mlpack 4.6.2__cp38-cp38-win_amd64.whl → 4.7.0__cp38-cp38-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (414) hide show
  1. mlpack/__init__.py +3 -3
  2. mlpack/adaboost_classify.cp38-win_amd64.pyd +0 -0
  3. mlpack/adaboost_probabilities.cp38-win_amd64.pyd +0 -0
  4. mlpack/adaboost_train.cp38-win_amd64.pyd +0 -0
  5. mlpack/approx_kfn.cp38-win_amd64.pyd +0 -0
  6. mlpack/arma_numpy.cp38-win_amd64.pyd +0 -0
  7. mlpack/bayesian_linear_regression.cp38-win_amd64.pyd +0 -0
  8. mlpack/cf.cp38-win_amd64.pyd +0 -0
  9. mlpack/dbscan.cp38-win_amd64.pyd +0 -0
  10. mlpack/decision_tree.cp38-win_amd64.pyd +0 -0
  11. mlpack/det.cp38-win_amd64.pyd +0 -0
  12. mlpack/emst.cp38-win_amd64.pyd +0 -0
  13. mlpack/fastmks.cp38-win_amd64.pyd +0 -0
  14. mlpack/gmm_generate.cp38-win_amd64.pyd +0 -0
  15. mlpack/gmm_probability.cp38-win_amd64.pyd +0 -0
  16. mlpack/gmm_train.cp38-win_amd64.pyd +0 -0
  17. mlpack/hmm_generate.cp38-win_amd64.pyd +0 -0
  18. mlpack/hmm_loglik.cp38-win_amd64.pyd +0 -0
  19. mlpack/hmm_train.cp38-win_amd64.pyd +0 -0
  20. mlpack/hmm_viterbi.cp38-win_amd64.pyd +0 -0
  21. mlpack/hoeffding_tree.cp38-win_amd64.pyd +0 -0
  22. mlpack/image_converter.cp38-win_amd64.pyd +0 -0
  23. mlpack/include/mlpack/base.hpp +1 -0
  24. mlpack/include/mlpack/core/arma_extend/find_nan.hpp +63 -0
  25. mlpack/include/mlpack/core/cereal/low_precision.hpp +48 -0
  26. mlpack/include/mlpack/core/cv/cv_base.hpp +11 -11
  27. mlpack/include/mlpack/core/cv/cv_base_impl.hpp +7 -7
  28. mlpack/include/mlpack/core/cv/k_fold_cv.hpp +4 -4
  29. mlpack/include/mlpack/core/cv/k_fold_cv_impl.hpp +4 -4
  30. mlpack/include/mlpack/core/cv/meta_info_extractor.hpp +10 -10
  31. mlpack/include/mlpack/core/cv/metrics/f1_impl.hpp +1 -1
  32. mlpack/include/mlpack/core/cv/metrics/facilities.hpp +2 -1
  33. mlpack/include/mlpack/core/cv/metrics/precision_impl.hpp +1 -1
  34. mlpack/include/mlpack/core/cv/metrics/r2_score_impl.hpp +1 -1
  35. mlpack/include/mlpack/core/cv/metrics/silhouette_score_impl.hpp +1 -1
  36. mlpack/include/mlpack/core/cv/simple_cv.hpp +4 -4
  37. mlpack/include/mlpack/core/cv/simple_cv_impl.hpp +2 -2
  38. mlpack/include/mlpack/core/data/binarize.hpp +0 -2
  39. mlpack/include/mlpack/core/data/check_categorical_param.hpp +0 -2
  40. mlpack/include/mlpack/core/data/combine_options.hpp +151 -0
  41. mlpack/include/mlpack/core/data/confusion_matrix.hpp +0 -2
  42. mlpack/include/mlpack/core/data/confusion_matrix_impl.hpp +0 -2
  43. mlpack/include/mlpack/core/data/data.hpp +6 -4
  44. mlpack/include/mlpack/core/data/data_options.hpp +341 -18
  45. mlpack/include/mlpack/core/data/dataset_mapper.hpp +3 -5
  46. mlpack/include/mlpack/core/data/dataset_mapper_impl.hpp +0 -2
  47. mlpack/include/mlpack/core/data/detect_file_type.hpp +34 -5
  48. mlpack/include/mlpack/core/data/detect_file_type_impl.hpp +185 -11
  49. mlpack/include/mlpack/core/data/extension.hpp +2 -4
  50. mlpack/include/mlpack/core/data/font8x8_basic.h +152 -0
  51. mlpack/include/mlpack/core/data/has_serialize.hpp +0 -2
  52. mlpack/include/mlpack/core/data/image_bounding_box.hpp +36 -0
  53. mlpack/include/mlpack/core/data/image_bounding_box_impl.hpp +155 -0
  54. mlpack/include/mlpack/core/data/image_layout.hpp +63 -0
  55. mlpack/include/mlpack/core/data/image_layout_impl.hpp +75 -0
  56. mlpack/include/mlpack/core/data/image_letterbox.hpp +116 -0
  57. mlpack/include/mlpack/core/data/image_options.hpp +257 -0
  58. mlpack/include/mlpack/core/data/image_resize_crop.hpp +113 -48
  59. mlpack/include/mlpack/core/data/imputation_methods/custom_imputation.hpp +16 -32
  60. mlpack/include/mlpack/core/data/imputation_methods/listwise_deletion.hpp +19 -29
  61. mlpack/include/mlpack/core/data/imputation_methods/mean_imputation.hpp +113 -44
  62. mlpack/include/mlpack/core/data/imputation_methods/median_imputation.hpp +44 -43
  63. mlpack/include/mlpack/core/data/imputer.hpp +41 -49
  64. mlpack/include/mlpack/core/data/is_naninf.hpp +0 -2
  65. mlpack/include/mlpack/core/data/load.hpp +49 -233
  66. mlpack/include/mlpack/core/data/load_arff.hpp +0 -2
  67. mlpack/include/mlpack/core/data/load_arff_impl.hpp +2 -4
  68. mlpack/include/mlpack/core/data/load_categorical.hpp +1 -4
  69. mlpack/include/mlpack/core/data/load_categorical_impl.hpp +10 -26
  70. mlpack/include/mlpack/core/data/load_dense.hpp +279 -0
  71. mlpack/include/mlpack/core/data/load_deprecated.hpp +466 -0
  72. mlpack/include/mlpack/core/data/load_image.hpp +71 -43
  73. mlpack/include/mlpack/core/data/load_impl.hpp +95 -274
  74. mlpack/include/mlpack/core/data/load_model.hpp +62 -0
  75. mlpack/include/mlpack/core/data/load_numeric.hpp +124 -87
  76. mlpack/include/mlpack/core/data/load_sparse.hpp +91 -0
  77. mlpack/include/mlpack/core/data/map_policies/datatype.hpp +0 -2
  78. mlpack/include/mlpack/core/data/map_policies/increment_policy.hpp +0 -2
  79. mlpack/include/mlpack/core/data/map_policies/map_policies.hpp +0 -1
  80. mlpack/include/mlpack/core/data/matrix_options.hpp +152 -20
  81. mlpack/include/mlpack/core/data/normalize_labels.hpp +0 -2
  82. mlpack/include/mlpack/core/data/normalize_labels_impl.hpp +0 -2
  83. mlpack/include/mlpack/core/data/one_hot_encoding.hpp +2 -4
  84. mlpack/include/mlpack/core/data/one_hot_encoding_impl.hpp +3 -5
  85. mlpack/include/mlpack/core/data/save.hpp +26 -120
  86. mlpack/include/mlpack/core/data/save_dense.hpp +42 -0
  87. mlpack/include/mlpack/core/data/save_deprecated.hpp +308 -0
  88. mlpack/include/mlpack/core/data/save_image.hpp +82 -42
  89. mlpack/include/mlpack/core/data/save_impl.hpp +60 -245
  90. mlpack/include/mlpack/core/data/save_matrix.hpp +45 -0
  91. mlpack/include/mlpack/core/data/save_model.hpp +61 -0
  92. mlpack/include/mlpack/core/data/save_numeric.hpp +60 -0
  93. mlpack/include/mlpack/core/data/save_sparse.hpp +44 -0
  94. mlpack/include/mlpack/core/data/scaler_methods/max_abs_scaler.hpp +0 -2
  95. mlpack/include/mlpack/core/data/scaler_methods/mean_normalization.hpp +2 -4
  96. mlpack/include/mlpack/core/data/scaler_methods/min_max_scaler.hpp +0 -2
  97. mlpack/include/mlpack/core/data/scaler_methods/pca_whitening.hpp +1 -3
  98. mlpack/include/mlpack/core/data/scaler_methods/standard_scaler.hpp +2 -4
  99. mlpack/include/mlpack/core/data/scaler_methods/zca_whitening.hpp +0 -2
  100. mlpack/include/mlpack/core/data/split_data.hpp +6 -8
  101. mlpack/include/mlpack/core/data/string_algorithms.hpp +0 -2
  102. mlpack/include/mlpack/core/data/string_encoding.hpp +0 -2
  103. mlpack/include/mlpack/core/data/string_encoding_dictionary.hpp +0 -2
  104. mlpack/include/mlpack/core/data/string_encoding_impl.hpp +0 -2
  105. mlpack/include/mlpack/core/data/string_encoding_policies/bag_of_words_encoding_policy.hpp +0 -2
  106. mlpack/include/mlpack/core/data/string_encoding_policies/dictionary_encoding_policy.hpp +0 -2
  107. mlpack/include/mlpack/core/data/string_encoding_policies/policy_traits.hpp +0 -2
  108. mlpack/include/mlpack/core/data/string_encoding_policies/tf_idf_encoding_policy.hpp +0 -2
  109. mlpack/include/mlpack/core/data/text_options.hpp +91 -53
  110. mlpack/include/mlpack/core/data/tokenizers/char_extract.hpp +0 -2
  111. mlpack/include/mlpack/core/data/tokenizers/split_by_any_of.hpp +0 -2
  112. mlpack/include/mlpack/core/distributions/gamma_distribution_impl.hpp +4 -4
  113. mlpack/include/mlpack/core/distributions/laplace_distribution.hpp +9 -9
  114. mlpack/include/mlpack/core/distributions/laplace_distribution_impl.hpp +7 -7
  115. mlpack/include/mlpack/core/hpt/cv_function.hpp +2 -2
  116. mlpack/include/mlpack/core/hpt/cv_function_impl.hpp +2 -2
  117. mlpack/include/mlpack/core/hpt/hpt.hpp +4 -4
  118. mlpack/include/mlpack/core/hpt/hpt_impl.hpp +9 -9
  119. mlpack/include/mlpack/core/math/make_alias.hpp +7 -5
  120. mlpack/include/mlpack/core/math/random.hpp +19 -5
  121. mlpack/include/mlpack/core/math/shuffle_data.hpp +79 -245
  122. mlpack/include/mlpack/core/metrics/non_maximal_suppression_impl.hpp +9 -10
  123. mlpack/include/mlpack/core/stb/bundled/stb_image_resize2.h +291 -239
  124. mlpack/include/mlpack/core/tree/binary_space_tree/rp_tree_mean_split_impl.hpp +7 -7
  125. mlpack/include/mlpack/core/tree/cellbound.hpp +2 -2
  126. mlpack/include/mlpack/core/tree/cosine_tree/cosine_tree_impl.hpp +10 -10
  127. mlpack/include/mlpack/core/tree/octree/octree.hpp +10 -0
  128. mlpack/include/mlpack/core/tree/octree/octree_impl.hpp +14 -4
  129. mlpack/include/mlpack/core/util/arma_traits.hpp +25 -38
  130. mlpack/include/mlpack/core/util/coot_traits.hpp +97 -0
  131. mlpack/include/mlpack/core/util/forward.hpp +0 -2
  132. mlpack/include/mlpack/core/util/param.hpp +4 -4
  133. mlpack/include/mlpack/core/util/params_impl.hpp +2 -2
  134. mlpack/include/mlpack/core/util/using.hpp +29 -2
  135. mlpack/include/mlpack/core/util/version.hpp +5 -3
  136. mlpack/include/mlpack/core/util/version_impl.hpp +3 -6
  137. mlpack/include/mlpack/methods/adaboost/adaboost_classify_main.cpp +1 -1
  138. mlpack/include/mlpack/methods/adaboost/adaboost_main.cpp +3 -3
  139. mlpack/include/mlpack/methods/adaboost/adaboost_train_main.cpp +2 -2
  140. mlpack/include/mlpack/methods/ann/activation_functions/activation_functions.hpp +1 -0
  141. mlpack/include/mlpack/methods/ann/activation_functions/bipolar_sigmoid_function.hpp +6 -4
  142. mlpack/include/mlpack/methods/ann/activation_functions/elish_function.hpp +17 -12
  143. mlpack/include/mlpack/methods/ann/activation_functions/elliot_function.hpp +9 -7
  144. mlpack/include/mlpack/methods/ann/activation_functions/gaussian_function.hpp +7 -6
  145. mlpack/include/mlpack/methods/ann/activation_functions/gelu_exact_function.hpp +73 -0
  146. mlpack/include/mlpack/methods/ann/activation_functions/gelu_function.hpp +27 -16
  147. mlpack/include/mlpack/methods/ann/activation_functions/hard_sigmoid_function.hpp +8 -6
  148. mlpack/include/mlpack/methods/ann/activation_functions/hard_swish_function.hpp +6 -4
  149. mlpack/include/mlpack/methods/ann/activation_functions/hyper_sinh_function.hpp +13 -8
  150. mlpack/include/mlpack/methods/ann/activation_functions/identity_function.hpp +6 -4
  151. mlpack/include/mlpack/methods/ann/activation_functions/inverse_quadratic_function.hpp +8 -6
  152. mlpack/include/mlpack/methods/ann/activation_functions/lisht_function.hpp +7 -5
  153. mlpack/include/mlpack/methods/ann/activation_functions/logistic_function.hpp +14 -12
  154. mlpack/include/mlpack/methods/ann/activation_functions/mish_function.hpp +7 -5
  155. mlpack/include/mlpack/methods/ann/activation_functions/multi_quadratic_function.hpp +6 -4
  156. mlpack/include/mlpack/methods/ann/activation_functions/poisson1_function.hpp +4 -2
  157. mlpack/include/mlpack/methods/ann/activation_functions/quadratic_function.hpp +6 -4
  158. mlpack/include/mlpack/methods/ann/activation_functions/rectifier_function.hpp +10 -10
  159. mlpack/include/mlpack/methods/ann/activation_functions/silu_function.hpp +10 -8
  160. mlpack/include/mlpack/methods/ann/activation_functions/softplus_function.hpp +12 -9
  161. mlpack/include/mlpack/methods/ann/activation_functions/softsign_function.hpp +15 -23
  162. mlpack/include/mlpack/methods/ann/activation_functions/spline_function.hpp +9 -7
  163. mlpack/include/mlpack/methods/ann/activation_functions/swish_function.hpp +11 -9
  164. mlpack/include/mlpack/methods/ann/activation_functions/tanh_exponential_function.hpp +9 -7
  165. mlpack/include/mlpack/methods/ann/activation_functions/tanh_function.hpp +10 -7
  166. mlpack/include/mlpack/methods/ann/ann.hpp +3 -0
  167. mlpack/include/mlpack/methods/ann/convolution_rules/base_convolution.hpp +197 -0
  168. mlpack/include/mlpack/methods/ann/convolution_rules/convolution_rules.hpp +1 -2
  169. mlpack/include/mlpack/methods/ann/convolution_rules/im2col_convolution.hpp +215 -0
  170. mlpack/include/mlpack/methods/ann/convolution_rules/naive_convolution.hpp +109 -154
  171. mlpack/include/mlpack/methods/ann/dag_network.hpp +728 -0
  172. mlpack/include/mlpack/methods/ann/dag_network_impl.hpp +1640 -0
  173. mlpack/include/mlpack/methods/ann/dists/bernoulli_distribution_impl.hpp +1 -1
  174. mlpack/include/mlpack/methods/ann/dists/normal_distribution_impl.hpp +7 -2
  175. mlpack/include/mlpack/methods/ann/ffn.hpp +39 -3
  176. mlpack/include/mlpack/methods/ann/ffn_impl.hpp +14 -32
  177. mlpack/include/mlpack/methods/ann/init_rules/const_init.hpp +4 -4
  178. mlpack/include/mlpack/methods/ann/init_rules/gaussian_init.hpp +6 -2
  179. mlpack/include/mlpack/methods/ann/init_rules/he_init.hpp +4 -2
  180. mlpack/include/mlpack/methods/ann/init_rules/kathirvalavakumar_subavathi_init.hpp +3 -3
  181. mlpack/include/mlpack/methods/ann/init_rules/lecun_normal_init.hpp +4 -2
  182. mlpack/include/mlpack/methods/ann/init_rules/nguyen_widrow_init.hpp +2 -2
  183. mlpack/include/mlpack/methods/ann/init_rules/oivs_init.hpp +2 -2
  184. mlpack/include/mlpack/methods/ann/init_rules/orthogonal_init.hpp +2 -2
  185. mlpack/include/mlpack/methods/ann/init_rules/random_init.hpp +8 -4
  186. mlpack/include/mlpack/methods/ann/layer/adaptive_max_pooling.hpp +21 -23
  187. mlpack/include/mlpack/methods/ann/layer/adaptive_max_pooling_impl.hpp +15 -15
  188. mlpack/include/mlpack/methods/ann/layer/adaptive_mean_pooling.hpp +21 -23
  189. mlpack/include/mlpack/methods/ann/layer/adaptive_mean_pooling_impl.hpp +16 -16
  190. mlpack/include/mlpack/methods/ann/layer/add.hpp +18 -18
  191. mlpack/include/mlpack/methods/ann/layer/add_impl.hpp +13 -13
  192. mlpack/include/mlpack/methods/ann/layer/add_merge.hpp +19 -18
  193. mlpack/include/mlpack/methods/ann/layer/add_merge_impl.hpp +13 -13
  194. mlpack/include/mlpack/methods/ann/layer/alpha_dropout.hpp +17 -16
  195. mlpack/include/mlpack/methods/ann/layer/alpha_dropout_impl.hpp +14 -13
  196. mlpack/include/mlpack/methods/ann/layer/base_layer.hpp +28 -51
  197. mlpack/include/mlpack/methods/ann/layer/batch_norm.hpp +16 -18
  198. mlpack/include/mlpack/methods/ann/layer/batch_norm_impl.hpp +55 -54
  199. mlpack/include/mlpack/methods/ann/layer/c_relu.hpp +18 -20
  200. mlpack/include/mlpack/methods/ann/layer/c_relu_impl.hpp +20 -25
  201. mlpack/include/mlpack/methods/ann/layer/celu.hpp +14 -19
  202. mlpack/include/mlpack/methods/ann/layer/celu_impl.hpp +25 -34
  203. mlpack/include/mlpack/methods/ann/layer/concat.hpp +18 -18
  204. mlpack/include/mlpack/methods/ann/layer/concat_impl.hpp +13 -13
  205. mlpack/include/mlpack/methods/ann/layer/concatenate.hpp +18 -18
  206. mlpack/include/mlpack/methods/ann/layer/concatenate_impl.hpp +14 -14
  207. mlpack/include/mlpack/methods/ann/layer/convolution.hpp +42 -47
  208. mlpack/include/mlpack/methods/ann/layer/convolution_impl.hpp +170 -159
  209. mlpack/include/mlpack/methods/ann/layer/dropconnect.hpp +18 -20
  210. mlpack/include/mlpack/methods/ann/layer/dropconnect_impl.hpp +20 -20
  211. mlpack/include/mlpack/methods/ann/layer/dropout.hpp +17 -19
  212. mlpack/include/mlpack/methods/ann/layer/dropout_impl.hpp +14 -21
  213. mlpack/include/mlpack/methods/ann/layer/elu.hpp +23 -25
  214. mlpack/include/mlpack/methods/ann/layer/elu_impl.hpp +20 -27
  215. mlpack/include/mlpack/methods/ann/layer/embedding.hpp +160 -0
  216. mlpack/include/mlpack/methods/ann/layer/embedding_impl.hpp +189 -0
  217. mlpack/include/mlpack/methods/ann/layer/flexible_relu.hpp +17 -19
  218. mlpack/include/mlpack/methods/ann/layer/flexible_relu_impl.hpp +20 -20
  219. mlpack/include/mlpack/methods/ann/layer/ftswish.hpp +17 -18
  220. mlpack/include/mlpack/methods/ann/layer/ftswish_impl.hpp +17 -35
  221. mlpack/include/mlpack/methods/ann/layer/grouped_convolution.hpp +27 -33
  222. mlpack/include/mlpack/methods/ann/layer/grouped_convolution_impl.hpp +170 -163
  223. mlpack/include/mlpack/methods/ann/layer/gru.hpp +195 -0
  224. mlpack/include/mlpack/methods/ann/layer/gru_impl.hpp +325 -0
  225. mlpack/include/mlpack/methods/ann/layer/hard_tanh.hpp +13 -15
  226. mlpack/include/mlpack/methods/ann/layer/hard_tanh_impl.hpp +12 -12
  227. mlpack/include/mlpack/methods/ann/layer/identity.hpp +19 -20
  228. mlpack/include/mlpack/methods/ann/layer/identity_impl.hpp +12 -12
  229. mlpack/include/mlpack/methods/ann/layer/layer.hpp +37 -33
  230. mlpack/include/mlpack/methods/ann/layer/layer_norm.hpp +11 -13
  231. mlpack/include/mlpack/methods/ann/layer/layer_norm_impl.hpp +16 -16
  232. mlpack/include/mlpack/methods/ann/layer/layer_types.hpp +4 -1
  233. mlpack/include/mlpack/methods/ann/layer/leaky_relu.hpp +20 -23
  234. mlpack/include/mlpack/methods/ann/layer/leaky_relu_impl.hpp +12 -13
  235. mlpack/include/mlpack/methods/ann/layer/linear.hpp +16 -18
  236. mlpack/include/mlpack/methods/ann/layer/linear3d.hpp +18 -18
  237. mlpack/include/mlpack/methods/ann/layer/linear3d_impl.hpp +18 -18
  238. mlpack/include/mlpack/methods/ann/layer/linear_impl.hpp +15 -15
  239. mlpack/include/mlpack/methods/ann/layer/linear_no_bias.hpp +15 -17
  240. mlpack/include/mlpack/methods/ann/layer/linear_no_bias_impl.hpp +20 -20
  241. mlpack/include/mlpack/methods/ann/layer/linear_recurrent.hpp +25 -14
  242. mlpack/include/mlpack/methods/ann/layer/linear_recurrent_impl.hpp +60 -31
  243. mlpack/include/mlpack/methods/ann/layer/log_softmax.hpp +17 -36
  244. mlpack/include/mlpack/methods/ann/layer/log_softmax_impl.hpp +58 -74
  245. mlpack/include/mlpack/methods/ann/layer/lstm.hpp +26 -29
  246. mlpack/include/mlpack/methods/ann/layer/lstm_impl.hpp +128 -124
  247. mlpack/include/mlpack/methods/ann/layer/max_pooling.hpp +19 -19
  248. mlpack/include/mlpack/methods/ann/layer/max_pooling_impl.hpp +14 -14
  249. mlpack/include/mlpack/methods/ann/layer/mean_pooling.hpp +24 -24
  250. mlpack/include/mlpack/methods/ann/layer/mean_pooling_impl.hpp +16 -16
  251. mlpack/include/mlpack/methods/ann/layer/multi_layer.hpp +36 -6
  252. mlpack/include/mlpack/methods/ann/layer/multi_layer_impl.hpp +6 -2
  253. mlpack/include/mlpack/methods/ann/layer/multihead_attention.hpp +26 -22
  254. mlpack/include/mlpack/methods/ann/layer/multihead_attention_impl.hpp +161 -64
  255. mlpack/include/mlpack/methods/ann/layer/nearest_interpolation.hpp +28 -25
  256. mlpack/include/mlpack/methods/ann/layer/nearest_interpolation_impl.hpp +36 -37
  257. mlpack/include/mlpack/methods/ann/layer/noisylinear.hpp +39 -42
  258. mlpack/include/mlpack/methods/ann/layer/noisylinear_impl.hpp +18 -18
  259. mlpack/include/mlpack/methods/ann/layer/padding.hpp +21 -17
  260. mlpack/include/mlpack/methods/ann/layer/padding_impl.hpp +33 -19
  261. mlpack/include/mlpack/methods/ann/layer/parametric_relu.hpp +26 -28
  262. mlpack/include/mlpack/methods/ann/layer/parametric_relu_impl.hpp +18 -18
  263. mlpack/include/mlpack/methods/ann/layer/radial_basis_function.hpp +41 -28
  264. mlpack/include/mlpack/methods/ann/layer/radial_basis_function_impl.hpp +42 -17
  265. mlpack/include/mlpack/methods/ann/layer/recurrent_layer.hpp +13 -0
  266. mlpack/include/mlpack/methods/ann/layer/relu6.hpp +19 -21
  267. mlpack/include/mlpack/methods/ann/layer/relu6_impl.hpp +14 -14
  268. mlpack/include/mlpack/methods/ann/layer/repeat.hpp +24 -25
  269. mlpack/include/mlpack/methods/ann/layer/repeat_impl.hpp +10 -10
  270. mlpack/include/mlpack/methods/ann/layer/serialization.hpp +64 -54
  271. mlpack/include/mlpack/methods/ann/layer/softmax.hpp +20 -20
  272. mlpack/include/mlpack/methods/ann/layer/softmax_impl.hpp +10 -10
  273. mlpack/include/mlpack/methods/ann/layer/softmin.hpp +20 -23
  274. mlpack/include/mlpack/methods/ann/layer/softmin_impl.hpp +10 -10
  275. mlpack/include/mlpack/methods/ann/layer/sum_reduce.hpp +103 -0
  276. mlpack/include/mlpack/methods/ann/layer/sum_reduce_impl.hpp +143 -0
  277. mlpack/include/mlpack/methods/ann/loss_functions/cosine_embedding_loss_impl.hpp +3 -3
  278. mlpack/include/mlpack/methods/ann/loss_functions/mean_bias_error_impl.hpp +1 -1
  279. mlpack/include/mlpack/methods/ann/loss_functions/multilabel_softmargin_loss_impl.hpp +1 -1
  280. mlpack/include/mlpack/methods/ann/loss_functions/negative_log_likelihood.hpp +2 -2
  281. mlpack/include/mlpack/methods/ann/loss_functions/negative_log_likelihood_impl.hpp +29 -15
  282. mlpack/include/mlpack/methods/ann/loss_functions/poisson_nll_loss_impl.hpp +1 -1
  283. mlpack/include/mlpack/methods/ann/models/models.hpp +17 -0
  284. mlpack/include/mlpack/methods/ann/models/yolov3/yolov3_layer.hpp +151 -0
  285. mlpack/include/mlpack/methods/ann/models/yolov3/yolov3_layer_impl.hpp +265 -0
  286. mlpack/include/mlpack/methods/ann/models/yolov3/yolov3_tiny.hpp +187 -0
  287. mlpack/include/mlpack/methods/ann/models/yolov3/yolov3_tiny_impl.hpp +206 -0
  288. mlpack/include/mlpack/methods/ann/regularizer/orthogonal_regularizer_impl.hpp +5 -3
  289. mlpack/include/mlpack/methods/ann/rnn.hpp +136 -42
  290. mlpack/include/mlpack/methods/ann/rnn_impl.hpp +230 -38
  291. mlpack/include/mlpack/methods/approx_kfn/drusilla_select_impl.hpp +1 -1
  292. mlpack/include/mlpack/methods/bayesian_linear_regression/bayesian_linear_regression_main.cpp +1 -1
  293. mlpack/include/mlpack/methods/bias_svd/bias_svd_function_impl.hpp +1 -1
  294. mlpack/include/mlpack/methods/cf/cf_model.hpp +1 -1
  295. mlpack/include/mlpack/methods/decision_tree/decision_tree.hpp +6 -6
  296. mlpack/include/mlpack/methods/decision_tree/decision_tree_impl.hpp +12 -12
  297. mlpack/include/mlpack/methods/decision_tree/decision_tree_main.cpp +0 -1
  298. mlpack/include/mlpack/methods/decision_tree/decision_tree_regressor.hpp +6 -6
  299. mlpack/include/mlpack/methods/decision_tree/decision_tree_regressor_impl.hpp +12 -12
  300. mlpack/include/mlpack/methods/det/det_main.cpp +1 -1
  301. mlpack/include/mlpack/methods/hmm/hmm_train_main.cpp +4 -4
  302. mlpack/include/mlpack/methods/hmm/hmm_util_impl.hpp +2 -2
  303. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree.hpp +6 -6
  304. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree_impl.hpp +31 -31
  305. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree_main.cpp +1 -2
  306. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree_model.hpp +2 -2
  307. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree_model_impl.hpp +1 -1
  308. mlpack/include/mlpack/methods/kde/kde_rules_impl.hpp +6 -6
  309. mlpack/include/mlpack/methods/lars/lars_impl.hpp +3 -3
  310. mlpack/include/mlpack/methods/linear_svm/linear_svm_function_impl.hpp +4 -4
  311. mlpack/include/mlpack/methods/linear_svm/linear_svm_main.cpp +3 -3
  312. mlpack/include/mlpack/methods/lmnn/lmnn_main.cpp +1 -1
  313. mlpack/include/mlpack/methods/lsh/lsh_main.cpp +1 -1
  314. mlpack/include/mlpack/methods/matrix_completion/matrix_completion_impl.hpp +1 -1
  315. mlpack/include/mlpack/methods/naive_bayes/naive_bayes_classifier_impl.hpp +1 -1
  316. mlpack/include/mlpack/methods/naive_bayes/nbc_main.cpp +3 -3
  317. mlpack/include/mlpack/methods/nca/nca_main.cpp +1 -1
  318. mlpack/include/mlpack/methods/neighbor_search/kfn_main.cpp +8 -8
  319. mlpack/include/mlpack/methods/neighbor_search/knn_main.cpp +8 -8
  320. mlpack/include/mlpack/methods/neighbor_search/neighbor_search.hpp +154 -34
  321. mlpack/include/mlpack/methods/neighbor_search/neighbor_search_impl.hpp +190 -51
  322. mlpack/include/mlpack/methods/neighbor_search/neighbor_search_stat.hpp +10 -0
  323. mlpack/include/mlpack/methods/neighbor_search/ns_model.hpp +15 -15
  324. mlpack/include/mlpack/methods/neighbor_search/ns_model_impl.hpp +55 -46
  325. mlpack/include/mlpack/methods/neighbor_search/typedef.hpp +42 -2
  326. mlpack/include/mlpack/methods/pca/pca_impl.hpp +2 -2
  327. mlpack/include/mlpack/methods/perceptron/perceptron.hpp +2 -2
  328. mlpack/include/mlpack/methods/perceptron/perceptron_impl.hpp +1 -1
  329. mlpack/include/mlpack/methods/perceptron/perceptron_main.cpp +2 -2
  330. mlpack/include/mlpack/methods/preprocess/image_converter_main.cpp +2 -3
  331. mlpack/include/mlpack/methods/preprocess/preprocess_binarize_main.cpp +2 -2
  332. mlpack/include/mlpack/methods/preprocess/preprocess_describe_main.cpp +0 -1
  333. mlpack/include/mlpack/methods/preprocess/preprocess_imputer_main.cpp +50 -129
  334. mlpack/include/mlpack/methods/preprocess/preprocess_one_hot_encoding_main.cpp +6 -6
  335. mlpack/include/mlpack/methods/preprocess/preprocess_scale_main.cpp +2 -3
  336. mlpack/include/mlpack/methods/preprocess/preprocess_split_main.cpp +3 -4
  337. mlpack/include/mlpack/methods/preprocess/scaling_model.hpp +6 -8
  338. mlpack/include/mlpack/methods/preprocess/scaling_model_impl.hpp +18 -20
  339. mlpack/include/mlpack/methods/random_forest/random_forest.hpp +5 -5
  340. mlpack/include/mlpack/methods/random_forest/random_forest_impl.hpp +9 -9
  341. mlpack/include/mlpack/methods/range_search/range_search_main.cpp +1 -1
  342. mlpack/include/mlpack/methods/rann/krann_main.cpp +1 -1
  343. mlpack/include/mlpack/methods/regularized_svd/regularized_svd_function_impl.hpp +1 -1
  344. mlpack/include/mlpack/methods/reinforcement_learning/async_learning_impl.hpp +8 -8
  345. mlpack/include/mlpack/methods/reinforcement_learning/ddpg_impl.hpp +16 -16
  346. mlpack/include/mlpack/methods/reinforcement_learning/environment/acrobot.hpp +4 -4
  347. mlpack/include/mlpack/methods/reinforcement_learning/environment/cart_pole.hpp +3 -3
  348. mlpack/include/mlpack/methods/reinforcement_learning/environment/cont_double_pole_cart.hpp +6 -5
  349. mlpack/include/mlpack/methods/reinforcement_learning/environment/pendulum.hpp +6 -5
  350. mlpack/include/mlpack/methods/reinforcement_learning/policy/aggregated_policy.hpp +2 -2
  351. mlpack/include/mlpack/methods/reinforcement_learning/q_learning_impl.hpp +10 -10
  352. mlpack/include/mlpack/methods/reinforcement_learning/q_networks/categorical_dqn.hpp +21 -17
  353. mlpack/include/mlpack/methods/reinforcement_learning/q_networks/dueling_dqn.hpp +69 -77
  354. mlpack/include/mlpack/methods/reinforcement_learning/q_networks/simple_dqn.hpp +9 -9
  355. mlpack/include/mlpack/methods/reinforcement_learning/sac_impl.hpp +14 -14
  356. mlpack/include/mlpack/methods/reinforcement_learning/td3_impl.hpp +14 -14
  357. mlpack/include/mlpack/methods/softmax_regression/softmax_regression_function_impl.hpp +1 -1
  358. mlpack/include/mlpack/methods/svdplusplus/svdplusplus_function_impl.hpp +1 -1
  359. mlpack/include/mlpack/namespace_compat.hpp +1 -0
  360. mlpack/include/mlpack/prereqs.hpp +1 -0
  361. mlpack/kde.cp38-win_amd64.pyd +0 -0
  362. mlpack/kernel_pca.cp38-win_amd64.pyd +0 -0
  363. mlpack/kfn.cp38-win_amd64.pyd +0 -0
  364. mlpack/kmeans.cp38-win_amd64.pyd +0 -0
  365. mlpack/knn.cp38-win_amd64.pyd +0 -0
  366. mlpack/krann.cp38-win_amd64.pyd +0 -0
  367. mlpack/lars.cp38-win_amd64.pyd +0 -0
  368. mlpack/linear_regression_predict.cp38-win_amd64.pyd +0 -0
  369. mlpack/linear_regression_train.cp38-win_amd64.pyd +0 -0
  370. mlpack/linear_svm.cp38-win_amd64.pyd +0 -0
  371. mlpack/lmnn.cp38-win_amd64.pyd +0 -0
  372. mlpack/local_coordinate_coding.cp38-win_amd64.pyd +0 -0
  373. mlpack/logistic_regression.cp38-win_amd64.pyd +0 -0
  374. mlpack/lsh.cp38-win_amd64.pyd +0 -0
  375. mlpack/mean_shift.cp38-win_amd64.pyd +0 -0
  376. mlpack/nbc.cp38-win_amd64.pyd +0 -0
  377. mlpack/nca.cp38-win_amd64.pyd +0 -0
  378. mlpack/nmf.cp38-win_amd64.pyd +0 -0
  379. mlpack/pca.cp38-win_amd64.pyd +0 -0
  380. mlpack/perceptron.cp38-win_amd64.pyd +0 -0
  381. mlpack/preprocess_binarize.cp38-win_amd64.pyd +0 -0
  382. mlpack/preprocess_describe.cp38-win_amd64.pyd +0 -0
  383. mlpack/preprocess_one_hot_encoding.cp38-win_amd64.pyd +0 -0
  384. mlpack/preprocess_scale.cp38-win_amd64.pyd +0 -0
  385. mlpack/preprocess_split.cp38-win_amd64.pyd +0 -0
  386. mlpack/radical.cp38-win_amd64.pyd +0 -0
  387. mlpack/random_forest.cp38-win_amd64.pyd +0 -0
  388. mlpack/softmax_regression.cp38-win_amd64.pyd +0 -0
  389. mlpack/sparse_coding.cp38-win_amd64.pyd +0 -0
  390. mlpack-4.7.0.dist-info/DELVEWHEEL +2 -0
  391. {mlpack-4.6.2.dist-info → mlpack-4.7.0.dist-info}/METADATA +5 -5
  392. {mlpack-4.6.2.dist-info → mlpack-4.7.0.dist-info}/RECORD +395 -376
  393. {mlpack-4.6.2.dist-info → mlpack-4.7.0.dist-info}/WHEEL +1 -1
  394. mlpack/include/mlpack/core/data/format.hpp +0 -31
  395. mlpack/include/mlpack/core/data/image_info.hpp +0 -102
  396. mlpack/include/mlpack/core/data/image_info_impl.hpp +0 -84
  397. mlpack/include/mlpack/core/data/load_image_impl.hpp +0 -171
  398. mlpack/include/mlpack/core/data/load_model_impl.hpp +0 -115
  399. mlpack/include/mlpack/core/data/load_vec_impl.hpp +0 -154
  400. mlpack/include/mlpack/core/data/map_policies/missing_policy.hpp +0 -148
  401. mlpack/include/mlpack/core/data/save_image_impl.hpp +0 -170
  402. mlpack/include/mlpack/core/data/types.hpp +0 -61
  403. mlpack/include/mlpack/core/data/types_impl.hpp +0 -83
  404. mlpack/include/mlpack/core/data/utilities.hpp +0 -158
  405. mlpack/include/mlpack/core/util/gitversion.hpp +0 -1
  406. mlpack/include/mlpack/methods/ann/convolution_rules/fft_convolution.hpp +0 -213
  407. mlpack/include/mlpack/methods/ann/convolution_rules/svd_convolution.hpp +0 -201
  408. mlpack/include/mlpack/methods/ann/layer/not_adapted/gru.hpp +0 -226
  409. mlpack/include/mlpack/methods/ann/layer/not_adapted/gru_impl.hpp +0 -367
  410. mlpack/include/mlpack/methods/ann/layer/not_adapted/lookup.hpp +0 -139
  411. mlpack/include/mlpack/methods/ann/layer/not_adapted/lookup_impl.hpp +0 -98
  412. mlpack-4.6.2.dist-info/DELVEWHEEL +0 -2
  413. {mlpack-4.6.2.dist-info → mlpack-4.7.0.dist-info}/top_level.txt +0 -0
  414. /mlpack.libs/{.load-order-mlpack-4.6.2 → .load-order-mlpack-4.7.0} +0 -0
@@ -68,7 +68,7 @@ class DecisionTreeRegressor :
68
68
  */
69
69
  template<typename MatType, typename ResponsesType>
70
70
  DecisionTreeRegressor(MatType data,
71
- const data::DatasetInfo& datasetInfo,
71
+ const DatasetInfo& datasetInfo,
72
72
  ResponsesType responses,
73
73
  const size_t minimumLeafSize = 10,
74
74
  const double minimumGainSplit = 1e-7,
@@ -121,7 +121,7 @@ class DecisionTreeRegressor :
121
121
  template<typename MatType, typename ResponsesType, typename WeightsType>
122
122
  DecisionTreeRegressor(
123
123
  MatType data,
124
- const data::DatasetInfo& datasetInfo,
124
+ const DatasetInfo& datasetInfo,
125
125
  ResponsesType responses,
126
126
  WeightsType weights,
127
127
  const size_t minimumLeafSize = 10,
@@ -182,7 +182,7 @@ class DecisionTreeRegressor :
182
182
  DecisionTreeRegressor(
183
183
  const DecisionTreeRegressor& other,
184
184
  MatType data,
185
- const data::DatasetInfo& datasetInfo,
185
+ const DatasetInfo& datasetInfo,
186
186
  ResponsesType responses,
187
187
  WeightsType weights,
188
188
  const size_t minimumLeafSize = 10,
@@ -277,7 +277,7 @@ class DecisionTreeRegressor :
277
277
  */
278
278
  template<typename MatType, typename ResponsesType>
279
279
  double Train(MatType data,
280
- const data::DatasetInfo& datasetInfo,
280
+ const DatasetInfo& datasetInfo,
281
281
  ResponsesType responses,
282
282
  const size_t minimumLeafSize = 10,
283
283
  const double minimumGainSplit = 1e-7,
@@ -338,7 +338,7 @@ class DecisionTreeRegressor :
338
338
  */
339
339
  template<typename MatType, typename ResponsesType, typename WeightsType>
340
340
  double Train(MatType data,
341
- const data::DatasetInfo& datasetInfo,
341
+ const DatasetInfo& datasetInfo,
342
342
  ResponsesType responses,
343
343
  WeightsType weights,
344
344
  const size_t minimumLeafSize = 10,
@@ -481,7 +481,7 @@ class DecisionTreeRegressor :
481
481
  double Train(MatType& data,
482
482
  const size_t begin,
483
483
  const size_t count,
484
- const data::DatasetInfo& datasetInfo,
484
+ const DatasetInfo& datasetInfo,
485
485
  ResponsesType& responses,
486
486
  arma::rowvec& weights,
487
487
  const size_t minimumLeafSize,
@@ -45,7 +45,7 @@ DecisionTreeRegressor<FitnessFunction,
45
45
  DimensionSelectionType,
46
46
  NoRecursion>::DecisionTreeRegressor(
47
47
  MatType data,
48
- const data::DatasetInfo& datasetInfo,
48
+ const DatasetInfo& datasetInfo,
49
49
  ResponsesType responses,
50
50
  const size_t minimumLeafSize,
51
51
  const double minimumGainSplit,
@@ -117,7 +117,7 @@ DecisionTreeRegressor<FitnessFunction,
117
117
  DimensionSelectionType,
118
118
  NoRecursion>::DecisionTreeRegressor(
119
119
  MatType data,
120
- const data::DatasetInfo& datasetInfo,
120
+ const DatasetInfo& datasetInfo,
121
121
  ResponsesType responses,
122
122
  WeightsType weights,
123
123
  const size_t minimumLeafSize,
@@ -199,7 +199,7 @@ DecisionTreeRegressor<FitnessFunction,
199
199
  NoRecursion>::DecisionTreeRegressor(
200
200
  const DecisionTreeRegressor& other,
201
201
  MatType data,
202
- const data::DatasetInfo& datasetInfo,
202
+ const DatasetInfo& datasetInfo,
203
203
  ResponsesType responses,
204
204
  WeightsType weights,
205
205
  const size_t minimumLeafSize,
@@ -429,7 +429,7 @@ double DecisionTreeRegressor<FitnessFunction,
429
429
  DimensionSelectionType,
430
430
  NoRecursion>::Train(
431
431
  MatType data,
432
- const data::DatasetInfo& datasetInfo,
432
+ const DatasetInfo& datasetInfo,
433
433
  ResponsesType responses,
434
434
  const size_t minimumLeafSize,
435
435
  const double minimumGainSplit,
@@ -510,7 +510,7 @@ double DecisionTreeRegressor<FitnessFunction,
510
510
  DimensionSelectionType,
511
511
  NoRecursion>::Train(
512
512
  MatType data,
513
- const data::DatasetInfo& datasetInfo,
513
+ const DatasetInfo& datasetInfo,
514
514
  ResponsesType responses,
515
515
  WeightsType weights,
516
516
  const size_t minimumLeafSize,
@@ -601,7 +601,7 @@ double DecisionTreeRegressor<FitnessFunction,
601
601
  MatType& data,
602
602
  const size_t begin,
603
603
  const size_t count,
604
- const data::DatasetInfo& datasetInfo,
604
+ const DatasetInfo& datasetInfo,
605
605
  ResponsesType& responses,
606
606
  arma::rowvec& weights,
607
607
  const size_t minimumLeafSize,
@@ -630,7 +630,7 @@ double DecisionTreeRegressor<FitnessFunction,
630
630
  i = dimensionSelector.Next())
631
631
  {
632
632
  double dimGain = -DBL_MAX;
633
- if (datasetInfo.Type(i) == data::Datatype::categorical)
633
+ if (datasetInfo.Type(i) == Datatype::categorical)
634
634
  {
635
635
  dimGain = CategoricalSplit::template SplitIfBetter<UseWeights>(bestGain,
636
636
  data.cols(begin, begin + count - 1).row(i),
@@ -643,7 +643,7 @@ double DecisionTreeRegressor<FitnessFunction,
643
643
  *this,
644
644
  fitnessFunction);
645
645
  }
646
- else if (datasetInfo.Type(i) == data::Datatype::numeric)
646
+ else if (datasetInfo.Type(i) == Datatype::numeric)
647
647
  {
648
648
  dimGain = NumericSplit::template SplitIfBetter<UseWeights>(bestGain,
649
649
  data.cols(begin, begin + count - 1).row(i),
@@ -679,14 +679,14 @@ double DecisionTreeRegressor<FitnessFunction,
679
679
 
680
680
  // Get the number of children we will have.
681
681
  size_t numChildren = 0;
682
- if (datasetInfo.Type(bestDim) == data::Datatype::categorical)
682
+ if (datasetInfo.Type(bestDim) == Datatype::categorical)
683
683
  numChildren = CategoricalSplit::NumChildren(splitInfo, *this);
684
684
  else
685
685
  numChildren = NumericSplit::NumChildren(splitInfo, *this);
686
686
 
687
687
  // Calculate all child assignments.
688
688
  arma::Row<size_t> childAssignments(count);
689
- if (datasetInfo.Type(bestDim) == data::Datatype::categorical)
689
+ if (datasetInfo.Type(bestDim) == Datatype::categorical)
690
690
  {
691
691
  for (size_t j = begin; j < begin + count; ++j)
692
692
  childAssignments[j - begin] = CategoricalSplit::CalculateDirection(
@@ -844,7 +844,7 @@ double DecisionTreeRegressor<FitnessFunction,
844
844
  // We know that the split is numeric.
845
845
  size_t numChildren = NumericSplit::NumChildren(splitInfo, *this);
846
846
  splitDimension = bestDim;
847
- dimensionType = (size_t) data::Datatype::numeric;
847
+ dimensionType = (size_t) Datatype::numeric;
848
848
 
849
849
  // Calculate all child assignments.
850
850
  arma::Row<size_t> childAssignments(count);
@@ -986,7 +986,7 @@ size_t DecisionTreeRegressor<FitnessFunction,
986
986
  NoRecursion
987
987
  >::CalculateDirection(const VecType& point) const
988
988
  {
989
- if ((data::Datatype) dimensionType == data::Datatype::categorical)
989
+ if ((Datatype) dimensionType == Datatype::categorical)
990
990
  return CategoricalSplit::CalculateDirection(point[splitDimension],
991
991
  splitInfo, *this);
992
992
  else
@@ -297,7 +297,7 @@ void BINDING_FUNCTION(util::Params& params, util::Timers& timers)
297
297
  }
298
298
 
299
299
  if (params.Has("tag_counters_file"))
300
- data::Save(params.Get<string>("tag_counters_file"), counters);
300
+ Save(params.Get<string>("tag_counters_file"), counters);
301
301
  }
302
302
 
303
303
  timers.Stop("det_test_set_tagging");
@@ -356,7 +356,7 @@ struct Train
356
356
 
357
357
  // Now read the matrix.
358
358
  Mat<size_t> label;
359
- data::Load(lineBuf, label, true); // Fatal on failure.
359
+ Load(lineBuf, label, Fatal);
360
360
 
361
361
  // Ensure that matrix only has one row.
362
362
  if (label.n_cols == 1)
@@ -387,7 +387,7 @@ struct Train
387
387
  else
388
388
  {
389
389
  Mat<size_t> label;
390
- data::Load(labelsFile, label, true);
390
+ Load(labelsFile, label, Fatal);
391
391
 
392
392
  // Ensure that matrix only has one row.
393
393
  if (label.n_cols == 1)
@@ -498,7 +498,7 @@ void BINDING_FUNCTION(util::Params& params, util::Timers& /* timers */)
498
498
 
499
499
  // Now read the matrix.
500
500
  trainSeq.push_back(mat());
501
- data::Load(lineBuf, trainSeq.back(), true); // Fatal on failure.
501
+ Load(lineBuf, trainSeq.back(), Fatal);
502
502
 
503
503
  // See if we need to transpose the data.
504
504
  if (type == "discrete")
@@ -516,7 +516,7 @@ void BINDING_FUNCTION(util::Params& params, util::Timers& /* timers */)
516
516
  {
517
517
  // Only one input file.
518
518
  trainSeq.resize(1);
519
- data::Load(inputFile, trainSeq[0], true);
519
+ Load(inputFile, trainSeq[0], Fatal);
520
520
  }
521
521
 
522
522
  // Get the type.
@@ -38,7 +38,7 @@ template<typename ActionType, typename ExtraInfoType>
38
38
  void LoadHMMAndPerformAction(const std::string& modelFile,
39
39
  ExtraInfoType* x)
40
40
  {
41
- const std::string extension = data::Extension(modelFile);
41
+ const std::string extension = Extension(modelFile);
42
42
  if (extension == "xml")
43
43
  {
44
44
  LoadHMMAndPerformActionHelper<ActionType, cereal::XMLInputArchive>(
@@ -126,7 +126,7 @@ char GetHMMType();
126
126
  template<typename HMMType>
127
127
  void SaveHMM(HMMType& hmm, const std::string& modelFile)
128
128
  {
129
- const std::string extension = data::Extension(modelFile);
129
+ const std::string extension = Extension(modelFile);
130
130
  if (extension == "xml")
131
131
  SaveHMMHelper<cereal::XMLOutputArchive>(hmm, modelFile);
132
132
  else if (extension == "bin")
@@ -133,7 +133,7 @@ class HoeffdingTree
133
133
  * @param copyDatasetInfo If true, then a copy of the datasetInfo will be
134
134
  * made.
135
135
  */
136
- HoeffdingTree(const data::DatasetInfo& datasetInfo,
136
+ HoeffdingTree(const DatasetInfo& datasetInfo,
137
137
  const size_t numClasses,
138
138
  const double successProbability = 0.95,
139
139
  const size_t maxSamples = 0,
@@ -211,7 +211,7 @@ class HoeffdingTree
211
211
  */
212
212
  template<typename MatType>
213
213
  HoeffdingTree(const MatType& data,
214
- const data::DatasetInfo& datasetInfo,
214
+ const DatasetInfo& datasetInfo,
215
215
  const arma::Row<size_t>& labels,
216
216
  const size_t numClasses,
217
217
  const bool batchTraining = true,
@@ -330,7 +330,7 @@ class HoeffdingTree
330
330
  */
331
331
  template<typename MatType>
332
332
  void Train(const MatType& data,
333
- const data::DatasetInfo& info,
333
+ const DatasetInfo& info,
334
334
  const arma::Row<size_t>& labels,
335
335
  const size_t numClasses = 0,
336
336
  const bool batchTraining = true,
@@ -340,7 +340,7 @@ class HoeffdingTree
340
340
 
341
341
  template<typename MatType>
342
342
  void Train(const MatType& data,
343
- const data::DatasetInfo& info,
343
+ const DatasetInfo& info,
344
344
  const arma::Row<size_t>& labels,
345
345
  const size_t numClasses,
346
346
  const bool batchTraining,
@@ -497,7 +497,7 @@ class HoeffdingTree
497
497
  /**
498
498
  * Reset the tree, setting a new number of classes and a new datasetInfo.
499
499
  */
500
- void Reset(const data::DatasetInfo& datasetInfo, const size_t numClasses);
500
+ void Reset(const DatasetInfo& datasetInfo, const size_t numClasses);
501
501
 
502
502
  //! Serialize the split.
503
503
  template<typename Archive>
@@ -527,7 +527,7 @@ class HoeffdingTree
527
527
  //! The minimum number of samples for splitting.
528
528
  size_t minSamples;
529
529
  //! The dataset information.
530
- const data::DatasetInfo* datasetInfo;
530
+ const DatasetInfo* datasetInfo;
531
531
  //! Whether or not we own the dataset information.
532
532
  bool ownsInfo;
533
533
  //! The required probability of success for a split to be performed.
@@ -33,7 +33,7 @@ HoeffdingTree<
33
33
  maxSamples(size_t(-1)),
34
34
  checkInterval(100),
35
35
  minSamples(100),
36
- datasetInfo(new data::DatasetInfo()),
36
+ datasetInfo(new DatasetInfo()),
37
37
  ownsInfo(true),
38
38
  successProbability(0.95),
39
39
  splitDimension(size_t(-1)),
@@ -71,7 +71,7 @@ HoeffdingTree<
71
71
  maxSamples((maxSamples == 0) ? size_t(-1) : maxSamples),
72
72
  checkInterval(checkInterval),
73
73
  minSamples(minSamples),
74
- datasetInfo(new data::DatasetInfo(dimensionality)),
74
+ datasetInfo(new DatasetInfo(dimensionality)),
75
75
  ownsInfo(true),
76
76
  successProbability(successProbability),
77
77
  splitDimension(size_t(-1)),
@@ -103,7 +103,7 @@ HoeffdingTree<
103
103
  FitnessFunction,
104
104
  NumericSplitType,
105
105
  CategoricalSplitType
106
- >::HoeffdingTree(const data::DatasetInfo& datasetInfo,
106
+ >::HoeffdingTree(const DatasetInfo& datasetInfo,
107
107
  const size_t numClasses,
108
108
  const double successProbability,
109
109
  const size_t maxSamples,
@@ -123,7 +123,7 @@ HoeffdingTree<
123
123
  maxSamples((maxSamples == 0) ? size_t(-1) : maxSamples),
124
124
  checkInterval(checkInterval),
125
125
  minSamples(minSamples),
126
- datasetInfo(copyDatasetInfo ? new data::DatasetInfo(datasetInfo) :
126
+ datasetInfo(copyDatasetInfo ? new DatasetInfo(datasetInfo) :
127
127
  &datasetInfo),
128
128
  ownsInfo(copyDatasetInfo),
129
129
  successProbability(successProbability),
@@ -142,7 +142,7 @@ HoeffdingTree<
142
142
  {
143
143
  for (size_t i = 0; i < datasetInfo.Dimensionality(); ++i)
144
144
  {
145
- if (datasetInfo.Type(i) == data::Datatype::categorical)
145
+ if (datasetInfo.Type(i) == Datatype::categorical)
146
146
  {
147
147
  categoricalSplits.push_back(CategoricalSplitType<FitnessFunction>(
148
148
  datasetInfo.NumMappings(i), numClasses, categoricalSplitIn));
@@ -182,7 +182,7 @@ HoeffdingTree<
182
182
  maxSamples((maxSamples == 0) ? size_t(-1) : maxSamples),
183
183
  checkInterval(checkInterval),
184
184
  minSamples(minSamples),
185
- datasetInfo(new data::DatasetInfo(data.n_rows)),
185
+ datasetInfo(new DatasetInfo(data.n_rows)),
186
186
  ownsInfo(true),
187
187
  successProbability(successProbability),
188
188
  splitDimension(size_t(-1)),
@@ -207,7 +207,7 @@ HoeffdingTree<
207
207
  NumericSplitType,
208
208
  CategoricalSplitType
209
209
  >::HoeffdingTree(const MatType& data,
210
- const data::DatasetInfo& datasetInfoIn,
210
+ const DatasetInfo& datasetInfoIn,
211
211
  const arma::Row<size_t>& labels,
212
212
  const size_t numClasses,
213
213
  const bool batchTraining,
@@ -225,7 +225,7 @@ HoeffdingTree<
225
225
  maxSamples((maxSamples == 0) ? size_t(-1) : maxSamples),
226
226
  checkInterval(checkInterval),
227
227
  minSamples(minSamples),
228
- datasetInfo(new data::DatasetInfo(datasetInfoIn)),
228
+ datasetInfo(new DatasetInfo(datasetInfoIn)),
229
229
  ownsInfo(true),
230
230
  successProbability(successProbability),
231
231
  splitDimension(size_t(-1)),
@@ -257,7 +257,7 @@ HoeffdingTree<FitnessFunction, NumericSplitType, CategoricalSplitType>::
257
257
  maxSamples(other.maxSamples),
258
258
  checkInterval(other.checkInterval),
259
259
  minSamples(other.minSamples),
260
- datasetInfo(new data::DatasetInfo(*other.datasetInfo)),
260
+ datasetInfo(new DatasetInfo(*other.datasetInfo)),
261
261
  ownsInfo(true),
262
262
  successProbability(other.successProbability),
263
263
  splitDimension(other.splitDimension),
@@ -341,7 +341,7 @@ HoeffdingTree<FitnessFunction, NumericSplitType, CategoricalSplitType>&
341
341
  maxSamples = other.maxSamples;
342
342
  checkInterval = other.checkInterval;
343
343
  minSamples = other.minSamples;
344
- datasetInfo = new data::DatasetInfo(*other.datasetInfo);
344
+ datasetInfo = new DatasetInfo(*other.datasetInfo);
345
345
  ownsInfo = true;
346
346
  successProbability = other.successProbability;
347
347
  splitDimension = other.splitDimension;
@@ -482,7 +482,7 @@ void HoeffdingTree<
482
482
  // Create a new datasetInfo, which assumes that all features are numeric.
483
483
  if (ownsInfo)
484
484
  delete datasetInfo;
485
- datasetInfo = new data::DatasetInfo(data.n_rows);
485
+ datasetInfo = new DatasetInfo(data.n_rows);
486
486
  ownsInfo = true;
487
487
 
488
488
  // Set the number of classes correctly.
@@ -510,7 +510,7 @@ void HoeffdingTree<
510
510
  NumericSplitType,
511
511
  CategoricalSplitType
512
512
  >::Train(const MatType& data,
513
- const data::DatasetInfo& info,
513
+ const DatasetInfo& info,
514
514
  const arma::Row<size_t>& labels,
515
515
  const size_t numClasses,
516
516
  const bool batchTraining,
@@ -535,7 +535,7 @@ void HoeffdingTree<
535
535
  NumericSplitType,
536
536
  CategoricalSplitType
537
537
  >::Train(const MatType& data,
538
- const data::DatasetInfo& info,
538
+ const DatasetInfo& info,
539
539
  const arma::Row<size_t>& labels,
540
540
  const size_t numClasses,
541
541
  const bool batchTraining,
@@ -596,9 +596,9 @@ void HoeffdingTree<
596
596
  size_t categoricalIndex = 0;
597
597
  for (size_t i = 0; i < point.n_rows; ++i)
598
598
  {
599
- if (datasetInfo->Type(i) == data::Datatype::categorical)
599
+ if (datasetInfo->Type(i) == Datatype::categorical)
600
600
  categoricalSplits[categoricalIndex++].Train(point[i], label);
601
- else if (datasetInfo->Type(i) == data::Datatype::numeric)
601
+ else if (datasetInfo->Type(i) == Datatype::numeric)
602
602
  numericSplits[numericIndex++].Train(point[i], label);
603
603
  }
604
604
 
@@ -673,10 +673,10 @@ size_t HoeffdingTree<
673
673
  // best two splits that can be done in every network.
674
674
  double bestGain = 0.0;
675
675
  double secondBestGain = 0.0;
676
- if (type == data::Datatype::categorical)
676
+ if (type == Datatype::categorical)
677
677
  categoricalSplits[index].EvaluateFitnessFunction(bestGain,
678
678
  secondBestGain);
679
- else if (type == data::Datatype::numeric)
679
+ else if (type == Datatype::numeric)
680
680
  numericSplits[index].EvaluateFitnessFunction(bestGain, secondBestGain);
681
681
 
682
682
  // See if these gains are better than the previous.
@@ -706,7 +706,7 @@ size_t HoeffdingTree<
706
706
  splitDimension = largestIndex;
707
707
  const size_t type = dimensionMappings->at(largestIndex).first;
708
708
  const size_t index = dimensionMappings->at(largestIndex).second;
709
- if (type == data::Datatype::categorical)
709
+ if (type == Datatype::categorical)
710
710
  {
711
711
  // I don't know if this should be here.
712
712
  majorityClass = categoricalSplits[index].MajorityClass();
@@ -801,9 +801,9 @@ size_t HoeffdingTree<
801
801
  >::CalculateDirection(const VecType& point) const
802
802
  {
803
803
  // Don't call this before the node is split...
804
- if (datasetInfo->Type(splitDimension) == data::Datatype::numeric)
804
+ if (datasetInfo->Type(splitDimension) == Datatype::numeric)
805
805
  return numericSplit.CalculateDirection(point[splitDimension]);
806
- else if (datasetInfo->Type(splitDimension) == data::Datatype::categorical)
806
+ else if (datasetInfo->Type(splitDimension) == Datatype::categorical)
807
807
  return categoricalSplit.CalculateDirection(point[splitDimension]);
808
808
  else
809
809
  return 0; // Not sure what to do here...
@@ -938,13 +938,13 @@ void HoeffdingTree<
938
938
  // Create the children.
939
939
  arma::Col<size_t> childMajorities;
940
940
  if (dimensionMappings->at(splitDimension).first ==
941
- data::Datatype::categorical)
941
+ Datatype::categorical)
942
942
  {
943
943
  categoricalSplits[dimensionMappings->at(splitDimension).second].Split(
944
944
  childMajorities, categoricalSplit);
945
945
  }
946
946
  else if (dimensionMappings->at(splitDimension).first ==
947
- data::Datatype::numeric)
947
+ Datatype::numeric)
948
948
  {
949
949
  numericSplits[dimensionMappings->at(splitDimension).second].Split(
950
950
  childMajorities, numericSplit);
@@ -1016,7 +1016,7 @@ void HoeffdingTree<
1016
1016
  {
1017
1017
  if (ownsInfo)
1018
1018
  delete datasetInfo;
1019
- datasetInfo = new data::DatasetInfo(dimensionality); // All features numeric.
1019
+ datasetInfo = new DatasetInfo(dimensionality); // All features numeric.
1020
1020
  ownsInfo = true;
1021
1021
 
1022
1022
  this->numClasses = numClasses;
@@ -1033,7 +1033,7 @@ void HoeffdingTree<
1033
1033
  FitnessFunction,
1034
1034
  NumericSplitType,
1035
1035
  CategoricalSplitType
1036
- >::Reset(const data::DatasetInfo& info, const size_t numClasses)
1036
+ >::Reset(const DatasetInfo& info, const size_t numClasses)
1037
1037
  {
1038
1038
  if (ownsInfo)
1039
1039
  delete datasetInfo;
@@ -1066,9 +1066,9 @@ void HoeffdingTree<
1066
1066
  ar(CEREAL_POINTER(dimensionMappings));
1067
1067
 
1068
1068
  // Special handling for const object.
1069
- data::DatasetInfo* d = NULL;
1069
+ DatasetInfo* d = NULL;
1070
1070
  if (cereal::is_saving<Archive>())
1071
- d = const_cast<data::DatasetInfo*>(datasetInfo);
1071
+ d = const_cast<DatasetInfo*>(datasetInfo);
1072
1072
  ar(CEREAL_POINTER(d));
1073
1073
 
1074
1074
  if (cereal::is_loading<Archive>())
@@ -1108,7 +1108,7 @@ void HoeffdingTree<
1108
1108
  categoricalSplits.clear();
1109
1109
  for (size_t i = 0; i < datasetInfo->Dimensionality(); ++i)
1110
1110
  {
1111
- if (datasetInfo->Type(i) == data::Datatype::categorical)
1111
+ if (datasetInfo->Type(i) == Datatype::categorical)
1112
1112
  categoricalSplits.push_back(CategoricalSplitType<FitnessFunction>(
1113
1113
  datasetInfo->NumMappings(i), numClasses));
1114
1114
  else
@@ -1136,7 +1136,7 @@ void HoeffdingTree<
1136
1136
  else
1137
1137
  {
1138
1138
  // We have split, so we only need to save the split and the children.
1139
- if (datasetInfo->Type(splitDimension) == data::Datatype::categorical)
1139
+ if (datasetInfo->Type(splitDimension) == Datatype::categorical)
1140
1140
  ar(CEREAL_NVP(categoricalSplit));
1141
1141
  else
1142
1142
  ar(CEREAL_NVP(numericSplit));
@@ -1280,18 +1280,18 @@ void HoeffdingTree<
1280
1280
  ownsMappings = true;
1281
1281
  for (size_t i = 0; i < datasetInfo->Dimensionality(); ++i)
1282
1282
  {
1283
- if (datasetInfo->Type(i) == data::Datatype::categorical)
1283
+ if (datasetInfo->Type(i) == Datatype::categorical)
1284
1284
  {
1285
1285
  categoricalSplits.push_back(CategoricalSplitType<FitnessFunction>(
1286
1286
  datasetInfo->NumMappings(i), numClasses, categoricalSplitIn));
1287
- (*dimensionMappings)[i] = std::make_pair(data::Datatype::categorical,
1287
+ (*dimensionMappings)[i] = std::make_pair(Datatype::categorical,
1288
1288
  categoricalSplits.size() - 1);
1289
1289
  }
1290
1290
  else
1291
1291
  {
1292
1292
  numericSplits.push_back(NumericSplitType<FitnessFunction>(numClasses,
1293
1293
  numericSplitIn));
1294
- (*dimensionMappings)[i] = std::make_pair(data::Datatype::numeric,
1294
+ (*dimensionMappings)[i] = std::make_pair(Datatype::numeric,
1295
1295
  numericSplits.size() - 1);
1296
1296
  }
1297
1297
  }
@@ -23,7 +23,6 @@
23
23
 
24
24
  using namespace std;
25
25
  using namespace mlpack;
26
- using namespace mlpack::data;
27
26
  using namespace mlpack::util;
28
27
 
29
28
  // Program Name.
@@ -276,7 +275,7 @@ void BINDING_FUNCTION(util::Params& params, util::Timers& timers)
276
275
  if (params.Has("test"))
277
276
  {
278
277
  // Before loading, pre-set the dataset info by getting the raw parameter
279
- // (that doesn't call data::Load()).
278
+ // (that doesn't call Load()).
280
279
  std::get<0>(params.GetRaw<TupleType>("test")) = datasetInfo;
281
280
  arma::mat testSet = std::get<1>(params.Get<TupleType>("test"));
282
281
 
@@ -112,7 +112,7 @@ class HoeffdingTreeModel
112
112
  * Hoeffding numeric split.
113
113
  */
114
114
  void BuildModel(const arma::mat& dataset,
115
- const data::DatasetInfo& datasetInfo,
115
+ const DatasetInfo& datasetInfo,
116
116
  const arma::Row<size_t>& labels,
117
117
  const size_t numClasses,
118
118
  const bool batchTraining,
@@ -185,7 +185,7 @@ class HoeffdingTreeModel
185
185
  ar(CEREAL_NVP(type));
186
186
 
187
187
  // Fake dataset info may be needed to create fake trees.
188
- data::DatasetInfo info;
188
+ DatasetInfo info;
189
189
  if (type == GINI_HOEFFDING)
190
190
  ar(CEREAL_POINTER(giniHoeffdingTree));
191
191
  else if (type == GINI_BINARY)
@@ -129,7 +129,7 @@ inline HoeffdingTreeModel::~HoeffdingTreeModel()
129
129
  // Create the model.
130
130
  inline void HoeffdingTreeModel::BuildModel(
131
131
  const arma::mat& dataset,
132
- const data::DatasetInfo& datasetInfo,
132
+ const DatasetInfo& datasetInfo,
133
133
  const arma::Row<size_t>& labels,
134
134
  const size_t numClasses,
135
135
  const bool batchTraining,
@@ -226,10 +226,10 @@ Score(const size_t queryIndex, TreeType& referenceNode)
226
226
  sample(oldSize + i) =
227
227
  EvaluateKernel(queryIndex, referenceNode.Descendant(randomPoint));
228
228
  }
229
- meanSample = arma::mean(sample);
230
- const double stddev = arma::stddev(sample);
229
+ meanSample = mean(sample);
230
+ const double sampleStddev = stddev(sample);
231
231
  const double mThreshBase =
232
- z * stddev * (1 + relError) / (relError * meanSample);
232
+ z * sampleStddev * (1 + relError) / (relError * meanSample);
233
233
  const size_t mThresh = std::ceil(mThreshBase * mThreshBase);
234
234
 
235
235
  if (sample.size() < mThresh)
@@ -441,10 +441,10 @@ Score(TreeType& queryNode, TreeType& referenceNode)
441
441
  sample(oldSize + i) =
442
442
  EvaluateKernel(queryIndex, referenceNode.Descendant(randomPoint));
443
443
  }
444
- meanSample = arma::mean(sample);
445
- const double stddev = arma::stddev(sample);
444
+ meanSample = mean(sample);
445
+ const double sampleStddev = stddev(sample);
446
446
  const double mThreshBase =
447
- z * stddev * (1 + relError) / (relError * meanSample);
447
+ z * sampleStddev * (1 + relError) / (relError * meanSample);
448
448
  const size_t mThresh = std::ceil(mThreshBase * mThreshBase);
449
449
 
450
450
  if (sample.size() < mThresh)
@@ -510,7 +510,7 @@ LARS<ModelMatType>::Train(const MatType& matX,
510
510
  {
511
511
  if (fitIntercept)
512
512
  {
513
- offsetX = arma::mean(matX, 1);
513
+ offsetX = mean(matX, 1);
514
514
  dataTrans = (matX.each_col() - offsetX).t();
515
515
  }
516
516
 
@@ -536,7 +536,7 @@ LARS<ModelMatType>::Train(const MatType& matX,
536
536
  // We don't need to transpose the data---it's already in row-major form.
537
537
  if (fitIntercept)
538
538
  {
539
- offsetX = arma::mean(matX, 0).t();
539
+ offsetX = mean(matX, 0).t();
540
540
  dataTrans = (matX.each_row() - offsetX.t());
541
541
  }
542
542
 
@@ -558,7 +558,7 @@ LARS<ModelMatType>::Train(const MatType& matX,
558
558
 
559
559
  if (fitIntercept)
560
560
  {
561
- this->offsetY = arma::mean(y);
561
+ this->offsetY = mean(y);
562
562
  yCentered = y - this->offsetY;
563
563
  }
564
564
 
@@ -288,7 +288,7 @@ void LinearSVMFunction<MatType, ParametersType>::Gradient(
288
288
  }
289
289
  else
290
290
  {
291
- gradient.set_size(arma::size(parameters));
291
+ gradient.set_size(size(parameters));
292
292
  gradient.submat(0, 0, parameters.n_rows - 2, parameters.n_cols - 1) =
293
293
  dataset * difference.t();
294
294
  gradient.row(parameters.n_rows - 1) =
@@ -345,7 +345,7 @@ void LinearSVMFunction<MatType, ParametersType>::Gradient(
345
345
  }
346
346
  else
347
347
  {
348
- gradient.set_size(arma::size(parameters));
348
+ gradient.set_size(size(parameters));
349
349
  gradient.submat(0, 0, parameters.n_rows - 2, parameters.n_cols - 1) =
350
350
  dataset.cols(firstId, lastId) * difference.t();
351
351
  gradient.row(parameters.n_rows - 1) =
@@ -400,7 +400,7 @@ LinearSVMFunction<MatType, ParametersType>::EvaluateWithGradient(
400
400
  }
401
401
  else
402
402
  {
403
- gradient.set_size(arma::size(parameters));
403
+ gradient.set_size(size(parameters));
404
404
  gradient.submat(0, 0, parameters.n_rows - 2, parameters.n_cols - 1) =
405
405
  dataset * difference.t();
406
406
  gradient.row(parameters.n_rows - 1) =
@@ -472,7 +472,7 @@ LinearSVMFunction<MatType, ParametersType>::EvaluateWithGradient(
472
472
  }
473
473
  else
474
474
  {
475
- gradient.set_size(arma::size(parameters));
475
+ gradient.set_size(size(parameters));
476
476
  gradient.submat(0, 0, parameters.n_rows - 2, parameters.n_cols - 1) =
477
477
  dataset.cols(firstId, lastId) * difference.t();
478
478
  gradient.row(parameters.n_rows - 1) =