class(model, namespace).from_dict(
2109
2130
  model_params, init_with_params=True
2110
2131
  )
2111
2132
  model._raise_exception = False
2133
+ model._execution_mechanism = execution_mechanism_by_model_name.get(
2134
+ model_name
2135
+ )
2112
2136
  model_objects.append(model)
2113
2137
  self._async_object = ModelRunner(
2114
2138
  model_selector=model_selector,
@@ -3018,6 +3042,7 @@ class RootFlowStep(FlowStep):
3018
3042
  model_params, init_with_params=True
3019
3043
  )
3020
3044
  model._raise_exception = False
3045
+ model._execution_mechanism = self._shared_models_mechanism[model.name]
3021
3046
  self.context.executor.add_runnable(
3022
3047
  model, self._shared_models_mechanism[model.name]
3023
3048
  )
@@ -257,9 +257,10 @@ class MonitoringPreProcessor(storey.MapClass):
257
257
  ].get(
258
258
  mlrun.common.schemas.MonitoringData.MODEL_ENDPOINT_UID
259
259
  ),
260
- mm_schemas.StreamProcessingEvent.LABELS: monitoring_data[
260
+ mm_schemas.StreamProcessingEvent.LABELS: event.body[
261
261
  model
262
- ].get(mlrun.common.schemas.MonitoringData.OUTPUTS),
262
+ ].get("labels")
263
+ or {},
263
264
  mm_schemas.StreamProcessingEvent.FUNCTION_URI: self.server.function_uri
264
265
  if self.server
265
266
  else None,
@@ -301,19 +302,16 @@ class MonitoringPreProcessor(storey.MapClass):
301
302
  mm_schemas.StreamProcessingEvent.ENDPOINT_ID: monitoring_data[
302
303
  model
303
304
  ].get(mlrun.common.schemas.MonitoringData.MODEL_ENDPOINT_UID),
304
- mm_schemas.StreamProcessingEvent.LABELS: monitoring_data[model].get(
305
- mlrun.common.schemas.MonitoringData.OUTPUTS
306
- ),
305
+ mm_schemas.StreamProcessingEvent.LABELS: event.body.get("labels")
306
+ or {},
307
307
  mm_schemas.StreamProcessingEvent.FUNCTION_URI: self.server.function_uri
308
308
  if self.server
309
309
  else None,
310
310
  mm_schemas.StreamProcessingEvent.REQUEST: request,
311
311
  mm_schemas.StreamProcessingEvent.RESPONSE: resp,
312
- mm_schemas.StreamProcessingEvent.ERROR: event.body[
312
+ mm_schemas.StreamProcessingEvent.ERROR: event.body.get(
313
313
  mm_schemas.StreamProcessingEvent.ERROR
314
- ]
315
- if mm_schemas.StreamProcessingEvent.ERROR in event.body
316
- else None,
314
+ ),
317
315
  mm_schemas.StreamProcessingEvent.METRICS: event.body[
318
316
  mm_schemas.StreamProcessingEvent.METRICS
319
317
  ]
mlrun/utils/helpers.py CHANGED
@@ -2464,15 +2464,16 @@ def merge_requirements(
2464
2464
  return [str(req) for req in merged.values()]
2465
2465
 
2466
2466
 
2467
- def get_module_name_from_path(source_file_path: str) -> str:
2467
+ def get_source_and_working_dir_paths(source_file_path) -> (pathlib.Path, pathlib.Path):
2468
2468
  source_file_path_object = pathlib.Path(source_file_path).resolve()
2469
- current_dir_path_object = pathlib.Path(".").resolve()
2470
- if not source_file_path_object.is_relative_to(current_dir_path_object):
2471
- raise mlrun.errors.MLRunRuntimeError(
2472
- f"Source file path '{source_file_path}' is not under the current working directory "
2473
- f"(which is required when running with local=True)"
2474
- )
2469
+ working_dir_path_object = pathlib.Path(".").resolve()
2470
+ return source_file_path_object, working_dir_path_object
2471
+
2472
+
2473
+ def get_relative_module_name_from_path(
2474
+ source_file_path_object, working_dir_path_object
2475
+ ) -> str:
2475
2476
  relative_path_to_source_file = source_file_path_object.relative_to(
2476
- current_dir_path_object
2477
+ working_dir_path_object
2477
2478
  )
2478
2479
  return ".".join(relative_path_to_source_file.with_suffix("").parts)
@@ -1,4 +1,4 @@
1
1
  {
2
- "git_commit": "a141e4386709b8668b5b9e93c9e11af53e80b6e4",
3
- "version": "1.10.0-rc36"
2
+ "git_commit": "cc5c5639d721f37d6a1d0d0b7cf9f853f38e4707",
3
+ "version": "1.10.0-rc38"
4
4
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mlrun
3
- Version: 1.10.0rc36
3
+ Version: 1.10.0rc38
4
4
  Summary: Tracking and config of machine learning runs
5
5
  Home-page: https://github.com/mlrun/mlrun
6
6
  Author: Yaron Haviv
@@ -1,6 +1,6 @@
1
1
  mlrun/__init__.py,sha256=acM2jRv7RCvBROwucuC01Rf_HdvV3xUPtJlQtX_01MY,8076
2
2
  mlrun/__main__.py,sha256=wQNaxW7QsqFBtWffnPkw-497fnpsrQzUnscBQQAP_UM,48364
3
- mlrun/config.py,sha256=edvnwbZ2xlHwuRxy32SqzJyJE517zsWoduGYLO0zgGs,73433
3
+ mlrun/config.py,sha256=7t7F5jsPI1rO78-VzZv3q6QvzTIV6CZPZEQAJTmKwtM,73477
4
4
  mlrun/errors.py,sha256=bAk0t_qmCxQSPNK0TugOAfA5R6f0G6OYvEvXUWSJ_5U,9062
5
5
  mlrun/execution.py,sha256=Ozu8SjO-nQ6l5vHwqrTQjmP6koMpUqNQpp6qn6jvhVE,58802
6
6
  mlrun/features.py,sha256=jMEXo6NB36A6iaxNEJWzdtYwUmglYD90OIKTIEeWhE8,15841
@@ -8,8 +8,8 @@ mlrun/k8s_utils.py,sha256=zIacVyvsXrXVO-DdxAoGQOGEDWOGJEFJzYPhPVnn3z8,24548
8
8
  mlrun/lists.py,sha256=OlaV2QIFUzmenad9kxNJ3k4whlDyxI3zFbGwr6vpC5Y,8561
9
9
  mlrun/model.py,sha256=JxYWYfMvRMloVEsxfghjH8gq5vsVCVk-OJmHGhbPJuU,88954
10
10
  mlrun/render.py,sha256=5DlhD6JtzHgmj5RVlpaYiHGhX84Q7qdi4RCEUj2UMgw,13195
11
- mlrun/run.py,sha256=eXmu2C2Z-iWWRkyraYjOoM22lRfnyavOnskylHwPeV8,48948
12
- mlrun/secrets.py,sha256=dZPdkc_zzfscVQepOHUwmzFqnBavDCBXV9DQoH_eIYM,7800
11
+ mlrun/run.py,sha256=DRlXYf9C4ZJeGeXdbQxgeCKhoV2892u0v0yIfsyDSkA,49730
12
+ mlrun/secrets.py,sha256=VFETVDJFZ0AGDivYjhYscO_YHnzeBnAebxlio7Svkq0,9633
13
13
  mlrun/alerts/__init__.py,sha256=0gtG1BG0DXxFrXegIkjbM1XEN4sP9ODo0ucXrNld1hU,601
14
14
  mlrun/alerts/alert.py,sha256=QQFZGydQbx9RvAaSiaH-ALQZVcDKQX5lgizqj_rXW2k,15948
15
15
  mlrun/artifacts/__init__.py,sha256=ZrEUNto7tGdnBGteCp9zOyO8b78z7O3xgcpzUt9UHE4,1240
@@ -116,10 +116,10 @@ mlrun/datastore/wasbfs/__init__.py,sha256=s5Ul-0kAhYqFjKDR2X0O2vDGDbLQQduElb32Ev
116
116
  mlrun/datastore/wasbfs/fs.py,sha256=ge8NK__5vTcFT-krI155_8RDUywQw4SIRX6BWATXy9Q,6299
117
117
  mlrun/db/__init__.py,sha256=WqJ4x8lqJ7ZoKbhEyFqkYADd9P6E3citckx9e9ZLcIU,1163
118
118
  mlrun/db/auth_utils.py,sha256=hpg8D2r82oN0BWabuWN04BTNZ7jYMAF242YSUpK7LFM,5211
119
- mlrun/db/base.py,sha256=QNqL29xYs2yL4JKHfvljpf-UsIoUeMxun-eL33msJmc,32405
119
+ mlrun/db/base.py,sha256=8K0KlVfsGce1LgoB7pVOQCmQ2ceBnDz13PJlba1xuSw,32461
120
120
  mlrun/db/factory.py,sha256=yP2vVmveUE7LYTCHbS6lQIxP9rW--zdISWuPd_I3d_4,2111
121
- mlrun/db/httpdb.py,sha256=1XEWpfZm2wW3d6eUqsE-13Nk4Zm2lLKg18J53E5vE10,238986
122
- mlrun/db/nopdb.py,sha256=iClAugTqMPPQRkXb3uzf_vFhmnfuIKCLpK5M6QKHT4Y,28771
121
+ mlrun/db/httpdb.py,sha256=QLQDhzALh6NQdpzTSw9H9XfQR9NFvnG1qct9N2dLtsk,239271
122
+ mlrun/db/nopdb.py,sha256=gi6O0ZSxC3PhRBeIjTTL1rIDVHp4GhJLlD1PM1I17Gs,28827
123
123
  mlrun/feature_store/__init__.py,sha256=SlI845bWt6xX34SXunHHqhmFAR9-5v2ak8N-qpcAPGo,1328
124
124
  mlrun/feature_store/api.py,sha256=qKj5Tk6prTab6XWatWhBuPRVp0eJEctoxRMN2wz48vA,32168
125
125
  mlrun/feature_store/common.py,sha256=JlQA7XWkg9fLuw7cXFmWpUneQqM3NBhwv7DU_xlenWI,12819
@@ -236,7 +236,7 @@ mlrun/model_monitoring/stream_processing.py,sha256=bryYO3D0cC10MAQ-liHxUZ79MrL-V
236
236
  mlrun/model_monitoring/writer.py,sha256=l2D_5Ms5Wq5jfyQRVJbGBBRTMLjMmIAxwPeHWmrc9Kg,16382
237
237
  mlrun/model_monitoring/applications/__init__.py,sha256=BwlmRELlFJf2b2YMyv5kUSHNe8--OyqWhDgRlT8a_8g,779
238
238
  mlrun/model_monitoring/applications/_application_steps.py,sha256=t9LDIqQUGE10cyjyhlg0QqN1yVx0apD1HpERYLJfm8U,7409
239
- mlrun/model_monitoring/applications/base.py,sha256=kvfYiFUsStjZwPIqeibUW6auCXRFcovyh-pih_pZ6Rs,49139
239
+ mlrun/model_monitoring/applications/base.py,sha256=f3WWMoXinsqzWtYebQnsMCGhi7M50E8LdeYmQl5QXjg,51339
240
240
  mlrun/model_monitoring/applications/context.py,sha256=3W3AW4oyJgx_nW_5mDsV59Iy5D3frkfYMQSc6DgBc4c,17004
241
241
  mlrun/model_monitoring/applications/histogram_data_drift.py,sha256=2qgfFmrpHf-x0_EaHD-0T28piwSQzw-HH71aV1GwbZs,15389
242
242
  mlrun/model_monitoring/applications/results.py,sha256=LfBQOmkpKGvVGNrcj5QiXsRIG2IRgcv_Xqe4QJBmauk,5699
@@ -252,7 +252,7 @@ mlrun/model_monitoring/db/tsdb/tdengine/__init__.py,sha256=vgBdsKaXUURKqIf3M0y4s
252
252
  mlrun/model_monitoring/db/tsdb/tdengine/schemas.py,sha256=TuWuaCZw8sV1gSwN2BPmW8Gzwe3dsRN__KkJB9lum00,13116
253
253
  mlrun/model_monitoring/db/tsdb/tdengine/stream_graph_steps.py,sha256=Uadj0UvAmln2MxDWod-kAzau1uNlqZh981rPhbUH_5M,2857
254
254
  mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connection.py,sha256=dtkaHaWKWERPXylEWMECeetwrz3rWl0P43AADcTjlls,9330
255
- mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py,sha256=0ltrjvxsPEKeIgK7Lio9T2YXofIPdB_mGMOtdjI6_KY,53947
255
+ mlrun/model_monitoring/db/tsdb/tdengine/tdengine_connector.py,sha256=qq-2Slk9jHc18lUx00w4Oj5_EfnZXlmkvLXPDSbz1zY,54341
256
256
  mlrun/model_monitoring/db/tsdb/tdengine/writer_graph_steps.py,sha256=zMof6hUr0dsyor73pnOWkJP62INAvslHU0nUklbT-3w,2053
257
257
  mlrun/model_monitoring/db/tsdb/v3io/__init__.py,sha256=aL3bfmQsUQ-sbvKGdNihFj8gLCK3mSys0qDcXtYOwgc,616
258
258
  mlrun/model_monitoring/db/tsdb/v3io/stream_graph_steps.py,sha256=sNQFj6qyJx5eSBKRC3gyTc1cfh1l2IkRpPtuZwtzCW0,6844
@@ -303,11 +303,11 @@ mlrun/runtimes/mpijob/abstract.py,sha256=QjAG4OZ6JEQ58w5-qYNd6hUGwvaW8ynLtlr9jNf
303
303
  mlrun/runtimes/mpijob/v1.py,sha256=zSlRkiWHz4B3yht66sVf4mlfDs8YT9EnP9DfBLn5VNs,3372
304
304
  mlrun/runtimes/nuclio/__init__.py,sha256=osOVMN9paIOuUoOTizmkxMb_OXRP-SlPwXHJSSYK_wk,834
305
305
  mlrun/runtimes/nuclio/api_gateway.py,sha256=vH9ClKVP4Mb24rvA67xPuAvAhX-gAv6vVtjVxyplhdc,26969
306
- mlrun/runtimes/nuclio/function.py,sha256=VjJtfteEX2I8gYCwbBdqWwIK6ZOCVOu8lQGlX4i3nwU,55693
306
+ mlrun/runtimes/nuclio/function.py,sha256=yL6PVyddDFEhXxY93g8YiywBERi-oqlpEw8IE3BVGmQ,56006
307
307
  mlrun/runtimes/nuclio/nuclio.py,sha256=sLK8KdGO1LbftlL3HqPZlFOFTAAuxJACZCVl1c0Ha6E,2942
308
- mlrun/runtimes/nuclio/serving.py,sha256=NF0f7a6KV8GIb4QBUKiJa_L_5oqCsG7UHPs8Uo3K_Eo,36330
308
+ mlrun/runtimes/nuclio/serving.py,sha256=eXffwn6xTvEwC-HEk42DRxywOrin7RMUze3JWjeBxzA,36429
309
309
  mlrun/runtimes/nuclio/application/__init__.py,sha256=rRs5vasy_G9IyoTpYIjYDafGoL6ifFBKgBtsXn31Atw,614
310
- mlrun/runtimes/nuclio/application/application.py,sha256=q5vBuHnWTGciokEODlSM3nfopuPwJ9RqKZNZe6C86l4,33464
310
+ mlrun/runtimes/nuclio/application/application.py,sha256=usovOWonpzHQ1B_El7l60y-jpUXyYwppjmrHlP5RMW8,33993
311
311
  mlrun/runtimes/nuclio/application/reverse_proxy.go,sha256=lEHH74vr2PridIHp1Jkc_NjkrWb5b6zawRrNxHQhwGU,2913
312
312
  mlrun/runtimes/sparkjob/__init__.py,sha256=GPP_ekItxiU9Ydn3mJa4Obph02Bg6DO-JYs791_MV58,607
313
313
  mlrun/runtimes/sparkjob/spark3job.py,sha256=3dW7RG2T58F2dsUw0TsRvE3SIFcekx3CerLdcaG1f50,41458
@@ -315,11 +315,11 @@ mlrun/serving/__init__.py,sha256=nriJAcVn5aatwU03T7SsE6ngJEGTxr3wIGt4WuvCCzY,139
315
315
  mlrun/serving/merger.py,sha256=pfOQoozUyObCTpqXAMk94PmhZefn4bBrKufO3MKnkAc,6193
316
316
  mlrun/serving/remote.py,sha256=p29CBtKwbW_l8BzmNg3Uy__0eMf7_OubTMzga_S3EOA,22089
317
317
  mlrun/serving/routers.py,sha256=pu5jlSLI4Ml68YP_FMFDhhwPfLcT6lRu5yL5QDgXPHQ,52889
318
- mlrun/serving/server.py,sha256=voN7s7WT3S-7gt14F1lXd5OMxz6tMNZX8ORP-blq2Hg,40342
318
+ mlrun/serving/server.py,sha256=UIQON9ytG_4VUa4cMWZ8AxxBzGjBrhFhkC-FrvAHa_o,42593
319
319
  mlrun/serving/serving_wrapper.py,sha256=UL9hhWCfMPcTJO_XrkvNaFvck1U1E7oS8trTZyak0cA,835
320
- mlrun/serving/states.py,sha256=Q2Q7o0eJCvnonXd2-sfiv7zhCiyC6xthfW25nzf61KM,138976
320
+ mlrun/serving/states.py,sha256=zSaELw7et0tAHa0nZ2_zKTPdxqnXo4WOCwclULkN6no,140363
321
321
  mlrun/serving/steps.py,sha256=zbMgJnu-m4n7vhFRgZkCMMifIsCya-TzAj3Gjc-Fgnc,2193
322
- mlrun/serving/system_steps.py,sha256=ZvGkUqiiYOrUlsDnsvzf9u9554mzyFwlKVrybqB7xao,20200
322
+ mlrun/serving/system_steps.py,sha256=BDCJn73h7cUT5AoSSm25Fjg4WwzcEpMQp-ZjMw9ogEc,20025
323
323
  mlrun/serving/utils.py,sha256=Zbfqm8TKNcTE8zRBezVBzpvR2WKeKeIRN7otNIaiYEc,4170
324
324
  mlrun/serving/v1_serving.py,sha256=c6J_MtpE-Tqu00-6r4eJOCO6rUasHDal9W2eBIcrl50,11853
325
325
  mlrun/serving/v2_serving.py,sha256=FbN5QAurWL_KoKMUgRLV7b227PpnvntY5tPNE36J42E,25270
@@ -333,7 +333,7 @@ mlrun/utils/async_http.py,sha256=8Olx8TNNeXB07nEGwlqhEgFgnFAD71vBU_bqaA9JW-w,122
333
333
  mlrun/utils/azure_vault.py,sha256=IEFizrDGDbAaoWwDr1WoA88S_EZ0T--vjYtY-i0cvYQ,3450
334
334
  mlrun/utils/clones.py,sha256=qbAGyEbSvlewn3Tw_DpQZP9z6MGzFhSaZfI1CblX8Fg,7515
335
335
  mlrun/utils/condition_evaluator.py,sha256=-nGfRmZzivn01rHTroiGY4rqEv8T1irMyhzxEei-sKc,1897
336
- mlrun/utils/helpers.py,sha256=Cz3VR5aq3N6DinKd16HI9HGZSLqSmN9h4-EmnNyYGqQ,84369
336
+ mlrun/utils/helpers.py,sha256=zwaGatCEJphJEcTwvEOjiyGDWNSEDkzzYcR4IWsu378,84268
337
337
  mlrun/utils/http.py,sha256=5ZU2VpokaUM_DT3HBSqTm8xjUqTPjZN5fKkSIvKlTl0,8704
338
338
  mlrun/utils/logger.py,sha256=uaCgI_ezzaXf7nJDCy-1Nrjds8vSXqDbzmjmb3IyCQo,14864
339
339
  mlrun/utils/regex.py,sha256=FcRwWD8x9X3HLhCCU2F0AVKTFah784Pr7ZAe3a02jw8,5199
@@ -352,11 +352,11 @@ mlrun/utils/notifications/notification/mail.py,sha256=ZyJ3eqd8simxffQmXzqd3bgbAq
352
352
  mlrun/utils/notifications/notification/slack.py,sha256=wSu_7W0EnGLBNwIgWCYEeTP8j9SPAMPDBnfUcPnVZYA,7299
353
353
  mlrun/utils/notifications/notification/webhook.py,sha256=FM5-LQAKAVJKp37MRzR3SsejalcnpM6r_9Oe7znxZEA,5313
354
354
  mlrun/utils/version/__init__.py,sha256=YnzE6tlf24uOQ8y7Z7l96QLAI6-QEii7-77g8ynmzy0,613
355
- mlrun/utils/version/version.json,sha256=876_bBJq-oJumu3IBWxsasuwBXN_LUtdTW7Jr0LznPU,90
355
+ mlrun/utils/version/version.json,sha256=hHIsu87_e3inXvZwxyAJBc1LtA2aFWqipBV_Mhx1n5o,90
356
356
  mlrun/utils/version/version.py,sha256=M2hVhRrgkN3SxacZHs3ZqaOsqAA7B6a22ne324IQ1HE,1877
357
- mlrun-1.10.0rc36.dist-info/licenses/LICENSE,sha256=zTiv1CxWNkOk1q8eJS1G_8oD4gWpWLwWxj_Agcsi8Os,11337
358
- mlrun-1.10.0rc36.dist-info/METADATA,sha256=VKzv921s1CzMkxdNcIj5xmKzuHq-Voq9Bijsncs9ZN8,26104
359
- mlrun-1.10.0rc36.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
360
- mlrun-1.10.0rc36.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
361
- mlrun-1.10.0rc36.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
362
- mlrun-1.10.0rc36.dist-info/RECORD,,
357
+ mlrun-1.10.0rc38.dist-info/licenses/LICENSE,sha256=zTiv1CxWNkOk1q8eJS1G_8oD4gWpWLwWxj_Agcsi8Os,11337
358
+ mlrun-1.10.0rc38.dist-info/METADATA,sha256=OGc4TY9eDtdLJ9NU5R8OsR_go-Wcm1VheehWzXs5yeE,26104
359
+ mlrun-1.10.0rc38.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
360
+ mlrun-1.10.0rc38.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
361
+ mlrun-1.10.0rc38.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
362
+ mlrun-1.10.0rc38.dist-info/RECORD,,