mlrun 1.10.0rc11__py3-none-any.whl → 1.10.0rc13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of mlrun might be problematic. Click here for more details.

Files changed (59) hide show
  1. mlrun/__init__.py +2 -1
  2. mlrun/__main__.py +7 -1
  3. mlrun/artifacts/base.py +9 -3
  4. mlrun/artifacts/dataset.py +2 -1
  5. mlrun/artifacts/llm_prompt.py +6 -2
  6. mlrun/artifacts/model.py +2 -2
  7. mlrun/common/constants.py +1 -0
  8. mlrun/common/runtimes/constants.py +10 -1
  9. mlrun/common/schemas/__init__.py +1 -1
  10. mlrun/common/schemas/model_monitoring/model_endpoints.py +1 -1
  11. mlrun/common/schemas/serving.py +7 -0
  12. mlrun/config.py +21 -2
  13. mlrun/datastore/__init__.py +3 -1
  14. mlrun/datastore/alibaba_oss.py +1 -1
  15. mlrun/datastore/azure_blob.py +1 -1
  16. mlrun/datastore/base.py +6 -31
  17. mlrun/datastore/datastore.py +109 -33
  18. mlrun/datastore/datastore_profile.py +31 -0
  19. mlrun/datastore/dbfs_store.py +1 -1
  20. mlrun/datastore/google_cloud_storage.py +2 -2
  21. mlrun/datastore/model_provider/__init__.py +13 -0
  22. mlrun/datastore/model_provider/model_provider.py +160 -0
  23. mlrun/datastore/model_provider/openai_provider.py +144 -0
  24. mlrun/datastore/remote_client.py +65 -0
  25. mlrun/datastore/s3.py +1 -1
  26. mlrun/datastore/storeytargets.py +1 -1
  27. mlrun/datastore/utils.py +22 -0
  28. mlrun/datastore/v3io.py +1 -1
  29. mlrun/db/base.py +1 -1
  30. mlrun/db/httpdb.py +9 -4
  31. mlrun/db/nopdb.py +1 -1
  32. mlrun/execution.py +28 -7
  33. mlrun/launcher/base.py +23 -13
  34. mlrun/launcher/local.py +3 -1
  35. mlrun/launcher/remote.py +4 -2
  36. mlrun/model.py +65 -0
  37. mlrun/model_monitoring/db/tsdb/v3io/v3io_connector.py +175 -8
  38. mlrun/package/packagers_manager.py +2 -0
  39. mlrun/projects/operations.py +8 -1
  40. mlrun/projects/pipelines.py +40 -18
  41. mlrun/projects/project.py +28 -5
  42. mlrun/run.py +42 -2
  43. mlrun/runtimes/__init__.py +6 -0
  44. mlrun/runtimes/base.py +24 -6
  45. mlrun/runtimes/daskjob.py +1 -0
  46. mlrun/runtimes/databricks_job/databricks_runtime.py +1 -0
  47. mlrun/runtimes/local.py +1 -6
  48. mlrun/serving/server.py +1 -2
  49. mlrun/serving/states.py +438 -23
  50. mlrun/serving/system_steps.py +27 -29
  51. mlrun/utils/helpers.py +13 -2
  52. mlrun/utils/notifications/notification_pusher.py +15 -0
  53. mlrun/utils/version/version.json +2 -2
  54. {mlrun-1.10.0rc11.dist-info → mlrun-1.10.0rc13.dist-info}/METADATA +2 -2
  55. {mlrun-1.10.0rc11.dist-info → mlrun-1.10.0rc13.dist-info}/RECORD +59 -55
  56. {mlrun-1.10.0rc11.dist-info → mlrun-1.10.0rc13.dist-info}/WHEEL +0 -0
  57. {mlrun-1.10.0rc11.dist-info → mlrun-1.10.0rc13.dist-info}/entry_points.txt +0 -0
  58. {mlrun-1.10.0rc11.dist-info → mlrun-1.10.0rc13.dist-info}/licenses/LICENSE +0 -0
  59. {mlrun-1.10.0rc11.dist-info → mlrun-1.10.0rc13.dist-info}/top_level.txt +0 -0
@@ -456,6 +456,36 @@ class DatastoreProfileTDEngine(DatastoreProfile):
456
456
  )
457
457
 
458
458
 
459
+ class OpenAIProfile(DatastoreProfile):
460
+ type: str = pydantic.v1.Field("openai")
461
+ _private_attributes = "api_key"
462
+ api_key: typing.Optional[str] = None
463
+ organization: typing.Optional[str] = None
464
+ project: typing.Optional[str] = None
465
+ base_url: typing.Optional[str] = None
466
+ timeout: typing.Optional[float] = None
467
+ max_retries: typing.Optional[int] = None
468
+
469
+ def secrets(self) -> dict:
470
+ res = {}
471
+ if self.api_key:
472
+ res["OPENAI_API_KEY"] = self.api_key
473
+ if self.organization:
474
+ res["OPENAI_ORG_ID"] = self.organization
475
+ if self.project:
476
+ res["OPENAI_PROJECT_ID"] = self.project
477
+ if self.base_url:
478
+ res["OPENAI_BASE_URL"] = self.base_url
479
+ if self.timeout:
480
+ res["OPENAI_TIMEOUT"] = self.timeout
481
+ if self.max_retries:
482
+ res["OPENAI_MAX_RETRIES"] = self.max_retries
483
+ return res
484
+
485
+ def url(self, subpath):
486
+ return f"{self.type}://{subpath.lstrip('/')}"
487
+
488
+
459
489
  _DATASTORE_TYPE_TO_PROFILE_CLASS: dict[str, type[DatastoreProfile]] = {
460
490
  "v3io": DatastoreProfileV3io,
461
491
  "s3": DatastoreProfileS3,
@@ -469,6 +499,7 @@ _DATASTORE_TYPE_TO_PROFILE_CLASS: dict[str, type[DatastoreProfile]] = {
469
499
  "hdfs": DatastoreProfileHdfs,
470
500
  "taosws": DatastoreProfileTDEngine,
471
501
  "config": ConfigProfile,
502
+ "openai": OpenAIProfile,
472
503
  }
473
504
 
474
505
 
@@ -104,7 +104,7 @@ class DBFSStore(DataStore):
104
104
  token=self._get_secret_or_env("DATABRICKS_TOKEN"),
105
105
  instance=self._get_secret_or_env("DATABRICKS_HOST"),
106
106
  )
107
- return self._sanitize_storage_options(res)
107
+ return self._sanitize_options(res)
108
108
 
109
109
  def _verify_filesystem_and_key(self, key: str):
110
110
  if not self.filesystem:
@@ -105,12 +105,12 @@ class GoogleCloudStorageStore(DataStore):
105
105
  except json.JSONDecodeError:
106
106
  # If it's not json, handle it as a filename
107
107
  token = credentials
108
- return self._sanitize_storage_options(dict(token=token))
108
+ return self._sanitize_options(dict(token=token))
109
109
  else:
110
110
  logger.info(
111
111
  "No GCS credentials available - auth will rely on auto-discovery of credentials"
112
112
  )
113
- return self._sanitize_storage_options(None)
113
+ return self._sanitize_options(None)
114
114
 
115
115
  def get_storage_options(self):
116
116
  return self.storage_options
@@ -0,0 +1,13 @@
1
+ # Copyright 2023 Iguazio
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
@@ -0,0 +1,160 @@
1
+ # Copyright 2025 Iguazio
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from collections.abc import Awaitable
15
+ from typing import Callable, Optional, TypeVar, Union
16
+
17
+ import mlrun.errors
18
+ from mlrun.datastore.remote_client import (
19
+ BaseRemoteClient,
20
+ )
21
+
22
+ T = TypeVar("T")
23
+
24
+
25
+ class ModelProvider(BaseRemoteClient):
26
+ """
27
+ The ModelProvider class is an abstract base for integrating with external
28
+ model providers, primarily generative AI (GenAI) services.
29
+
30
+ Designed to be subclassed, it defines a consistent interface and shared
31
+ functionality for tasks such as text generation, embeddings, and invoking
32
+ fine-tuned models. Subclasses should implement provider-specific logic,
33
+ including SDK client initialization, model invocation, and custom operations.
34
+
35
+ Key Features:
36
+ - Establishes a consistent, reusable client management for model provider integrations.
37
+ - Simplifies GenAI service integration by abstracting common operations.
38
+ - Reduces duplication through shared components for common tasks.
39
+ - Holds default invocation parameters (e.g., temperature, max_tokens) to avoid boilerplate
40
+ code and promote consistency.
41
+ """
42
+
43
+ support_async = False
44
+
45
+ def __init__(
46
+ self,
47
+ parent,
48
+ kind,
49
+ name,
50
+ endpoint="",
51
+ secrets: Optional[dict] = None,
52
+ default_invoke_kwargs: Optional[dict] = None,
53
+ ):
54
+ super().__init__(
55
+ parent=parent, name=name, kind=kind, endpoint=endpoint, secrets=secrets
56
+ )
57
+ self.default_invoke_kwargs = default_invoke_kwargs or {}
58
+ self._client = None
59
+ self._default_operation = None
60
+ self._async_client = None
61
+ self._default_async_operation = None
62
+
63
+ def load_client(self) -> None:
64
+ """
65
+ Initializes the SDK client for the model provider with the given keyword arguments
66
+ and assigns it to an instance attribute (e.g., self._client).
67
+
68
+ Subclasses should override this method to:
69
+ - Create and configure the provider-specific client instance.
70
+ - Assign the client instance to self._client.
71
+ - Define a default operation callable (e.g., a method to invoke model completions)
72
+ and assign it to self._default_operation.
73
+ """
74
+
75
+ raise NotImplementedError("load_client method is not implemented")
76
+
77
+ def invoke(
78
+ self,
79
+ messages: Optional[list[dict]] = None,
80
+ as_str: bool = False,
81
+ **invoke_kwargs,
82
+ ) -> Optional[Union[str, T]]:
83
+ """
84
+ Invokes a generative AI model with the provided messages and additional parameters.
85
+ This method is designed to be a flexible interface for interacting with various
86
+ generative AI backends (e.g., OpenAI, Hugging Face, etc.). It allows users to send
87
+ a list of messages (following a standardized format) and receive a response. The
88
+ response can be returned as plain text or in its full structured format, depending
89
+ on the `as_str` parameter.
90
+
91
+ :param messages: A list of dictionaries representing the conversation history or input messages.
92
+ Each dictionary should follow the format::
93
+ {"role": "system"| "user" | "assistant" ..., "content": "Message content as a string"}
94
+ Example:
95
+
96
+ .. code-block:: json
97
+
98
+ [
99
+ {"role": "system", "content": "You are a helpful assistant."},
100
+ {"role": "user", "content": "What is the capital of France?"}
101
+ ]
102
+
103
+ This format is consistent across all backends. Defaults to None if no messages
104
+ are provided.
105
+
106
+ :param as_str: A boolean flag indicating whether to return the response as a plain string.
107
+ - If True, the function extracts and returns the main content of the first
108
+ response.
109
+ - If False, the function returns the full response object,
110
+ which may include additional metadata or multiple response options.
111
+ Defaults to False.
112
+
113
+ :param invoke_kwargs:
114
+ Additional keyword arguments to be passed to the underlying model API call.
115
+ These can include parameters such as temperature, max tokens, etc.,
116
+ depending on the capabilities of the specific backend being used.
117
+
118
+ :return:
119
+ - If `as_str` is True: Returns the main content of the first response as a string.
120
+ - If `as_str` is False: Returns the full response object.
121
+
122
+ """
123
+ raise NotImplementedError("invoke method is not implemented")
124
+
125
+ def customized_invoke(
126
+ self, operation: Optional[Callable[..., T]] = None, **invoke_kwargs
127
+ ) -> Optional[T]:
128
+ raise NotImplementedError("customized_invoke method is not implemented")
129
+
130
+ @property
131
+ def client(self):
132
+ return self._client
133
+
134
+ @property
135
+ def model(self):
136
+ return None
137
+
138
+ def get_invoke_kwargs(self, invoke_kwargs):
139
+ kwargs = self.default_invoke_kwargs.copy()
140
+ kwargs.update(invoke_kwargs)
141
+ return kwargs
142
+
143
+ @property
144
+ def async_client(self):
145
+ if not self.support_async:
146
+ raise mlrun.errors.MLRunInvalidArgumentError(
147
+ f"{self.__class__.__name__} does not support async operations"
148
+ )
149
+ return self._async_client
150
+
151
+ async def async_customized_invoke(self, **kwargs):
152
+ raise NotImplementedError("async_customized_invoke is not implemented")
153
+
154
+ async def async_invoke(
155
+ self,
156
+ messages: Optional[list[dict]] = None,
157
+ as_str: bool = False,
158
+ **invoke_kwargs,
159
+ ) -> Awaitable[str]:
160
+ raise NotImplementedError("async_invoke is not implemented")
@@ -0,0 +1,144 @@
1
+ # Copyright 2025 Iguazio
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Callable, Optional, TypeVar, Union
16
+
17
+ import mlrun
18
+ from mlrun.datastore.model_provider.model_provider import ModelProvider
19
+
20
+ T = TypeVar("T")
21
+
22
+
23
+ class OpenAIProvider(ModelProvider):
24
+ """
25
+ OpenAIProvider is a wrapper around the OpenAI SDK that provides an interface
26
+ for interacting with OpenAI's generative AI services.
27
+
28
+ It supports both synchronous and asynchronous operations, allowing flexible
29
+ integration into various workflows.
30
+
31
+ This class extends the ModelProvider base class and implements OpenAI-specific
32
+ functionality, including client initialization, model invocation, and custom
33
+ operations tailored to the OpenAI API.
34
+ """
35
+
36
+ def __init__(
37
+ self,
38
+ parent,
39
+ schema,
40
+ name,
41
+ endpoint="",
42
+ secrets: Optional[dict] = None,
43
+ default_invoke_kwargs: Optional[dict] = None,
44
+ ):
45
+ endpoint = endpoint or mlrun.mlconf.model_providers.openai_default_model
46
+ if schema != "openai":
47
+ raise mlrun.errors.MLRunInvalidArgumentError(
48
+ "OpenAIProvider supports only 'openai' as the provider kind."
49
+ )
50
+ super().__init__(
51
+ parent=parent,
52
+ kind=schema,
53
+ name=name,
54
+ endpoint=endpoint,
55
+ secrets=secrets,
56
+ default_invoke_kwargs=default_invoke_kwargs,
57
+ )
58
+ self.options = self.get_client_options()
59
+ self.load_client()
60
+
61
+ @classmethod
62
+ def parse_endpoint_and_path(cls, endpoint, subpath) -> (str, str):
63
+ if endpoint and subpath:
64
+ endpoint = endpoint + subpath
65
+ # in openai there is no usage of subpath variable. if the model contains "/", it is part of the model name.
66
+ subpath = ""
67
+ return endpoint, subpath
68
+
69
+ @property
70
+ def model(self):
71
+ return self.endpoint
72
+
73
+ def load_client(self) -> None:
74
+ """
75
+ Initializes the OpenAI SDK client using the provided options.
76
+
77
+ This method imports the `OpenAI` class from the `openai` package, instantiates
78
+ a client with the given keyword arguments (`self.options`), and assigns it to
79
+ `self._client`.
80
+
81
+ It also sets the default operation to `self.client.chat.completions.create`, which is
82
+ typically used for invoking chat-based model completions.
83
+
84
+ Raises:
85
+ ImportError: If the `openai` package is not installed.
86
+ """
87
+ try:
88
+ from openai import OpenAI # noqa
89
+
90
+ self._client = OpenAI(**self.options)
91
+ self._default_operation = self.client.chat.completions.create
92
+ except ImportError as exc:
93
+ raise ImportError("openai package is not installed") from exc
94
+
95
+ def get_client_options(self):
96
+ res = dict(
97
+ api_key=self._get_secret_or_env("OPENAI_API_KEY"),
98
+ organization=self._get_secret_or_env("OPENAI_ORG_ID"),
99
+ project=self._get_secret_or_env("OPENAI_PROJECT_ID"),
100
+ base_url=self._get_secret_or_env("OPENAI_BASE_URL"),
101
+ timeout=self._get_secret_or_env("OPENAI_TIMEOUT"),
102
+ max_retries=self._get_secret_or_env("OPENAI_MAX_RETRIES"),
103
+ )
104
+ return self._sanitize_options(res)
105
+
106
+ def customized_invoke(
107
+ self, operation: Optional[Callable[..., T]] = None, **invoke_kwargs
108
+ ) -> Optional[T]:
109
+ invoke_kwargs = self.get_invoke_kwargs(invoke_kwargs)
110
+ if operation:
111
+ return operation(**invoke_kwargs, model=self.model)
112
+ else:
113
+ return self._default_operation(**invoke_kwargs, model=self.model)
114
+
115
+ def invoke(
116
+ self,
117
+ messages: Optional[list[dict]] = None,
118
+ as_str: bool = False,
119
+ **invoke_kwargs,
120
+ ) -> Optional[Union[str, T]]:
121
+ """
122
+ OpenAI-specific implementation of `ModelProvider.invoke`.
123
+ Invokes an OpenAI model operation using the sync client.
124
+ For full details, see `ModelProvider.invoke`.
125
+
126
+ :param messages: Same as ModelProvider.invoke.
127
+
128
+ :param as_str: bool
129
+ If `True`, returns only the main content of the first response
130
+ (`response.choices[0].message.content`).
131
+ If `False`, returns the full response object, whose type depends on
132
+ the specific OpenAI SDK operation used (e.g., chat completion, completion, etc.).
133
+
134
+ :param invoke_kwargs:
135
+ Same as ModelProvider.invoke.
136
+
137
+ """
138
+ invoke_kwargs = self.get_invoke_kwargs(invoke_kwargs)
139
+ response = self._default_operation(
140
+ model=self.endpoint, messages=messages, **invoke_kwargs
141
+ )
142
+ if as_str:
143
+ return response.choices[0].message.content
144
+ return response
@@ -0,0 +1,65 @@
1
+ # Copyright 2025 Iguazio
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Optional
16
+
17
+ import mlrun
18
+
19
+
20
+ class BaseRemoteClient:
21
+ """
22
+ The BaseRemoteClient class serves as a foundational component for managing
23
+ secrets and configurations.
24
+ It is designed to be extended by subclasses that interact with external services,
25
+ such as file systems (e.g., Datastore) or model providers (e.g., ModelProvider).
26
+
27
+ This class is intended to provide shared functionality and should not be
28
+ used directly. Instead, create a subclass to implement logic specific to
29
+ your use case, such as interactions with S3 storage or invoking model providers like OpenAI.
30
+ """
31
+
32
+ def __init__(self, parent, kind, name, endpoint="", secrets: Optional[dict] = None):
33
+ self._parent = parent
34
+ self.kind = kind
35
+ self.name = name
36
+ self.endpoint = endpoint
37
+ self._secrets = secrets or {}
38
+ self.secret_pfx = ""
39
+
40
+ def _get_secret_or_env(self, key, default=None):
41
+ # Project-secrets are mounted as env variables whose name can be retrieved from SecretsStore
42
+ return mlrun.get_secret_or_env(
43
+ key, secret_provider=self._get_secret, default=default
44
+ )
45
+
46
+ def _get_parent_secret(self, key):
47
+ return self._parent.secret(self.secret_pfx + key)
48
+
49
+ def _get_secret(self, key: str, default=None):
50
+ return self._secrets.get(key, default) or self._get_parent_secret(key)
51
+
52
+ @property
53
+ def url(self):
54
+ return f"{self.kind}://{self.endpoint}"
55
+
56
+ @staticmethod
57
+ def _sanitize_options(options):
58
+ if not options:
59
+ return {}
60
+ options = {k: v for k, v in options.items() if v is not None and v != ""}
61
+ return options
62
+
63
+ @classmethod
64
+ def parse_endpoint_and_path(cls, endpoint, subpath) -> (str, str):
65
+ return endpoint, subpath
mlrun/datastore/s3.py CHANGED
@@ -186,7 +186,7 @@ class S3Store(DataStore):
186
186
  if profile:
187
187
  storage_options["profile"] = profile
188
188
 
189
- return self._sanitize_storage_options(storage_options)
189
+ return self._sanitize_options(storage_options)
190
190
 
191
191
  @property
192
192
  def spark_url(self):
@@ -46,7 +46,7 @@ def get_url_and_storage_options(path, external_storage_options=None):
46
46
  storage_options = merge(external_storage_options, storage_options)
47
47
  else:
48
48
  storage_options = storage_options or external_storage_options
49
- return url, DataStore._sanitize_storage_options(storage_options)
49
+ return url, DataStore._sanitize_options(storage_options)
50
50
 
51
51
 
52
52
  class TDEngineStoreyTarget(storey.TDEngineTarget):
mlrun/datastore/utils.py CHANGED
@@ -311,3 +311,25 @@ class KafkaParameters:
311
311
  valid_keys.update(ref_dict.keys())
312
312
  # Return a new dictionary with only valid keys
313
313
  return {k: v for k, v in input_dict.items() if k in valid_keys}
314
+
315
+
316
+ def parse_url(url):
317
+ if url and url.startswith("v3io://") and not url.startswith("v3io:///"):
318
+ url = url.replace("v3io://", "v3io:///", 1)
319
+ parsed_url = urlparse(url)
320
+ schema = parsed_url.scheme.lower()
321
+ endpoint = parsed_url.hostname
322
+ if endpoint:
323
+ # HACK - urlparse returns the hostname after in lower case - we want the original case:
324
+ # the hostname is a substring of the netloc, in which it's the original case, so we find the indexes of the
325
+ # hostname in the netloc and take it from there
326
+ lower_hostname = parsed_url.hostname
327
+ netloc = str(parsed_url.netloc)
328
+ lower_netloc = netloc.lower()
329
+ hostname_index_in_netloc = lower_netloc.index(str(lower_hostname))
330
+ endpoint = netloc[
331
+ hostname_index_in_netloc : hostname_index_in_netloc + len(lower_hostname)
332
+ ]
333
+ if parsed_url.port:
334
+ endpoint += f":{parsed_url.port}"
335
+ return schema, endpoint, parsed_url
mlrun/datastore/v3io.py CHANGED
@@ -97,7 +97,7 @@ class V3ioStore(DataStore):
97
97
  v3io_access_key=self._get_secret_or_env("V3IO_ACCESS_KEY"),
98
98
  v3io_api=mlrun.mlconf.v3io_api,
99
99
  )
100
- return self._sanitize_storage_options(res)
100
+ return self._sanitize_options(res)
101
101
 
102
102
  def _upload(
103
103
  self,
mlrun/db/base.py CHANGED
@@ -44,7 +44,7 @@ class RunDBInterface(ABC):
44
44
  pass
45
45
 
46
46
  @abstractmethod
47
- def get_log(self, uid, project="", offset=0, size=0):
47
+ def get_log(self, uid, project="", offset=0, size=0, attempt=None):
48
48
  pass
49
49
 
50
50
  @abstractmethod
mlrun/db/httpdb.py CHANGED
@@ -608,7 +608,7 @@ class HTTPRunDB(RunDBInterface):
608
608
  error = f"store log {project}/{uid}"
609
609
  self.api_call("POST", path, error, params, body)
610
610
 
611
- def get_log(self, uid, project="", offset=0, size=None):
611
+ def get_log(self, uid, project="", offset=0, size=None, attempt=None):
612
612
  """Retrieve 1 MB data of log.
613
613
 
614
614
  :param uid: Log unique ID
@@ -616,6 +616,8 @@ class HTTPRunDB(RunDBInterface):
616
616
  :param offset: Retrieve partial log, get up to ``size`` bytes starting at offset ``offset``
617
617
  from beginning of log (must be >= 0)
618
618
  :param size: If set to ``-1`` will retrieve and print all data to end of the log by chunks of 1MB each.
619
+ :param attempt: For retriable runs, the attempt number to retrieve the log for.
620
+ 1 is the initial attempt.
619
621
  :returns: The following objects:
620
622
 
621
623
  - state - The state of the runtime object which generates this log, if it exists. In case no known state
@@ -636,6 +638,8 @@ class HTTPRunDB(RunDBInterface):
636
638
  return state, offset
637
639
 
638
640
  params = {"offset": offset, "size": size}
641
+ if attempt:
642
+ params["attempt"] = attempt
639
643
  path = self._path_of("logs", project, uid)
640
644
  error = f"get log {project}/{uid}"
641
645
  resp = self.api_call("GET", path, error, params=params)
@@ -658,7 +662,7 @@ class HTTPRunDB(RunDBInterface):
658
662
  resp = self.api_call("GET", path, error)
659
663
  return resp.json()["size"]
660
664
 
661
- def watch_log(self, uid, project="", watch=True, offset=0):
665
+ def watch_log(self, uid, project="", watch=True, offset=0, attempt=None):
662
666
  """Retrieve logs of a running process by chunks of 1MB, and watch the progress of the execution until it
663
667
  completes. This method will print out the logs and continue to periodically poll for, and print,
664
668
  new logs as long as the state of the runtime which generates this log is either ``pending`` or ``running``.
@@ -668,10 +672,11 @@ class HTTPRunDB(RunDBInterface):
668
672
  :param watch: If set to ``True`` will continue tracking the log as described above. Otherwise this function
669
673
  is practically equivalent to the :py:func:`~get_log` function.
670
674
  :param offset: Minimal offset in the log to watch.
675
+ :param attempt: For retriable runs, the attempt number to retrieve the log for. 1 is the initial attempt.
671
676
  :returns: The final state of the log being watched and the final offset.
672
677
  """
673
678
 
674
- state, text = self.get_log(uid, project, offset=offset)
679
+ state, text = self.get_log(uid, project, offset=offset, attempt=attempt)
675
680
  if text:
676
681
  print(text.decode(errors=mlrun.mlconf.httpdb.logs.decode.errors))
677
682
  nil_resp = 0
@@ -687,7 +692,7 @@ class HTTPRunDB(RunDBInterface):
687
692
  mlrun.mlconf.httpdb.logs.pull_logs_backoff_no_logs_default_interval
688
693
  )
689
694
  )
690
- state, text = self.get_log(uid, project, offset=offset)
695
+ state, text = self.get_log(uid, project, offset=offset, attempt=attempt)
691
696
  if text:
692
697
  nil_resp = 0
693
698
  print(
mlrun/db/nopdb.py CHANGED
@@ -63,7 +63,7 @@ class NopDB(RunDBInterface):
63
63
  def store_log(self, uid, project="", body=None, append=False):
64
64
  pass
65
65
 
66
- def get_log(self, uid, project="", offset=0, size=0):
66
+ def get_log(self, uid, project="", offset=0, size=0, attempt=None):
67
67
  pass
68
68
 
69
69
  def store_run(self, struct, uid, project="", iter=0):