mlquantify 0.1.6__py3-none-any.whl → 0.1.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
mlquantify/__init__.py CHANGED
@@ -3,7 +3,7 @@
3
3
  import pandas
4
4
 
5
5
  from . import base
6
- from . import model_selection
6
+ #from . import model_selection
7
7
  from . import plots
8
8
  from . import classification
9
9
  from . import evaluation
@@ -1,8 +1,6 @@
1
1
  from abc import ABC, abstractmethod
2
2
  from logging import warning
3
3
  import numpy as np
4
- from typing import Generator, Tuple
5
- from tqdm import tqdm
6
4
 
7
5
  from ..utils.general import *
8
6
 
@@ -62,7 +60,7 @@ class Protocol(ABC):
62
60
  raise ValueError(f"Invalid argument {name}={value}: must be int/float or list of int/float.")
63
61
 
64
62
 
65
- def split(self, X: np.ndarray, y: np.ndarray) -> Generator[np.ndarray, np.ndarray]:
63
+ def split(self, X: np.ndarray, y: np.ndarray):
66
64
  """
67
65
  Split the data into samples for evaluation.
68
66
 
@@ -139,7 +137,7 @@ class APP(Protocol):
139
137
  n_prevalences=n_prevalences,
140
138
  repeats=repeats)
141
139
 
142
- def _iter_indices(self, X: np.ndarray, y: np.ndarray) -> Generator[np.ndarray]:
140
+ def _iter_indices(self, X: np.ndarray, y: np.ndarray):
143
141
 
144
142
  n_dim = len(np.unique(y))
145
143
 
@@ -182,7 +180,7 @@ class NPP(Protocol):
182
180
  ... pass
183
181
  """
184
182
 
185
- def _iter_indices(self, X: np.ndarray, y: np.ndarray) -> Generator[np.ndarray]:
183
+ def _iter_indices(self, X: np.ndarray, y: np.ndarray):
186
184
 
187
185
  for batch_size in self.batch_size:
188
186
  yield np.random.choice(X.shape[0], batch_size, replace=True)
@@ -226,7 +224,7 @@ class UPP(Protocol):
226
224
  n_prevalences=n_prevalences,
227
225
  repeats=repeats)
228
226
 
229
- def _iter_indices(self, X: np.ndarray, y: np.ndarray) -> Generator[np.ndarray]:
227
+ def _iter_indices(self, X: np.ndarray, y: np.ndarray):
230
228
 
231
229
  n_dim = len(np.unique(y))
232
230
 
@@ -279,7 +277,7 @@ class PPP(Protocol):
279
277
  prevalences=prevalences,
280
278
  repeats=repeats)
281
279
 
282
- def _iter_indices(self, X: np.ndarray, y: np.ndarray) -> Generator[np.ndarray]:
280
+ def _iter_indices(self, X: np.ndarray, y: np.ndarray):
283
281
 
284
282
  for batch_size in self.batch_size:
285
283
  for prev in self.prevalences:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: mlquantify
3
- Version: 0.1.6
3
+ Version: 0.1.8
4
4
  Summary: Quantification Library
5
5
  Home-page: https://github.com/luizfernandolj/QuantifyML/tree/master
6
6
  Maintainer: Luiz Fernando Luth Junior
@@ -1,4 +1,4 @@
1
- mlquantify/__init__.py,sha256=Q9jCEkG0EJoHXukrxh194mhO_Yfu-BZPRfjpQ4T1XlQ,978
1
+ mlquantify/__init__.py,sha256=EzRAX5TpVjDLP_Z9RG98xMhMGVckcYDHxwaZLrSKZjA,979
2
2
  mlquantify/base.py,sha256=hJ9FYYNGeO5-WJlpJpsUiu_LQL1fimvZPPNsKptxN7w,19196
3
3
  mlquantify/model_selection.py,sha256=rPR4fwwxuihzx5Axq4NhMOeuMBzpoC9pKp5taYNt_LY,12678
4
4
  mlquantify/plots.py,sha256=9XOhx4QXkN9RkkiErLuL90FWIBUV2YTEJNT4Jwfy0ac,12380
@@ -6,7 +6,7 @@ mlquantify/classification/__init__.py,sha256=3FGf-F4SOM3gByUPsWdnBzjyC_31B3Mtzuo
6
6
  mlquantify/classification/methods.py,sha256=yDSbpoqM3hfF0a9ATzKqfG9S-44x-0Rq0lkAVJKTIEs,5006
7
7
  mlquantify/evaluation/__init__.py,sha256=x1grng0n_QeZpVBU8-pwagYdBMkbMRILtrp1qk_bLvk,447
8
8
  mlquantify/evaluation/measures.py,sha256=fIKyxxlD8em3oaj4u_BeXmNyUQG_A0vXWY8APPgNoJ0,6579
9
- mlquantify/evaluation/protocol.py,sha256=uVWHlnC_A_EX0Eki800Lkau9ZsyNundXoYtp7797ipI,10195
9
+ mlquantify/evaluation/protocol.py,sha256=WILyr6i4GZLk9DZqzhcyQ1jSCO0GhoEn_lqTwWCUf64,10000
10
10
  mlquantify/methods/__init__.py,sha256=ya3Mn7bcz2r3oaIT7yVR4iJkAfgEAwF4xDK54C0rZ7U,536
11
11
  mlquantify/methods/aggregative.py,sha256=F5Z-tGA9OcZgMBLKOeaos6wIgvvnDeriZ4y0TyMpDrc,39051
12
12
  mlquantify/methods/meta.py,sha256=mBunCc_PFLdmrs5sf5MDc8TbO3VFpLAmxV2y2VDNjY8,19052
@@ -16,7 +16,7 @@ mlquantify/methods/threshold_optimization.py,sha256=NYGKbYvtfmiBeU8wpTiFCdURkijc
16
16
  mlquantify/utils/__init__.py,sha256=logWrL6B6mukP8tvYm_UPEdO9eNA-J-ySILr7-syDoc,44
17
17
  mlquantify/utils/general.py,sha256=wKJSmwF1KfSlSrDm0KTf92FMvB62BBOxf2Se9HyeWYE,8668
18
18
  mlquantify/utils/method.py,sha256=RL4vBJGl5_6DZ59Bs62hdNXI_hnoDIWilMMyMPiOjBg,12631
19
- mlquantify-0.1.6.dist-info/METADATA,sha256=r9Tq2nXmbsTKMURJMTp-JdzwBoaOnttBI9Z1BrCcBk0,5166
20
- mlquantify-0.1.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
21
- mlquantify-0.1.6.dist-info/top_level.txt,sha256=tGEkYkbbFElwULvqENjam3u1uXtyC1J9dRmibsq8_n0,11
22
- mlquantify-0.1.6.dist-info/RECORD,,
19
+ mlquantify-0.1.8.dist-info/METADATA,sha256=PQbJUuo_c3k2PApZjapoIz0Cx61ovZZxh_j291TchIs,5166
20
+ mlquantify-0.1.8.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
21
+ mlquantify-0.1.8.dist-info/top_level.txt,sha256=tGEkYkbbFElwULvqENjam3u1uXtyC1J9dRmibsq8_n0,11
22
+ mlquantify-0.1.8.dist-info/RECORD,,