mlrun 1.10.0rc36__py3-none-any.whl → 1.10.0rc37__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

mlrun/config.py CHANGED
@@ -304,6 +304,7 @@ default_config = {
304
304
  "application": {
305
305
  "default_sidecar_internal_port": 8050,
306
306
  "default_authentication_mode": mlrun.common.schemas.APIGatewayAuthenticationMode.none,
307
+ "default_worker_number": 10000,
307
308
  },
308
309
  },
309
310
  # TODO: function defaults should be moved to the function spec config above
mlrun/db/base.py CHANGED
@@ -722,7 +722,9 @@ class RunDBInterface(ABC):
722
722
  tsdb_metrics: bool = False,
723
723
  metric_list: Optional[list[str]] = None,
724
724
  top_level: bool = False,
725
- modes: Optional[list[mm_constants.EndpointMode]] = None,
725
+ modes: Optional[
726
+ Union[mm_constants.EndpointMode, list[mm_constants.EndpointMode]]
727
+ ] = None,
726
728
  uids: Optional[list[str]] = None,
727
729
  latest_only: bool = False,
728
730
  ) -> mlrun.common.schemas.ModelEndpointList:
mlrun/db/httpdb.py CHANGED
@@ -3771,7 +3771,9 @@ class HTTPRunDB(RunDBInterface):
3771
3771
  tsdb_metrics: bool = False,
3772
3772
  metric_list: Optional[list[str]] = None,
3773
3773
  top_level: bool = False,
3774
- modes: Optional[list[mm_constants.EndpointMode]] = None,
3774
+ modes: Optional[
3775
+ Union[mm_constants.EndpointMode, list[mm_constants.EndpointMode]]
3776
+ ] = None,
3775
3777
  uids: Optional[list[str]] = None,
3776
3778
  latest_only: bool = False,
3777
3779
  ) -> mlrun.common.schemas.ModelEndpointList:
@@ -3802,8 +3804,13 @@ class HTTPRunDB(RunDBInterface):
3802
3804
  labels = self._parse_labels(labels)
3803
3805
  if names and isinstance(names, str):
3804
3806
  names = [names]
3805
- if isinstance(modes, mm_constants.EndpointMode):
3806
- modes = [modes]
3807
+ if modes:
3808
+ # Ensure backward compatibility with Python 3.9 clients by converting IntEnum modes to integer values
3809
+ modes = (
3810
+ [modes.value]
3811
+ if isinstance(modes, mm_constants.EndpointMode)
3812
+ else [mode.value for mode in modes]
3813
+ )
3807
3814
  response = self.api_call(
3808
3815
  method=mlrun.common.types.HTTPMethod.GET,
3809
3816
  path=path,
mlrun/db/nopdb.py CHANGED
@@ -626,7 +626,9 @@ class NopDB(RunDBInterface):
626
626
  tsdb_metrics: bool = False,
627
627
  metric_list: Optional[list[str]] = None,
628
628
  top_level: bool = False,
629
- modes: Optional[list[mm_constants.EndpointMode]] = None,
629
+ modes: Optional[
630
+ Union[mm_constants.EndpointMode, list[mm_constants.EndpointMode]]
631
+ ] = None,
630
632
  uids: Optional[list[str]] = None,
631
633
  latest_only: bool = False,
632
634
  ) -> mlrun.common.schemas.ModelEndpointList:
@@ -233,7 +233,7 @@ class ModelMonitoringApplicationBase(MonitoringApplicationToDict, ABC):
233
233
  try:
234
234
  yield endpoints_output, application_schedules.__enter__()
235
235
  finally:
236
- if write_output:
236
+ if write_output and any(endpoints_output.values()):
237
237
  logger.debug(
238
238
  "Pushing model monitoring application job data to the writer stream",
239
239
  passed_stream_profile=str(stream_profile),
@@ -344,7 +344,7 @@ class ModelMonitoringApplicationBase(MonitoringApplicationToDict, ABC):
344
344
  return result
345
345
 
346
346
  if endpoints is not None:
347
- resolved_endpoints = self._validate_endpoints(
347
+ resolved_endpoints = self._normalize_and_validate_endpoints(
348
348
  project=project, endpoints=endpoints
349
349
  )
350
350
  if (
@@ -390,6 +390,16 @@ class ModelMonitoringApplicationBase(MonitoringApplicationToDict, ABC):
390
390
  context.log_result(
391
391
  result_key, self._flatten_data_result(result)
392
392
  )
393
+ # Check if no result was produced for any endpoint (e.g., due to no data in all windows)
394
+ if not any(endpoints_output.values()):
395
+ context.logger.warning(
396
+ "No data was found for any of the specified endpoints. "
397
+ "No results were produced",
398
+ application_name=application_name,
399
+ endpoints=endpoints,
400
+ start=start,
401
+ end=end,
402
+ )
393
403
  else:
394
404
  result = call_do_tracking(
395
405
  mm_context.MonitoringApplicationContext._from_ml_ctx(
@@ -421,69 +431,97 @@ class ModelMonitoringApplicationBase(MonitoringApplicationToDict, ABC):
421
431
  )
422
432
 
423
433
  @classmethod
424
- def _validate_endpoints(
434
+ def _normalize_and_validate_endpoints(
425
435
  cls,
426
436
  project: "mlrun.MlrunProject",
427
437
  endpoints: Union[
428
438
  list[tuple[str, str]], list[list[str]], list[str], Literal["all"]
429
439
  ],
430
- ) -> Union[list[tuple[str, str]], list[list[str]]]:
431
- if not endpoints:
432
- raise mlrun.errors.MLRunValueError(
433
- "The endpoints list cannot be empty. If you want to run on all the endpoints, "
434
- 'use `endpoints="all"`.'
435
- )
436
-
437
- if isinstance(endpoints, list) and isinstance(endpoints[0], (tuple, list)):
438
- return endpoints
439
-
440
- if not (isinstance(endpoints, list) and isinstance(endpoints[0], str)):
441
- if isinstance(endpoints, str):
442
- if endpoints != "all":
443
- raise mlrun.errors.MLRunValueError(
444
- 'A string input for `endpoints` can only be "all" for all the model endpoints in '
445
- "the project. If you want to select a single model endpoint with the given name, "
446
- f'use a list: `endpoints=["{endpoints}"]`.'
440
+ ) -> list[tuple[str, str]]:
441
+ if isinstance(endpoints, list):
442
+ if all(
443
+ isinstance(endpoint, (tuple, list)) and len(endpoint) == 2
444
+ for endpoint in endpoints
445
+ ):
446
+ # A list of [(name, uid), ...] / [[name, uid], ...] tuples/lists
447
+ endpoint_uids_to_names = {
448
+ endpoint[1]: endpoint[0] for endpoint in endpoints
449
+ }
450
+ endpoints_list = project.list_model_endpoints(
451
+ uids=list(endpoint_uids_to_names.keys()), latest_only=True
452
+ ).endpoints
453
+
454
+ # Check for missing endpoint uids or name/uid mismatches
455
+ for endpoint in endpoints_list:
456
+ if (
457
+ endpoint_uids_to_names[cast(str, endpoint.metadata.uid)]
458
+ != endpoint.metadata.name
459
+ ):
460
+ raise mlrun.errors.MLRunNotFoundError(
461
+ "Could not find model endpoint with name "
462
+ f"'{endpoint_uids_to_names[cast(str, endpoint.metadata.uid)]}' "
463
+ f"and uid '{endpoint.metadata.uid}'"
464
+ )
465
+ missing = set(endpoint_uids_to_names.keys()) - {
466
+ cast(str, endpoint.metadata.uid) for endpoint in endpoints_list
467
+ }
468
+ if missing:
469
+ raise mlrun.errors.MLRunNotFoundError(
470
+ "Could not find model endpoints with the following uids: "
471
+ f"{missing}"
447
472
  )
448
- else:
449
- raise mlrun.errors.MLRunValueError(
450
- f"Could not resolve endpoints as list of [(name, uid)], {endpoints=}"
451
- )
452
473
 
453
- if endpoints == "all":
454
- endpoint_names = None
455
- else:
456
- endpoint_names = endpoints
457
-
458
- endpoints_list = project.list_model_endpoints(
459
- names=endpoint_names, latest_only=True
460
- ).endpoints
474
+ elif all(isinstance(endpoint, str) for endpoint in endpoints):
475
+ # A list of [name, ...] strings
476
+ endpoint_names = cast(list[str], endpoints)
477
+ endpoints_list = project.list_model_endpoints(
478
+ names=endpoint_names, latest_only=True
479
+ ).endpoints
461
480
 
462
- cls._check_endpoints_first_request(endpoints_list)
463
-
464
- if endpoints_list:
465
- list_endpoints_result = [
466
- (endpoint.metadata.name, endpoint.metadata.uid)
467
- for endpoint in endpoints_list
468
- ]
469
- if endpoints != "all":
481
+ # Check for missing endpoint names
470
482
  missing = set(endpoints) - {
471
- endpoint[0] for endpoint in list_endpoints_result
483
+ endpoint.metadata.name for endpoint in endpoints_list
472
484
  }
473
485
  if missing:
474
486
  logger.warning(
475
487
  "Could not list all the required endpoints",
476
- missing_endpoint=missing,
477
- endpoints=list_endpoints_result,
488
+ missing_endpoints=missing,
489
+ endpoints_list=endpoints_list,
478
490
  )
479
- return list_endpoints_result
491
+ else:
492
+ raise mlrun.errors.MLRunValueError(
493
+ "Could not resolve the following list as a list of endpoints:\n"
494
+ f"{endpoints}\n"
495
+ "The list must be either a list of (name, uid) tuples/lists or a list of names."
496
+ )
497
+ elif endpoints == "all":
498
+ endpoints_list = project.list_model_endpoints(latest_only=True).endpoints
499
+ elif isinstance(endpoints, str):
500
+ raise mlrun.errors.MLRunValueError(
501
+ 'A string input for `endpoints` can only be "all" for all the model endpoints in '
502
+ "the project. If you want to select a single model endpoint with the given name, "
503
+ f'use a list: `endpoints=["{endpoints}"]`.'
504
+ )
480
505
  else:
481
- if endpoints != "all":
482
- err_msg_suffix = f" named '{endpoints}'"
506
+ raise mlrun.errors.MLRunValueError(
507
+ "Could not resolve the `endpoints` parameter. The parameter must be either:\n"
508
+ "- a list of (name, uid) tuples/lists\n"
509
+ "- a list of names\n"
510
+ '- the string "all" for all the model endpoints in the project.'
511
+ )
512
+
513
+ if not endpoints_list:
483
514
  raise mlrun.errors.MLRunNotFoundError(
484
- f"Did not find any model endpoints {err_msg_suffix}"
515
+ f"Did not find any model endpoints {endpoints=}"
485
516
  )
486
517
 
518
+ cls._check_endpoints_first_request(endpoints_list)
519
+
520
+ return [
521
+ (endpoint.metadata.name, cast(str, endpoint.metadata.uid))
522
+ for endpoint in endpoints_list
523
+ ]
524
+
487
525
  @staticmethod
488
526
  def _validate_and_get_window_length(
489
527
  *, base_period: int, start_dt: datetime, end_dt: datetime
@@ -413,8 +413,7 @@ class ApplicationRuntime(RemoteRuntime):
413
413
  show_on_failure=show_on_failure,
414
414
  )
415
415
 
416
- # This is a class method that accepts a function instance, so we pass self as the function instance
417
- self._ensure_reverse_proxy_configurations(self)
416
+ self._ensure_reverse_proxy_configurations()
418
417
  self._configure_application_sidecar()
419
418
 
420
419
  # We only allow accessing the application via the API Gateway
@@ -799,27 +798,42 @@ class ApplicationRuntime(RemoteRuntime):
799
798
  with_mlrun=with_mlrun,
800
799
  )
801
800
 
802
- @staticmethod
803
- def _ensure_reverse_proxy_configurations(function: RemoteRuntime):
804
- if function.spec.build.functionSourceCode or function.status.container_image:
801
+ def _ensure_reverse_proxy_configurations(self):
802
+ # If an HTTP trigger already exists in the spec,
803
+ # it means the user explicitly defined a custom configuration,
804
+ # so, skip automatic creation.
805
+ skip_http_trigger_creation = False
806
+ for key, value in self.spec.config.items():
807
+ if key.startswith("spec.triggers"):
808
+ if isinstance(value, dict):
809
+ if value.get("kind") == "http":
810
+ skip_http_trigger_creation = True
811
+ break
812
+ if not skip_http_trigger_creation:
813
+ self.with_http(
814
+ workers=mlrun.mlconf.function.application.default_worker_number,
815
+ trigger_name="application-http",
816
+ )
817
+
818
+ if self.spec.build.functionSourceCode or self.status.container_image:
805
819
  return
806
820
 
807
821
  filename, handler = ApplicationRuntime.get_filename_and_handler()
808
822
  name, spec, code = nuclio.build_file(
809
823
  filename,
810
- name=function.metadata.name,
824
+ name=self.metadata.name,
811
825
  handler=handler,
812
826
  )
813
- function.spec.function_handler = mlrun.utils.get_in(spec, "spec.handler")
814
- function.spec.build.functionSourceCode = mlrun.utils.get_in(
827
+ self.spec.function_handler = mlrun.utils.get_in(spec, "spec.handler")
828
+ self.spec.build.functionSourceCode = mlrun.utils.get_in(
815
829
  spec, "spec.build.functionSourceCode"
816
830
  )
817
- function.spec.nuclio_runtime = mlrun.utils.get_in(spec, "spec.runtime")
831
+ self.spec.nuclio_runtime = mlrun.utils.get_in(spec, "spec.runtime")
818
832
 
819
833
  # default the reverse proxy logger level to info
820
834
  logger_sinks_key = "spec.loggerSinks"
821
- if not function.spec.config.get(logger_sinks_key):
822
- function.set_config(
835
+ if not self.spec.config.get(logger_sinks_key):
836
+ self.set_config(
823
837
  logger_sinks_key, [{"level": "info", "sink": "myStdoutLoggerSink"}]
824
838
  )
825
839
 
@@ -1224,11 +1224,6 @@ class RemoteRuntime(KubeResource):
1224
1224
  # try to infer the invocation url from the internal and if not exists, use external.
1225
1225
  # $$$$ we do not want to use the external invocation url (e.g.: ingress, nodePort, etc.)
1226
1226
 
1227
- # check function state before invocation
1228
- state, _, _ = self._get_state()
1229
- if state not in ["ready", "scaledToZero"]:
1230
- logger.warning(f"Function is in the {state} state")
1231
-
1232
1227
  # prefer internal invocation url if running inside k8s cluster
1233
1228
  if (
1234
1229
  not force_external_address
@@ -679,9 +679,13 @@ class ServingRuntime(RemoteRuntime):
679
679
  f"function {function} is used in steps and is not defined, "
680
680
  "use the .add_child_function() to specify child function attributes"
681
681
  )
682
- if isinstance(self.spec.graph, RootFlowStep) and any(
683
- isinstance(step_type, mlrun.serving.states.ModelRunnerStep)
684
- for step_type in self.spec.graph.steps.values()
682
+ if (
683
+ isinstance(self.spec.graph, RootFlowStep)
684
+ and any(
685
+ isinstance(step_type, mlrun.serving.states.ModelRunnerStep)
686
+ for step_type in self.spec.graph.steps.values()
687
+ )
688
+ and self.spec.build.functionSourceCode
685
689
  ):
686
690
  # Add import for LLModel
687
691
  decoded_code = b64decode(self.spec.build.functionSourceCode).decode("utf-8")
mlrun/secrets.py CHANGED
@@ -11,9 +11,9 @@
11
11
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
12
  # See the License for the specific language governing permissions and
13
13
  # limitations under the License.
14
-
14
+ import json
15
15
  from ast import literal_eval
16
- from os import environ, getenv
16
+ from os import environ
17
17
  from typing import Callable, Optional, Union
18
18
 
19
19
  from .utils import AzureVaultStore, list2dict
@@ -161,6 +161,9 @@ def get_secret_or_env(
161
161
  4. An MLRun-generated env. variable, mounted from a project secret (to be used in MLRun runtimes)
162
162
  5. The default value
163
163
 
164
+ Also supports discovering the value inside any environment variable that contains a JSON-encoded list
165
+ of dicts with fields: {'name': 'KEY', 'value': 'VAL', 'value_from': ...}. This fallback is applied
166
+ after checking normal environment variables and before returning the default.
164
167
  Example::
165
168
 
166
169
  secrets = {"KEY1": "VALUE1"}
@@ -187,18 +190,56 @@ def get_secret_or_env(
187
190
  if prefix:
188
191
  key = f"{prefix}_{key}"
189
192
 
190
- value = None
191
193
  if secret_provider:
192
194
  if isinstance(secret_provider, (dict, SecretsStore)):
193
- value = secret_provider.get(key)
195
+ secret_value = secret_provider.get(key)
194
196
  else:
195
- value = secret_provider(key)
196
- if value:
197
- return value
197
+ secret_value = secret_provider(key)
198
+ if secret_value:
199
+ return secret_value
200
+
201
+ direct_environment_value = environ.get(key)
202
+ if direct_environment_value:
203
+ return direct_environment_value
204
+
205
+ json_list_value = _find_value_in_json_env_lists(key)
206
+ if json_list_value is not None:
207
+ return json_list_value
208
+
209
+ mlrun_env_key = SecretsStore.k8s_env_variable_name_for_secret(key)
210
+ mlrun_env_value = environ.get(mlrun_env_key)
211
+ if mlrun_env_value:
212
+ return mlrun_env_value
198
213
 
199
- return (
200
- value
201
- or getenv(key)
202
- or getenv(SecretsStore.k8s_env_variable_name_for_secret(key))
203
- or default
204
- )
214
+ return default
215
+
216
+
217
+ def _find_value_in_json_env_lists(
218
+ secret_name: str,
219
+ ) -> Optional[str]:
220
+ """
221
+ Scan all environment variables. If any env var contains a JSON-encoded list
222
+ of dicts shaped like {'name': str, 'value': str|None, 'value_from': ...},
223
+ return the 'value' for the entry whose 'name' matches secret_name.
224
+ """
225
+ for environment_variable_value in environ.values():
226
+ if not environment_variable_value or not isinstance(
227
+ environment_variable_value, str
228
+ ):
229
+ continue
230
+ # Fast precheck to skip obvious non-JSON strings
231
+ first_char = environment_variable_value.lstrip()[:1]
232
+ if first_char not in ("[", "{"):
233
+ continue
234
+ try:
235
+ parsed_value = json.loads(environment_variable_value)
236
+ except ValueError:
237
+ continue
238
+ if isinstance(parsed_value, list):
239
+ for entry in parsed_value:
240
+ if isinstance(entry, dict) and entry.get("name") == secret_name:
241
+ value_in_entry = entry.get("value")
242
+ # Match original semantics: empty string is treated as "not found"
243
+ if value_in_entry:
244
+ return value_in_entry
245
+ return None
mlrun/serving/server.py CHANGED
@@ -584,6 +584,16 @@ async def async_execute_graph(
584
584
  read_as_lists: bool,
585
585
  nest_under_inputs: bool,
586
586
  ) -> list[Any]:
587
+ # Validate that data parameter is a DataItem and not passed via params
588
+ if not isinstance(data, DataItem):
589
+ raise MLRunInvalidArgumentError(
590
+ f"Parameter 'data' has type hint 'DataItem' but got {type(data).__name__} instead. "
591
+ f"Data files and artifacts must be passed via the 'inputs' parameter, not 'params'. "
592
+ f"The 'params' parameter is for simple configuration values (strings, numbers, booleans), "
593
+ f"while 'inputs' is for data files that need to be loaded. "
594
+ f"Example: run_function(..., inputs={{'data': 'path/to/data.csv'}}, params={{other_config: value}})"
595
+ )
596
+
587
597
  spec = mlrun.utils.get_serving_spec()
588
598
  modname = None
589
599
  code = os.getenv("MLRUN_EXEC_CODE")
@@ -257,9 +257,10 @@ class MonitoringPreProcessor(storey.MapClass):
257
257
  ].get(
258
258
  mlrun.common.schemas.MonitoringData.MODEL_ENDPOINT_UID
259
259
  ),
260
- mm_schemas.StreamProcessingEvent.LABELS: monitoring_data[
260
+ mm_schemas.StreamProcessingEvent.LABELS: event.body[
261
261
  model
262
- ].get(mlrun.common.schemas.MonitoringData.OUTPUTS),
262
+ ].get("labels")
263
+ or {},
263
264
  mm_schemas.StreamProcessingEvent.FUNCTION_URI: self.server.function_uri
264
265
  if self.server
265
266
  else None,
@@ -301,19 +302,16 @@ class MonitoringPreProcessor(storey.MapClass):
301
302
  mm_schemas.StreamProcessingEvent.ENDPOINT_ID: monitoring_data[
302
303
  model
303
304
  ].get(mlrun.common.schemas.MonitoringData.MODEL_ENDPOINT_UID),
304
- mm_schemas.StreamProcessingEvent.LABELS: monitoring_data[model].get(
305
- mlrun.common.schemas.MonitoringData.OUTPUTS
306
- ),
305
+ mm_schemas.StreamProcessingEvent.LABELS: event.body.get("labels")
306
+ or {},
307
307
  mm_schemas.StreamProcessingEvent.FUNCTION_URI: self.server.function_uri
308
308
  if self.server
309
309
  else None,
310
310
  mm_schemas.StreamProcessingEvent.REQUEST: request,
311
311
  mm_schemas.StreamProcessingEvent.RESPONSE: resp,
312
- mm_schemas.StreamProcessingEvent.ERROR: event.body[
312
+ mm_schemas.StreamProcessingEvent.ERROR: event.body.get(
313
313
  mm_schemas.StreamProcessingEvent.ERROR
314
- ]
315
- if mm_schemas.StreamProcessingEvent.ERROR in event.body
316
- else None,
314
+ ),
317
315
  mm_schemas.StreamProcessingEvent.METRICS: event.body[
318
316
  mm_schemas.StreamProcessingEvent.METRICS
319
317
  ]
@@ -1,4 +1,4 @@
1
1
  {
2
- "git_commit": "a141e4386709b8668b5b9e93c9e11af53e80b6e4",
3
- "version": "1.10.0-rc36"
2
+ "git_commit": "5c0bf44084e089850e98e6255745822c5107d001",
3
+ "version": "1.10.0-rc37"
4
4
  }
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mlrun
3
- Version: 1.10.0rc36
3
+ Version: 1.10.0rc37
4
4
  Summary: Tracking and config of machine learning runs
5
5
  Home-page: https://github.com/mlrun/mlrun
6
6
  Author: Yaron Haviv
@@ -1,6 +1,6 @@
1
1
  mlrun/__init__.py,sha256=acM2jRv7RCvBROwucuC01Rf_HdvV3xUPtJlQtX_01MY,8076
2
2
  mlrun/__main__.py,sha256=wQNaxW7QsqFBtWffnPkw-497fnpsrQzUnscBQQAP_UM,48364
3
- mlrun/config.py,sha256=edvnwbZ2xlHwuRxy32SqzJyJE517zsWoduGYLO0zgGs,73433
3
+ mlrun/config.py,sha256=7t7F5jsPI1rO78-VzZv3q6QvzTIV6CZPZEQAJTmKwtM,73477
4
4
  mlrun/errors.py,sha256=bAk0t_qmCxQSPNK0TugOAfA5R6f0G6OYvEvXUWSJ_5U,9062
5
5
  mlrun/execution.py,sha256=Ozu8SjO-nQ6l5vHwqrTQjmP6koMpUqNQpp6qn6jvhVE,58802
6
6
  mlrun/features.py,sha256=jMEXo6NB36A6iaxNEJWzdtYwUmglYD90OIKTIEeWhE8,15841
@@ -9,7 +9,7 @@ mlrun/lists.py,sha256=OlaV2QIFUzmenad9kxNJ3k4whlDyxI3zFbGwr6vpC5Y,8561
9
9
  mlrun/model.py,sha256=JxYWYfMvRMloVEsxfghjH8gq5vsVCVk-OJmHGhbPJuU,88954
10
10
  mlrun/render.py,sha256=5DlhD6JtzHgmj5RVlpaYiHGhX84Q7qdi4RCEUj2UMgw,13195
11
11
  mlrun/run.py,sha256=eXmu2C2Z-iWWRkyraYjOoM22lRfnyavOnskylHwPeV8,48948
12
- mlrun/secrets.py,sha256=dZPdkc_zzfscVQepOHUwmzFqnBavDCBXV9DQoH_eIYM,7800
12
+ mlrun/secrets.py,sha256=VFETVDJFZ0AGDivYjhYscO_YHnzeBnAebxlio7Svkq0,9633
13
13
  mlrun/alerts/__init__.py,sha256=0gtG1BG0DXxFrXegIkjbM1XEN4sP9ODo0ucXrNld1hU,601
14
14
  mlrun/alerts/alert.py,sha256=QQFZGydQbx9RvAaSiaH-ALQZVcDKQX5lgizqj_rXW2k,15948
15
15
  mlrun/artifacts/__init__.py,sha256=ZrEUNto7tGdnBGteCp9zOyO8b78z7O3xgcpzUt9UHE4,1240
@@ -116,10 +116,10 @@ mlrun/datastore/wasbfs/__init__.py,sha256=s5Ul-0kAhYqFjKDR2X0O2vDGDbLQQduElb32Ev
116
116
  mlrun/datastore/wasbfs/fs.py,sha256=ge8NK__5vTcFT-krI155_8RDUywQw4SIRX6BWATXy9Q,6299
117
117
  mlrun/db/__init__.py,sha256=WqJ4x8lqJ7ZoKbhEyFqkYADd9P6E3citckx9e9ZLcIU,1163
118
118
  mlrun/db/auth_utils.py,sha256=hpg8D2r82oN0BWabuWN04BTNZ7jYMAF242YSUpK7LFM,5211
119
- mlrun/db/base.py,sha256=QNqL29xYs2yL4JKHfvljpf-UsIoUeMxun-eL33msJmc,32405
119
+ mlrun/db/base.py,sha256=8K0KlVfsGce1LgoB7pVOQCmQ2ceBnDz13PJlba1xuSw,32461
120
120
  mlrun/db/factory.py,sha256=yP2vVmveUE7LYTCHbS6lQIxP9rW--zdISWuPd_I3d_4,2111
121
- mlrun/db/httpdb.py,sha256=1XEWpfZm2wW3d6eUqsE-13Nk4Zm2lLKg18J53E5vE10,238986
122
- mlrun/db/nopdb.py,sha256=iClAugTqMPPQRkXb3uzf_vFhmnfuIKCLpK5M6QKHT4Y,28771
121
+ mlrun/db/httpdb.py,sha256=QLQDhzALh6NQdpzTSw9H9XfQR9NFvnG1qct9N2dLtsk,239271
122
+ mlrun/db/nopdb.py,sha256=gi6O0ZSxC3PhRBeIjTTL1rIDVHp4GhJLlD1PM1I17Gs,28827
123
123
  mlrun/feature_store/__init__.py,sha256=SlI845bWt6xX34SXunHHqhmFAR9-5v2ak8N-qpcAPGo,1328
124
124
  mlrun/feature_store/api.py,sha256=qKj5Tk6prTab6XWatWhBuPRVp0eJEctoxRMN2wz48vA,32168
125
125
  mlrun/feature_store/common.py,sha256=JlQA7XWkg9fLuw7cXFmWpUneQqM3NBhwv7DU_xlenWI,12819
@@ -236,7 +236,7 @@ mlrun/model_monitoring/stream_processing.py,sha256=bryYO3D0cC10MAQ-liHxUZ79MrL-V
236
236
  mlrun/model_monitoring/writer.py,sha256=l2D_5Ms5Wq5jfyQRVJbGBBRTMLjMmIAxwPeHWmrc9Kg,16382
237
237
  mlrun/model_monitoring/applications/__init__.py,sha256=BwlmRELlFJf2b2YMyv5kUSHNe8--OyqWhDgRlT8a_8g,779
238
238
  mlrun/model_monitoring/applications/_application_steps.py,sha256=t9LDIqQUGE10cyjyhlg0QqN1yVx0apD1HpERYLJfm8U,7409
239
- mlrun/model_monitoring/applications/base.py,sha256=kvfYiFUsStjZwPIqeibUW6auCXRFcovyh-pih_pZ6Rs,49139
239
+ mlrun/model_monitoring/applications/base.py,sha256=f3WWMoXinsqzWtYebQnsMCGhi7M50E8LdeYmQl5QXjg,51339
240
240
  mlrun/model_monitoring/applications/context.py,sha256=3W3AW4oyJgx_nW_5mDsV59Iy5D3frkfYMQSc6DgBc4c,17004
241
241
  mlrun/model_monitoring/applications/histogram_data_drift.py,sha256=2qgfFmrpHf-x0_EaHD-0T28piwSQzw-HH71aV1GwbZs,15389
242
242
  mlrun/model_monitoring/applications/results.py,sha256=LfBQOmkpKGvVGNrcj5QiXsRIG2IRgcv_Xqe4QJBmauk,5699
@@ -303,11 +303,11 @@ mlrun/runtimes/mpijob/abstract.py,sha256=QjAG4OZ6JEQ58w5-qYNd6hUGwvaW8ynLtlr9jNf
303
303
  mlrun/runtimes/mpijob/v1.py,sha256=zSlRkiWHz4B3yht66sVf4mlfDs8YT9EnP9DfBLn5VNs,3372
304
304
  mlrun/runtimes/nuclio/__init__.py,sha256=osOVMN9paIOuUoOTizmkxMb_OXRP-SlPwXHJSSYK_wk,834
305
305
  mlrun/runtimes/nuclio/api_gateway.py,sha256=vH9ClKVP4Mb24rvA67xPuAvAhX-gAv6vVtjVxyplhdc,26969
306
- mlrun/runtimes/nuclio/function.py,sha256=VjJtfteEX2I8gYCwbBdqWwIK6ZOCVOu8lQGlX4i3nwU,55693
306
+ mlrun/runtimes/nuclio/function.py,sha256=6o9SndAkd-k4FyVr4ms_oWL6MuAWMnsrtrEd_fWfnDw,55488
307
307
  mlrun/runtimes/nuclio/nuclio.py,sha256=sLK8KdGO1LbftlL3HqPZlFOFTAAuxJACZCVl1c0Ha6E,2942
308
- mlrun/runtimes/nuclio/serving.py,sha256=NF0f7a6KV8GIb4QBUKiJa_L_5oqCsG7UHPs8Uo3K_Eo,36330
308
+ mlrun/runtimes/nuclio/serving.py,sha256=eXffwn6xTvEwC-HEk42DRxywOrin7RMUze3JWjeBxzA,36429
309
309
  mlrun/runtimes/nuclio/application/__init__.py,sha256=rRs5vasy_G9IyoTpYIjYDafGoL6ifFBKgBtsXn31Atw,614
310
- mlrun/runtimes/nuclio/application/application.py,sha256=q5vBuHnWTGciokEODlSM3nfopuPwJ9RqKZNZe6C86l4,33464
310
+ mlrun/runtimes/nuclio/application/application.py,sha256=usovOWonpzHQ1B_El7l60y-jpUXyYwppjmrHlP5RMW8,33993
311
311
  mlrun/runtimes/nuclio/application/reverse_proxy.go,sha256=lEHH74vr2PridIHp1Jkc_NjkrWb5b6zawRrNxHQhwGU,2913
312
312
  mlrun/runtimes/sparkjob/__init__.py,sha256=GPP_ekItxiU9Ydn3mJa4Obph02Bg6DO-JYs791_MV58,607
313
313
  mlrun/runtimes/sparkjob/spark3job.py,sha256=3dW7RG2T58F2dsUw0TsRvE3SIFcekx3CerLdcaG1f50,41458
@@ -315,11 +315,11 @@ mlrun/serving/__init__.py,sha256=nriJAcVn5aatwU03T7SsE6ngJEGTxr3wIGt4WuvCCzY,139
315
315
  mlrun/serving/merger.py,sha256=pfOQoozUyObCTpqXAMk94PmhZefn4bBrKufO3MKnkAc,6193
316
316
  mlrun/serving/remote.py,sha256=p29CBtKwbW_l8BzmNg3Uy__0eMf7_OubTMzga_S3EOA,22089
317
317
  mlrun/serving/routers.py,sha256=pu5jlSLI4Ml68YP_FMFDhhwPfLcT6lRu5yL5QDgXPHQ,52889
318
- mlrun/serving/server.py,sha256=voN7s7WT3S-7gt14F1lXd5OMxz6tMNZX8ORP-blq2Hg,40342
318
+ mlrun/serving/server.py,sha256=7RiXZ1Nf6I_rwZUyTNqVaNEzQmYUTqKLjXXZEM1OwEc,40993
319
319
  mlrun/serving/serving_wrapper.py,sha256=UL9hhWCfMPcTJO_XrkvNaFvck1U1E7oS8trTZyak0cA,835
320
320
  mlrun/serving/states.py,sha256=Q2Q7o0eJCvnonXd2-sfiv7zhCiyC6xthfW25nzf61KM,138976
321
321
  mlrun/serving/steps.py,sha256=zbMgJnu-m4n7vhFRgZkCMMifIsCya-TzAj3Gjc-Fgnc,2193
322
- mlrun/serving/system_steps.py,sha256=ZvGkUqiiYOrUlsDnsvzf9u9554mzyFwlKVrybqB7xao,20200
322
+ mlrun/serving/system_steps.py,sha256=BDCJn73h7cUT5AoSSm25Fjg4WwzcEpMQp-ZjMw9ogEc,20025
323
323
  mlrun/serving/utils.py,sha256=Zbfqm8TKNcTE8zRBezVBzpvR2WKeKeIRN7otNIaiYEc,4170
324
324
  mlrun/serving/v1_serving.py,sha256=c6J_MtpE-Tqu00-6r4eJOCO6rUasHDal9W2eBIcrl50,11853
325
325
  mlrun/serving/v2_serving.py,sha256=FbN5QAurWL_KoKMUgRLV7b227PpnvntY5tPNE36J42E,25270
@@ -352,11 +352,11 @@ mlrun/utils/notifications/notification/mail.py,sha256=ZyJ3eqd8simxffQmXzqd3bgbAq
352
352
  mlrun/utils/notifications/notification/slack.py,sha256=wSu_7W0EnGLBNwIgWCYEeTP8j9SPAMPDBnfUcPnVZYA,7299
353
353
  mlrun/utils/notifications/notification/webhook.py,sha256=FM5-LQAKAVJKp37MRzR3SsejalcnpM6r_9Oe7znxZEA,5313
354
354
  mlrun/utils/version/__init__.py,sha256=YnzE6tlf24uOQ8y7Z7l96QLAI6-QEii7-77g8ynmzy0,613
355
- mlrun/utils/version/version.json,sha256=876_bBJq-oJumu3IBWxsasuwBXN_LUtdTW7Jr0LznPU,90
355
+ mlrun/utils/version/version.json,sha256=XVTb8THn_xGwKwbjV7Mu2mVTg-z6fmV6gXnUhrvfT6s,90
356
356
  mlrun/utils/version/version.py,sha256=M2hVhRrgkN3SxacZHs3ZqaOsqAA7B6a22ne324IQ1HE,1877
357
- mlrun-1.10.0rc36.dist-info/licenses/LICENSE,sha256=zTiv1CxWNkOk1q8eJS1G_8oD4gWpWLwWxj_Agcsi8Os,11337
358
- mlrun-1.10.0rc36.dist-info/METADATA,sha256=VKzv921s1CzMkxdNcIj5xmKzuHq-Voq9Bijsncs9ZN8,26104
359
- mlrun-1.10.0rc36.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
360
- mlrun-1.10.0rc36.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
361
- mlrun-1.10.0rc36.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
362
- mlrun-1.10.0rc36.dist-info/RECORD,,
357
+ mlrun-1.10.0rc37.dist-info/licenses/LICENSE,sha256=zTiv1CxWNkOk1q8eJS1G_8oD4gWpWLwWxj_Agcsi8Os,11337
358
+ mlrun-1.10.0rc37.dist-info/METADATA,sha256=mZhr0TYnjpEVjpPTy6JYYXqs4dnp0q4X7Hu7TPQ5R8M,26104
359
+ mlrun-1.10.0rc37.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
360
+ mlrun-1.10.0rc37.dist-info/entry_points.txt,sha256=1Owd16eAclD5pfRCoJpYC2ZJSyGNTtUr0nCELMioMmU,46
361
+ mlrun-1.10.0rc37.dist-info/top_level.txt,sha256=NObLzw3maSF9wVrgSeYBv-fgnHkAJ1kEkh12DLdd5KM,6
362
+ mlrun-1.10.0rc37.dist-info/RECORD,,