mlpack 4.6.2__cp310-cp310-win_amd64.whl → 4.7.0__cp310-cp310-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (415) hide show
  1. mlpack/__init__.py +4 -4
  2. mlpack/adaboost_classify.cp310-win_amd64.pyd +0 -0
  3. mlpack/adaboost_probabilities.cp310-win_amd64.pyd +0 -0
  4. mlpack/adaboost_train.cp310-win_amd64.pyd +0 -0
  5. mlpack/approx_kfn.cp310-win_amd64.pyd +0 -0
  6. mlpack/arma_numpy.cp310-win_amd64.pyd +0 -0
  7. mlpack/bayesian_linear_regression.cp310-win_amd64.pyd +0 -0
  8. mlpack/cf.cp310-win_amd64.pyd +0 -0
  9. mlpack/dbscan.cp310-win_amd64.pyd +0 -0
  10. mlpack/decision_tree.cp310-win_amd64.pyd +0 -0
  11. mlpack/det.cp310-win_amd64.pyd +0 -0
  12. mlpack/emst.cp310-win_amd64.pyd +0 -0
  13. mlpack/fastmks.cp310-win_amd64.pyd +0 -0
  14. mlpack/gmm_generate.cp310-win_amd64.pyd +0 -0
  15. mlpack/gmm_probability.cp310-win_amd64.pyd +0 -0
  16. mlpack/gmm_train.cp310-win_amd64.pyd +0 -0
  17. mlpack/hmm_generate.cp310-win_amd64.pyd +0 -0
  18. mlpack/hmm_loglik.cp310-win_amd64.pyd +0 -0
  19. mlpack/hmm_train.cp310-win_amd64.pyd +0 -0
  20. mlpack/hmm_viterbi.cp310-win_amd64.pyd +0 -0
  21. mlpack/hoeffding_tree.cp310-win_amd64.pyd +0 -0
  22. mlpack/image_converter.cp310-win_amd64.pyd +0 -0
  23. mlpack/include/mlpack/base.hpp +1 -0
  24. mlpack/include/mlpack/core/arma_extend/find_nan.hpp +63 -0
  25. mlpack/include/mlpack/core/cereal/low_precision.hpp +48 -0
  26. mlpack/include/mlpack/core/cv/cv_base.hpp +11 -11
  27. mlpack/include/mlpack/core/cv/cv_base_impl.hpp +7 -7
  28. mlpack/include/mlpack/core/cv/k_fold_cv.hpp +4 -4
  29. mlpack/include/mlpack/core/cv/k_fold_cv_impl.hpp +4 -4
  30. mlpack/include/mlpack/core/cv/meta_info_extractor.hpp +10 -10
  31. mlpack/include/mlpack/core/cv/metrics/f1_impl.hpp +1 -1
  32. mlpack/include/mlpack/core/cv/metrics/facilities.hpp +2 -1
  33. mlpack/include/mlpack/core/cv/metrics/precision_impl.hpp +1 -1
  34. mlpack/include/mlpack/core/cv/metrics/r2_score_impl.hpp +1 -1
  35. mlpack/include/mlpack/core/cv/metrics/silhouette_score_impl.hpp +1 -1
  36. mlpack/include/mlpack/core/cv/simple_cv.hpp +4 -4
  37. mlpack/include/mlpack/core/cv/simple_cv_impl.hpp +2 -2
  38. mlpack/include/mlpack/core/data/binarize.hpp +0 -2
  39. mlpack/include/mlpack/core/data/check_categorical_param.hpp +0 -2
  40. mlpack/include/mlpack/core/data/combine_options.hpp +151 -0
  41. mlpack/include/mlpack/core/data/confusion_matrix.hpp +0 -2
  42. mlpack/include/mlpack/core/data/confusion_matrix_impl.hpp +0 -2
  43. mlpack/include/mlpack/core/data/data.hpp +6 -4
  44. mlpack/include/mlpack/core/data/data_options.hpp +341 -18
  45. mlpack/include/mlpack/core/data/dataset_mapper.hpp +3 -5
  46. mlpack/include/mlpack/core/data/dataset_mapper_impl.hpp +0 -2
  47. mlpack/include/mlpack/core/data/detect_file_type.hpp +34 -5
  48. mlpack/include/mlpack/core/data/detect_file_type_impl.hpp +185 -11
  49. mlpack/include/mlpack/core/data/extension.hpp +2 -4
  50. mlpack/include/mlpack/core/data/font8x8_basic.h +152 -0
  51. mlpack/include/mlpack/core/data/has_serialize.hpp +0 -2
  52. mlpack/include/mlpack/core/data/image_bounding_box.hpp +36 -0
  53. mlpack/include/mlpack/core/data/image_bounding_box_impl.hpp +155 -0
  54. mlpack/include/mlpack/core/data/image_layout.hpp +63 -0
  55. mlpack/include/mlpack/core/data/image_layout_impl.hpp +75 -0
  56. mlpack/include/mlpack/core/data/image_letterbox.hpp +116 -0
  57. mlpack/include/mlpack/core/data/image_options.hpp +257 -0
  58. mlpack/include/mlpack/core/data/image_resize_crop.hpp +113 -48
  59. mlpack/include/mlpack/core/data/imputation_methods/custom_imputation.hpp +16 -32
  60. mlpack/include/mlpack/core/data/imputation_methods/listwise_deletion.hpp +19 -29
  61. mlpack/include/mlpack/core/data/imputation_methods/mean_imputation.hpp +113 -44
  62. mlpack/include/mlpack/core/data/imputation_methods/median_imputation.hpp +44 -43
  63. mlpack/include/mlpack/core/data/imputer.hpp +41 -49
  64. mlpack/include/mlpack/core/data/is_naninf.hpp +0 -2
  65. mlpack/include/mlpack/core/data/load.hpp +49 -233
  66. mlpack/include/mlpack/core/data/load_arff.hpp +0 -2
  67. mlpack/include/mlpack/core/data/load_arff_impl.hpp +2 -4
  68. mlpack/include/mlpack/core/data/load_categorical.hpp +1 -4
  69. mlpack/include/mlpack/core/data/load_categorical_impl.hpp +10 -26
  70. mlpack/include/mlpack/core/data/load_dense.hpp +279 -0
  71. mlpack/include/mlpack/core/data/load_deprecated.hpp +466 -0
  72. mlpack/include/mlpack/core/data/load_image.hpp +71 -43
  73. mlpack/include/mlpack/core/data/load_impl.hpp +95 -274
  74. mlpack/include/mlpack/core/data/load_model.hpp +62 -0
  75. mlpack/include/mlpack/core/data/load_numeric.hpp +124 -87
  76. mlpack/include/mlpack/core/data/load_sparse.hpp +91 -0
  77. mlpack/include/mlpack/core/data/map_policies/datatype.hpp +0 -2
  78. mlpack/include/mlpack/core/data/map_policies/increment_policy.hpp +0 -2
  79. mlpack/include/mlpack/core/data/map_policies/map_policies.hpp +0 -1
  80. mlpack/include/mlpack/core/data/matrix_options.hpp +152 -20
  81. mlpack/include/mlpack/core/data/normalize_labels.hpp +0 -2
  82. mlpack/include/mlpack/core/data/normalize_labels_impl.hpp +0 -2
  83. mlpack/include/mlpack/core/data/one_hot_encoding.hpp +2 -4
  84. mlpack/include/mlpack/core/data/one_hot_encoding_impl.hpp +3 -5
  85. mlpack/include/mlpack/core/data/save.hpp +26 -120
  86. mlpack/include/mlpack/core/data/save_dense.hpp +42 -0
  87. mlpack/include/mlpack/core/data/save_deprecated.hpp +308 -0
  88. mlpack/include/mlpack/core/data/save_image.hpp +82 -42
  89. mlpack/include/mlpack/core/data/save_impl.hpp +60 -245
  90. mlpack/include/mlpack/core/data/save_matrix.hpp +45 -0
  91. mlpack/include/mlpack/core/data/save_model.hpp +61 -0
  92. mlpack/include/mlpack/core/data/save_numeric.hpp +60 -0
  93. mlpack/include/mlpack/core/data/save_sparse.hpp +44 -0
  94. mlpack/include/mlpack/core/data/scaler_methods/max_abs_scaler.hpp +0 -2
  95. mlpack/include/mlpack/core/data/scaler_methods/mean_normalization.hpp +2 -4
  96. mlpack/include/mlpack/core/data/scaler_methods/min_max_scaler.hpp +0 -2
  97. mlpack/include/mlpack/core/data/scaler_methods/pca_whitening.hpp +1 -3
  98. mlpack/include/mlpack/core/data/scaler_methods/standard_scaler.hpp +2 -4
  99. mlpack/include/mlpack/core/data/scaler_methods/zca_whitening.hpp +0 -2
  100. mlpack/include/mlpack/core/data/split_data.hpp +6 -8
  101. mlpack/include/mlpack/core/data/string_algorithms.hpp +0 -2
  102. mlpack/include/mlpack/core/data/string_encoding.hpp +0 -2
  103. mlpack/include/mlpack/core/data/string_encoding_dictionary.hpp +0 -2
  104. mlpack/include/mlpack/core/data/string_encoding_impl.hpp +0 -2
  105. mlpack/include/mlpack/core/data/string_encoding_policies/bag_of_words_encoding_policy.hpp +0 -2
  106. mlpack/include/mlpack/core/data/string_encoding_policies/dictionary_encoding_policy.hpp +0 -2
  107. mlpack/include/mlpack/core/data/string_encoding_policies/policy_traits.hpp +0 -2
  108. mlpack/include/mlpack/core/data/string_encoding_policies/tf_idf_encoding_policy.hpp +0 -2
  109. mlpack/include/mlpack/core/data/text_options.hpp +91 -53
  110. mlpack/include/mlpack/core/data/tokenizers/char_extract.hpp +0 -2
  111. mlpack/include/mlpack/core/data/tokenizers/split_by_any_of.hpp +0 -2
  112. mlpack/include/mlpack/core/distributions/gamma_distribution_impl.hpp +4 -4
  113. mlpack/include/mlpack/core/distributions/laplace_distribution.hpp +9 -9
  114. mlpack/include/mlpack/core/distributions/laplace_distribution_impl.hpp +7 -7
  115. mlpack/include/mlpack/core/hpt/cv_function.hpp +2 -2
  116. mlpack/include/mlpack/core/hpt/cv_function_impl.hpp +2 -2
  117. mlpack/include/mlpack/core/hpt/hpt.hpp +4 -4
  118. mlpack/include/mlpack/core/hpt/hpt_impl.hpp +9 -9
  119. mlpack/include/mlpack/core/math/make_alias.hpp +7 -5
  120. mlpack/include/mlpack/core/math/random.hpp +19 -5
  121. mlpack/include/mlpack/core/math/shuffle_data.hpp +79 -245
  122. mlpack/include/mlpack/core/metrics/non_maximal_suppression_impl.hpp +9 -10
  123. mlpack/include/mlpack/core/stb/bundled/stb_image_resize2.h +291 -239
  124. mlpack/include/mlpack/core/tree/binary_space_tree/rp_tree_mean_split_impl.hpp +7 -7
  125. mlpack/include/mlpack/core/tree/cellbound.hpp +2 -2
  126. mlpack/include/mlpack/core/tree/cosine_tree/cosine_tree_impl.hpp +10 -10
  127. mlpack/include/mlpack/core/tree/octree/octree.hpp +10 -0
  128. mlpack/include/mlpack/core/tree/octree/octree_impl.hpp +14 -4
  129. mlpack/include/mlpack/core/util/arma_traits.hpp +25 -38
  130. mlpack/include/mlpack/core/util/coot_traits.hpp +97 -0
  131. mlpack/include/mlpack/core/util/forward.hpp +0 -2
  132. mlpack/include/mlpack/core/util/param.hpp +4 -4
  133. mlpack/include/mlpack/core/util/params_impl.hpp +2 -2
  134. mlpack/include/mlpack/core/util/using.hpp +29 -2
  135. mlpack/include/mlpack/core/util/version.hpp +5 -3
  136. mlpack/include/mlpack/core/util/version_impl.hpp +3 -6
  137. mlpack/include/mlpack/methods/adaboost/adaboost_classify_main.cpp +1 -1
  138. mlpack/include/mlpack/methods/adaboost/adaboost_main.cpp +3 -3
  139. mlpack/include/mlpack/methods/adaboost/adaboost_train_main.cpp +2 -2
  140. mlpack/include/mlpack/methods/ann/activation_functions/activation_functions.hpp +1 -0
  141. mlpack/include/mlpack/methods/ann/activation_functions/bipolar_sigmoid_function.hpp +6 -4
  142. mlpack/include/mlpack/methods/ann/activation_functions/elish_function.hpp +17 -12
  143. mlpack/include/mlpack/methods/ann/activation_functions/elliot_function.hpp +9 -7
  144. mlpack/include/mlpack/methods/ann/activation_functions/gaussian_function.hpp +7 -6
  145. mlpack/include/mlpack/methods/ann/activation_functions/gelu_exact_function.hpp +73 -0
  146. mlpack/include/mlpack/methods/ann/activation_functions/gelu_function.hpp +27 -16
  147. mlpack/include/mlpack/methods/ann/activation_functions/hard_sigmoid_function.hpp +8 -6
  148. mlpack/include/mlpack/methods/ann/activation_functions/hard_swish_function.hpp +6 -4
  149. mlpack/include/mlpack/methods/ann/activation_functions/hyper_sinh_function.hpp +13 -8
  150. mlpack/include/mlpack/methods/ann/activation_functions/identity_function.hpp +6 -4
  151. mlpack/include/mlpack/methods/ann/activation_functions/inverse_quadratic_function.hpp +8 -6
  152. mlpack/include/mlpack/methods/ann/activation_functions/lisht_function.hpp +7 -5
  153. mlpack/include/mlpack/methods/ann/activation_functions/logistic_function.hpp +14 -12
  154. mlpack/include/mlpack/methods/ann/activation_functions/mish_function.hpp +7 -5
  155. mlpack/include/mlpack/methods/ann/activation_functions/multi_quadratic_function.hpp +6 -4
  156. mlpack/include/mlpack/methods/ann/activation_functions/poisson1_function.hpp +4 -2
  157. mlpack/include/mlpack/methods/ann/activation_functions/quadratic_function.hpp +6 -4
  158. mlpack/include/mlpack/methods/ann/activation_functions/rectifier_function.hpp +10 -10
  159. mlpack/include/mlpack/methods/ann/activation_functions/silu_function.hpp +10 -8
  160. mlpack/include/mlpack/methods/ann/activation_functions/softplus_function.hpp +12 -9
  161. mlpack/include/mlpack/methods/ann/activation_functions/softsign_function.hpp +15 -23
  162. mlpack/include/mlpack/methods/ann/activation_functions/spline_function.hpp +9 -7
  163. mlpack/include/mlpack/methods/ann/activation_functions/swish_function.hpp +11 -9
  164. mlpack/include/mlpack/methods/ann/activation_functions/tanh_exponential_function.hpp +9 -7
  165. mlpack/include/mlpack/methods/ann/activation_functions/tanh_function.hpp +10 -7
  166. mlpack/include/mlpack/methods/ann/ann.hpp +3 -0
  167. mlpack/include/mlpack/methods/ann/convolution_rules/base_convolution.hpp +197 -0
  168. mlpack/include/mlpack/methods/ann/convolution_rules/convolution_rules.hpp +1 -2
  169. mlpack/include/mlpack/methods/ann/convolution_rules/im2col_convolution.hpp +215 -0
  170. mlpack/include/mlpack/methods/ann/convolution_rules/naive_convolution.hpp +109 -154
  171. mlpack/include/mlpack/methods/ann/dag_network.hpp +728 -0
  172. mlpack/include/mlpack/methods/ann/dag_network_impl.hpp +1640 -0
  173. mlpack/include/mlpack/methods/ann/dists/bernoulli_distribution_impl.hpp +1 -1
  174. mlpack/include/mlpack/methods/ann/dists/normal_distribution_impl.hpp +7 -2
  175. mlpack/include/mlpack/methods/ann/ffn.hpp +39 -3
  176. mlpack/include/mlpack/methods/ann/ffn_impl.hpp +14 -32
  177. mlpack/include/mlpack/methods/ann/init_rules/const_init.hpp +4 -4
  178. mlpack/include/mlpack/methods/ann/init_rules/gaussian_init.hpp +6 -2
  179. mlpack/include/mlpack/methods/ann/init_rules/he_init.hpp +4 -2
  180. mlpack/include/mlpack/methods/ann/init_rules/kathirvalavakumar_subavathi_init.hpp +3 -3
  181. mlpack/include/mlpack/methods/ann/init_rules/lecun_normal_init.hpp +4 -2
  182. mlpack/include/mlpack/methods/ann/init_rules/nguyen_widrow_init.hpp +2 -2
  183. mlpack/include/mlpack/methods/ann/init_rules/oivs_init.hpp +2 -2
  184. mlpack/include/mlpack/methods/ann/init_rules/orthogonal_init.hpp +2 -2
  185. mlpack/include/mlpack/methods/ann/init_rules/random_init.hpp +8 -4
  186. mlpack/include/mlpack/methods/ann/layer/adaptive_max_pooling.hpp +21 -23
  187. mlpack/include/mlpack/methods/ann/layer/adaptive_max_pooling_impl.hpp +15 -15
  188. mlpack/include/mlpack/methods/ann/layer/adaptive_mean_pooling.hpp +21 -23
  189. mlpack/include/mlpack/methods/ann/layer/adaptive_mean_pooling_impl.hpp +16 -16
  190. mlpack/include/mlpack/methods/ann/layer/add.hpp +18 -18
  191. mlpack/include/mlpack/methods/ann/layer/add_impl.hpp +13 -13
  192. mlpack/include/mlpack/methods/ann/layer/add_merge.hpp +19 -18
  193. mlpack/include/mlpack/methods/ann/layer/add_merge_impl.hpp +13 -13
  194. mlpack/include/mlpack/methods/ann/layer/alpha_dropout.hpp +17 -16
  195. mlpack/include/mlpack/methods/ann/layer/alpha_dropout_impl.hpp +14 -13
  196. mlpack/include/mlpack/methods/ann/layer/base_layer.hpp +28 -51
  197. mlpack/include/mlpack/methods/ann/layer/batch_norm.hpp +16 -18
  198. mlpack/include/mlpack/methods/ann/layer/batch_norm_impl.hpp +55 -54
  199. mlpack/include/mlpack/methods/ann/layer/c_relu.hpp +18 -20
  200. mlpack/include/mlpack/methods/ann/layer/c_relu_impl.hpp +20 -25
  201. mlpack/include/mlpack/methods/ann/layer/celu.hpp +14 -19
  202. mlpack/include/mlpack/methods/ann/layer/celu_impl.hpp +25 -34
  203. mlpack/include/mlpack/methods/ann/layer/concat.hpp +18 -18
  204. mlpack/include/mlpack/methods/ann/layer/concat_impl.hpp +13 -13
  205. mlpack/include/mlpack/methods/ann/layer/concatenate.hpp +18 -18
  206. mlpack/include/mlpack/methods/ann/layer/concatenate_impl.hpp +14 -14
  207. mlpack/include/mlpack/methods/ann/layer/convolution.hpp +42 -47
  208. mlpack/include/mlpack/methods/ann/layer/convolution_impl.hpp +170 -159
  209. mlpack/include/mlpack/methods/ann/layer/dropconnect.hpp +18 -20
  210. mlpack/include/mlpack/methods/ann/layer/dropconnect_impl.hpp +20 -20
  211. mlpack/include/mlpack/methods/ann/layer/dropout.hpp +17 -19
  212. mlpack/include/mlpack/methods/ann/layer/dropout_impl.hpp +14 -21
  213. mlpack/include/mlpack/methods/ann/layer/elu.hpp +23 -25
  214. mlpack/include/mlpack/methods/ann/layer/elu_impl.hpp +20 -27
  215. mlpack/include/mlpack/methods/ann/layer/embedding.hpp +160 -0
  216. mlpack/include/mlpack/methods/ann/layer/embedding_impl.hpp +189 -0
  217. mlpack/include/mlpack/methods/ann/layer/flexible_relu.hpp +17 -19
  218. mlpack/include/mlpack/methods/ann/layer/flexible_relu_impl.hpp +20 -20
  219. mlpack/include/mlpack/methods/ann/layer/ftswish.hpp +17 -18
  220. mlpack/include/mlpack/methods/ann/layer/ftswish_impl.hpp +17 -35
  221. mlpack/include/mlpack/methods/ann/layer/grouped_convolution.hpp +27 -33
  222. mlpack/include/mlpack/methods/ann/layer/grouped_convolution_impl.hpp +170 -163
  223. mlpack/include/mlpack/methods/ann/layer/gru.hpp +195 -0
  224. mlpack/include/mlpack/methods/ann/layer/gru_impl.hpp +325 -0
  225. mlpack/include/mlpack/methods/ann/layer/hard_tanh.hpp +13 -15
  226. mlpack/include/mlpack/methods/ann/layer/hard_tanh_impl.hpp +12 -12
  227. mlpack/include/mlpack/methods/ann/layer/identity.hpp +19 -20
  228. mlpack/include/mlpack/methods/ann/layer/identity_impl.hpp +12 -12
  229. mlpack/include/mlpack/methods/ann/layer/layer.hpp +37 -33
  230. mlpack/include/mlpack/methods/ann/layer/layer_norm.hpp +11 -13
  231. mlpack/include/mlpack/methods/ann/layer/layer_norm_impl.hpp +16 -16
  232. mlpack/include/mlpack/methods/ann/layer/layer_types.hpp +4 -1
  233. mlpack/include/mlpack/methods/ann/layer/leaky_relu.hpp +20 -23
  234. mlpack/include/mlpack/methods/ann/layer/leaky_relu_impl.hpp +12 -13
  235. mlpack/include/mlpack/methods/ann/layer/linear.hpp +16 -18
  236. mlpack/include/mlpack/methods/ann/layer/linear3d.hpp +18 -18
  237. mlpack/include/mlpack/methods/ann/layer/linear3d_impl.hpp +18 -18
  238. mlpack/include/mlpack/methods/ann/layer/linear_impl.hpp +15 -15
  239. mlpack/include/mlpack/methods/ann/layer/linear_no_bias.hpp +15 -17
  240. mlpack/include/mlpack/methods/ann/layer/linear_no_bias_impl.hpp +20 -20
  241. mlpack/include/mlpack/methods/ann/layer/linear_recurrent.hpp +25 -14
  242. mlpack/include/mlpack/methods/ann/layer/linear_recurrent_impl.hpp +60 -31
  243. mlpack/include/mlpack/methods/ann/layer/log_softmax.hpp +17 -36
  244. mlpack/include/mlpack/methods/ann/layer/log_softmax_impl.hpp +58 -74
  245. mlpack/include/mlpack/methods/ann/layer/lstm.hpp +26 -29
  246. mlpack/include/mlpack/methods/ann/layer/lstm_impl.hpp +128 -124
  247. mlpack/include/mlpack/methods/ann/layer/max_pooling.hpp +19 -19
  248. mlpack/include/mlpack/methods/ann/layer/max_pooling_impl.hpp +14 -14
  249. mlpack/include/mlpack/methods/ann/layer/mean_pooling.hpp +24 -24
  250. mlpack/include/mlpack/methods/ann/layer/mean_pooling_impl.hpp +16 -16
  251. mlpack/include/mlpack/methods/ann/layer/multi_layer.hpp +36 -6
  252. mlpack/include/mlpack/methods/ann/layer/multi_layer_impl.hpp +6 -2
  253. mlpack/include/mlpack/methods/ann/layer/multihead_attention.hpp +26 -22
  254. mlpack/include/mlpack/methods/ann/layer/multihead_attention_impl.hpp +161 -64
  255. mlpack/include/mlpack/methods/ann/layer/nearest_interpolation.hpp +28 -25
  256. mlpack/include/mlpack/methods/ann/layer/nearest_interpolation_impl.hpp +36 -37
  257. mlpack/include/mlpack/methods/ann/layer/noisylinear.hpp +39 -42
  258. mlpack/include/mlpack/methods/ann/layer/noisylinear_impl.hpp +18 -18
  259. mlpack/include/mlpack/methods/ann/layer/padding.hpp +21 -17
  260. mlpack/include/mlpack/methods/ann/layer/padding_impl.hpp +33 -19
  261. mlpack/include/mlpack/methods/ann/layer/parametric_relu.hpp +26 -28
  262. mlpack/include/mlpack/methods/ann/layer/parametric_relu_impl.hpp +18 -18
  263. mlpack/include/mlpack/methods/ann/layer/radial_basis_function.hpp +41 -28
  264. mlpack/include/mlpack/methods/ann/layer/radial_basis_function_impl.hpp +42 -17
  265. mlpack/include/mlpack/methods/ann/layer/recurrent_layer.hpp +13 -0
  266. mlpack/include/mlpack/methods/ann/layer/relu6.hpp +19 -21
  267. mlpack/include/mlpack/methods/ann/layer/relu6_impl.hpp +14 -14
  268. mlpack/include/mlpack/methods/ann/layer/repeat.hpp +24 -25
  269. mlpack/include/mlpack/methods/ann/layer/repeat_impl.hpp +10 -10
  270. mlpack/include/mlpack/methods/ann/layer/serialization.hpp +64 -54
  271. mlpack/include/mlpack/methods/ann/layer/softmax.hpp +20 -20
  272. mlpack/include/mlpack/methods/ann/layer/softmax_impl.hpp +10 -10
  273. mlpack/include/mlpack/methods/ann/layer/softmin.hpp +20 -23
  274. mlpack/include/mlpack/methods/ann/layer/softmin_impl.hpp +10 -10
  275. mlpack/include/mlpack/methods/ann/layer/sum_reduce.hpp +103 -0
  276. mlpack/include/mlpack/methods/ann/layer/sum_reduce_impl.hpp +143 -0
  277. mlpack/include/mlpack/methods/ann/loss_functions/cosine_embedding_loss_impl.hpp +3 -3
  278. mlpack/include/mlpack/methods/ann/loss_functions/mean_bias_error_impl.hpp +1 -1
  279. mlpack/include/mlpack/methods/ann/loss_functions/multilabel_softmargin_loss_impl.hpp +1 -1
  280. mlpack/include/mlpack/methods/ann/loss_functions/negative_log_likelihood.hpp +2 -2
  281. mlpack/include/mlpack/methods/ann/loss_functions/negative_log_likelihood_impl.hpp +29 -15
  282. mlpack/include/mlpack/methods/ann/loss_functions/poisson_nll_loss_impl.hpp +1 -1
  283. mlpack/include/mlpack/methods/ann/models/models.hpp +17 -0
  284. mlpack/include/mlpack/methods/ann/models/yolov3/yolov3_layer.hpp +151 -0
  285. mlpack/include/mlpack/methods/ann/models/yolov3/yolov3_layer_impl.hpp +265 -0
  286. mlpack/include/mlpack/methods/ann/models/yolov3/yolov3_tiny.hpp +187 -0
  287. mlpack/include/mlpack/methods/ann/models/yolov3/yolov3_tiny_impl.hpp +206 -0
  288. mlpack/include/mlpack/methods/ann/regularizer/orthogonal_regularizer_impl.hpp +5 -3
  289. mlpack/include/mlpack/methods/ann/rnn.hpp +136 -42
  290. mlpack/include/mlpack/methods/ann/rnn_impl.hpp +230 -38
  291. mlpack/include/mlpack/methods/approx_kfn/drusilla_select_impl.hpp +1 -1
  292. mlpack/include/mlpack/methods/bayesian_linear_regression/bayesian_linear_regression_main.cpp +1 -1
  293. mlpack/include/mlpack/methods/bias_svd/bias_svd_function_impl.hpp +1 -1
  294. mlpack/include/mlpack/methods/cf/cf_model.hpp +1 -1
  295. mlpack/include/mlpack/methods/decision_tree/decision_tree.hpp +6 -6
  296. mlpack/include/mlpack/methods/decision_tree/decision_tree_impl.hpp +12 -12
  297. mlpack/include/mlpack/methods/decision_tree/decision_tree_main.cpp +0 -1
  298. mlpack/include/mlpack/methods/decision_tree/decision_tree_regressor.hpp +6 -6
  299. mlpack/include/mlpack/methods/decision_tree/decision_tree_regressor_impl.hpp +12 -12
  300. mlpack/include/mlpack/methods/det/det_main.cpp +1 -1
  301. mlpack/include/mlpack/methods/hmm/hmm_train_main.cpp +4 -4
  302. mlpack/include/mlpack/methods/hmm/hmm_util_impl.hpp +2 -2
  303. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree.hpp +6 -6
  304. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree_impl.hpp +31 -31
  305. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree_main.cpp +1 -2
  306. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree_model.hpp +2 -2
  307. mlpack/include/mlpack/methods/hoeffding_trees/hoeffding_tree_model_impl.hpp +1 -1
  308. mlpack/include/mlpack/methods/kde/kde_rules_impl.hpp +6 -6
  309. mlpack/include/mlpack/methods/lars/lars_impl.hpp +3 -3
  310. mlpack/include/mlpack/methods/linear_svm/linear_svm_function_impl.hpp +4 -4
  311. mlpack/include/mlpack/methods/linear_svm/linear_svm_main.cpp +3 -3
  312. mlpack/include/mlpack/methods/lmnn/lmnn_main.cpp +1 -1
  313. mlpack/include/mlpack/methods/lsh/lsh_main.cpp +1 -1
  314. mlpack/include/mlpack/methods/matrix_completion/matrix_completion_impl.hpp +1 -1
  315. mlpack/include/mlpack/methods/naive_bayes/naive_bayes_classifier_impl.hpp +1 -1
  316. mlpack/include/mlpack/methods/naive_bayes/nbc_main.cpp +3 -3
  317. mlpack/include/mlpack/methods/nca/nca_main.cpp +1 -1
  318. mlpack/include/mlpack/methods/neighbor_search/kfn_main.cpp +8 -8
  319. mlpack/include/mlpack/methods/neighbor_search/knn_main.cpp +8 -8
  320. mlpack/include/mlpack/methods/neighbor_search/neighbor_search.hpp +154 -34
  321. mlpack/include/mlpack/methods/neighbor_search/neighbor_search_impl.hpp +190 -51
  322. mlpack/include/mlpack/methods/neighbor_search/neighbor_search_stat.hpp +10 -0
  323. mlpack/include/mlpack/methods/neighbor_search/ns_model.hpp +15 -15
  324. mlpack/include/mlpack/methods/neighbor_search/ns_model_impl.hpp +55 -46
  325. mlpack/include/mlpack/methods/neighbor_search/typedef.hpp +42 -2
  326. mlpack/include/mlpack/methods/pca/pca_impl.hpp +2 -2
  327. mlpack/include/mlpack/methods/perceptron/perceptron.hpp +2 -2
  328. mlpack/include/mlpack/methods/perceptron/perceptron_impl.hpp +1 -1
  329. mlpack/include/mlpack/methods/perceptron/perceptron_main.cpp +2 -2
  330. mlpack/include/mlpack/methods/preprocess/image_converter_main.cpp +2 -3
  331. mlpack/include/mlpack/methods/preprocess/preprocess_binarize_main.cpp +2 -2
  332. mlpack/include/mlpack/methods/preprocess/preprocess_describe_main.cpp +0 -1
  333. mlpack/include/mlpack/methods/preprocess/preprocess_imputer_main.cpp +50 -129
  334. mlpack/include/mlpack/methods/preprocess/preprocess_one_hot_encoding_main.cpp +6 -6
  335. mlpack/include/mlpack/methods/preprocess/preprocess_scale_main.cpp +2 -3
  336. mlpack/include/mlpack/methods/preprocess/preprocess_split_main.cpp +3 -4
  337. mlpack/include/mlpack/methods/preprocess/scaling_model.hpp +6 -8
  338. mlpack/include/mlpack/methods/preprocess/scaling_model_impl.hpp +18 -20
  339. mlpack/include/mlpack/methods/random_forest/random_forest.hpp +5 -5
  340. mlpack/include/mlpack/methods/random_forest/random_forest_impl.hpp +9 -9
  341. mlpack/include/mlpack/methods/range_search/range_search_main.cpp +1 -1
  342. mlpack/include/mlpack/methods/rann/krann_main.cpp +1 -1
  343. mlpack/include/mlpack/methods/regularized_svd/regularized_svd_function_impl.hpp +1 -1
  344. mlpack/include/mlpack/methods/reinforcement_learning/async_learning_impl.hpp +8 -8
  345. mlpack/include/mlpack/methods/reinforcement_learning/ddpg_impl.hpp +16 -16
  346. mlpack/include/mlpack/methods/reinforcement_learning/environment/acrobot.hpp +4 -4
  347. mlpack/include/mlpack/methods/reinforcement_learning/environment/cart_pole.hpp +3 -3
  348. mlpack/include/mlpack/methods/reinforcement_learning/environment/cont_double_pole_cart.hpp +6 -5
  349. mlpack/include/mlpack/methods/reinforcement_learning/environment/pendulum.hpp +6 -5
  350. mlpack/include/mlpack/methods/reinforcement_learning/policy/aggregated_policy.hpp +2 -2
  351. mlpack/include/mlpack/methods/reinforcement_learning/q_learning_impl.hpp +10 -10
  352. mlpack/include/mlpack/methods/reinforcement_learning/q_networks/categorical_dqn.hpp +21 -17
  353. mlpack/include/mlpack/methods/reinforcement_learning/q_networks/dueling_dqn.hpp +69 -77
  354. mlpack/include/mlpack/methods/reinforcement_learning/q_networks/simple_dqn.hpp +9 -9
  355. mlpack/include/mlpack/methods/reinforcement_learning/sac_impl.hpp +14 -14
  356. mlpack/include/mlpack/methods/reinforcement_learning/td3_impl.hpp +14 -14
  357. mlpack/include/mlpack/methods/softmax_regression/softmax_regression_function_impl.hpp +1 -1
  358. mlpack/include/mlpack/methods/svdplusplus/svdplusplus_function_impl.hpp +1 -1
  359. mlpack/include/mlpack/namespace_compat.hpp +1 -0
  360. mlpack/include/mlpack/prereqs.hpp +1 -0
  361. mlpack/kde.cp310-win_amd64.pyd +0 -0
  362. mlpack/kernel_pca.cp310-win_amd64.pyd +0 -0
  363. mlpack/kfn.cp310-win_amd64.pyd +0 -0
  364. mlpack/kmeans.cp310-win_amd64.pyd +0 -0
  365. mlpack/knn.cp310-win_amd64.pyd +0 -0
  366. mlpack/krann.cp310-win_amd64.pyd +0 -0
  367. mlpack/lars.cp310-win_amd64.pyd +0 -0
  368. mlpack/linear_regression_predict.cp310-win_amd64.pyd +0 -0
  369. mlpack/linear_regression_train.cp310-win_amd64.pyd +0 -0
  370. mlpack/linear_svm.cp310-win_amd64.pyd +0 -0
  371. mlpack/lmnn.cp310-win_amd64.pyd +0 -0
  372. mlpack/local_coordinate_coding.cp310-win_amd64.pyd +0 -0
  373. mlpack/logistic_regression.cp310-win_amd64.pyd +0 -0
  374. mlpack/lsh.cp310-win_amd64.pyd +0 -0
  375. mlpack/mean_shift.cp310-win_amd64.pyd +0 -0
  376. mlpack/nbc.cp310-win_amd64.pyd +0 -0
  377. mlpack/nca.cp310-win_amd64.pyd +0 -0
  378. mlpack/nmf.cp310-win_amd64.pyd +0 -0
  379. mlpack/pca.cp310-win_amd64.pyd +0 -0
  380. mlpack/perceptron.cp310-win_amd64.pyd +0 -0
  381. mlpack/preprocess_binarize.cp310-win_amd64.pyd +0 -0
  382. mlpack/preprocess_describe.cp310-win_amd64.pyd +0 -0
  383. mlpack/preprocess_one_hot_encoding.cp310-win_amd64.pyd +0 -0
  384. mlpack/preprocess_scale.cp310-win_amd64.pyd +0 -0
  385. mlpack/preprocess_split.cp310-win_amd64.pyd +0 -0
  386. mlpack/radical.cp310-win_amd64.pyd +0 -0
  387. mlpack/random_forest.cp310-win_amd64.pyd +0 -0
  388. mlpack/softmax_regression.cp310-win_amd64.pyd +0 -0
  389. mlpack/sparse_coding.cp310-win_amd64.pyd +0 -0
  390. mlpack-4.7.0.dist-info/DELVEWHEEL +2 -0
  391. {mlpack-4.6.2.dist-info → mlpack-4.7.0.dist-info}/METADATA +2 -2
  392. {mlpack-4.6.2.dist-info → mlpack-4.7.0.dist-info}/RECORD +396 -377
  393. {mlpack-4.6.2.dist-info → mlpack-4.7.0.dist-info}/WHEEL +1 -1
  394. mlpack/include/mlpack/core/data/format.hpp +0 -31
  395. mlpack/include/mlpack/core/data/image_info.hpp +0 -102
  396. mlpack/include/mlpack/core/data/image_info_impl.hpp +0 -84
  397. mlpack/include/mlpack/core/data/load_image_impl.hpp +0 -171
  398. mlpack/include/mlpack/core/data/load_model_impl.hpp +0 -115
  399. mlpack/include/mlpack/core/data/load_vec_impl.hpp +0 -154
  400. mlpack/include/mlpack/core/data/map_policies/missing_policy.hpp +0 -148
  401. mlpack/include/mlpack/core/data/save_image_impl.hpp +0 -170
  402. mlpack/include/mlpack/core/data/types.hpp +0 -61
  403. mlpack/include/mlpack/core/data/types_impl.hpp +0 -83
  404. mlpack/include/mlpack/core/data/utilities.hpp +0 -158
  405. mlpack/include/mlpack/core/util/gitversion.hpp +0 -1
  406. mlpack/include/mlpack/methods/ann/convolution_rules/fft_convolution.hpp +0 -213
  407. mlpack/include/mlpack/methods/ann/convolution_rules/svd_convolution.hpp +0 -201
  408. mlpack/include/mlpack/methods/ann/layer/not_adapted/gru.hpp +0 -226
  409. mlpack/include/mlpack/methods/ann/layer/not_adapted/gru_impl.hpp +0 -367
  410. mlpack/include/mlpack/methods/ann/layer/not_adapted/lookup.hpp +0 -139
  411. mlpack/include/mlpack/methods/ann/layer/not_adapted/lookup_impl.hpp +0 -98
  412. mlpack-4.6.2.dist-info/DELVEWHEEL +0 -2
  413. {mlpack-4.6.2.dist-info → mlpack-4.7.0.dist-info}/top_level.txt +0 -0
  414. /mlpack.libs/{libopenblas-9e6d070f769e6580e8c55c0cf83b80a5.dll → libopenblas-c7f521b507686ddc25bee7538a80c374.dll} +0 -0
  415. /mlpack.libs/{msvcp140-50208655e42969b9a5ab8a4e0186bbb9.dll → msvcp140-a4c2229bdc2a2a630acdc095b4d86008.dll} +0 -0
mlpack/__init__.py CHANGED
@@ -11,14 +11,14 @@ http://www.opensource.org/licenses/BSD-3-Clause for more information.
11
11
 
12
12
 
13
13
  # start delvewheel patch
14
- def _delvewheel_patch_1_10_1():
14
+ def _delvewheel_patch_1_12_0():
15
15
  import os
16
16
  if os.path.isdir(libs_dir := os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'mlpack.libs'))):
17
17
  os.add_dll_directory(libs_dir)
18
18
 
19
19
 
20
- _delvewheel_patch_1_10_1()
21
- del _delvewheel_patch_1_10_1
20
+ _delvewheel_patch_1_12_0()
21
+ del _delvewheel_patch_1_12_0
22
22
  # end delvewheel patch
23
23
 
24
24
  import warnings
@@ -74,4 +74,4 @@ from .adaboost import *
74
74
  from .linear_regression_train import linear_regression_train
75
75
  from .linear_regression_predict import linear_regression_predict
76
76
  from .linear_regression import *
77
- __version__='4.6.2'
77
+ __version__='4.7.0'
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
Binary file
@@ -86,6 +86,7 @@
86
86
  #include <armadillo>
87
87
  #include <mlpack/core/util/arma_traits.hpp>
88
88
  #include <mlpack/core/util/omp_reductions.hpp>
89
+ #include <mlpack/core/arma_extend/find_nan.hpp>
89
90
 
90
91
  // On Visual Studio, disable C4519 (default arguments for function templates)
91
92
  // since it's by default an error, which doesn't even make any sense because
@@ -0,0 +1,63 @@
1
+ /**
2
+ * @file find_nan.hpp
3
+ * @author Ryan Curtin
4
+ *
5
+ * When find_nan() is not available (Armadillo < 11.4), provide an internal
6
+ * mlpack implementation that operates the same way. It is slower.
7
+ */
8
+ #ifndef MLPACK_CORE_ARMA_EXTEND_FIND_NAN_HPP
9
+ #define MLPACK_CORE_ARMA_EXTEND_FIND_NAN_HPP
10
+
11
+ namespace mlpack {
12
+
13
+ #if ARMA_VERSION_MAJOR < 11 || \
14
+ (ARMA_VERSION_MAJOR == 11 && ARMA_VERSION_MINOR < 4)
15
+
16
+ template<typename T>
17
+ arma::uvec find_nan(const T& m,
18
+ const std::enable_if_t<arma::is_arma_type<T>::value>* = 0)
19
+ {
20
+ typedef typename T::elem_type ElemType;
21
+
22
+ if (!std::numeric_limits<ElemType>::has_quiet_NaN)
23
+ return arma::uvec(); // There can't be any NaNs.
24
+
25
+ // find_nonfinite() exists on older Armadillo, and we can also search for +Inf
26
+ // and -Inf.
27
+ arma::uvec nonfiniteIndices = arma::find_nonfinite(m);
28
+ if (nonfiniteIndices.n_elem == 0)
29
+ return arma::uvec();
30
+
31
+ arma::uvec infIndices = arma::find(
32
+ m == std::numeric_limits<ElemType>::infinity());
33
+ arma::uvec neginfIndices = arma::find(
34
+ m == -std::numeric_limits<ElemType>::infinity());
35
+
36
+ arma::uvec result(nonfiniteIndices.n_elem -
37
+ (infIndices.n_elem + neginfIndices.n_elem));
38
+ if (result.n_elem == 0)
39
+ return result;
40
+
41
+ size_t infIndex = 0;
42
+ size_t neginfIndex = 0;
43
+ size_t outputIndex = 0;
44
+ for (size_t i = 0; i < nonfiniteIndices.n_elem; ++i)
45
+ {
46
+ if (infIndex < infIndices.n_elem &&
47
+ nonfiniteIndices[i] == infIndices[infIndex])
48
+ ++infIndex;
49
+ else if (neginfIndex < neginfIndices.n_elem &&
50
+ nonfiniteIndices[i] == neginfIndices[neginfIndex])
51
+ ++neginfIndex;
52
+ else
53
+ result[outputIndex++] = nonfiniteIndices[i];
54
+ }
55
+
56
+ return result;
57
+ }
58
+
59
+ #endif
60
+
61
+ } // namespace mlpack
62
+
63
+ #endif
@@ -0,0 +1,48 @@
1
+ /**
2
+ * @file core/cereal/low_precision.hpp
3
+ * @author Ryan Curtin
4
+ *
5
+ * Extra shims necessary for cereal to serialize to JSON for low-precision types
6
+ * (e.g. FP16, BF16, etc.).
7
+ *
8
+ * mlpack is free software; you may redistribute it and/or modify it under the
9
+ * terms of the 3-clause BSD license. You should have received a copy of the
10
+ * 3-clause BSD license along with mlpack. If not, see
11
+ * http://www.opensource.org/licenses/BSD-3-Clause for more information.
12
+ */
13
+ #ifndef MLPACK_CORE_CEREAL_LOW_PRECISION_HPP
14
+ #define MLPACK_CORE_CEREAL_LOW_PRECISION_HPP
15
+
16
+ namespace cereal {
17
+
18
+ // Because our serialization is always done with name-value pairs, we can catch
19
+ // any FP16 serialization at the NVP level with a specialized implementation of
20
+ // the load and save functions for the JSON archive (the only one that does not
21
+ // serialize low-precision correctly).
22
+
23
+ #if defined(ARMA_HAVE_FP16)
24
+
25
+ inline void CEREAL_SAVE_FUNCTION_NAME(JSONOutputArchive &ar,
26
+ NameValuePair<arma::fp16&> const& t)
27
+ {
28
+ ar.setNextName(t.name);
29
+ std::ostringstream oss;
30
+ oss.precision(std::numeric_limits<arma::fp16>::max_digits10);
31
+ oss << t.value;
32
+ ar(oss.str());
33
+ }
34
+
35
+ inline void CEREAL_LOAD_FUNCTION_NAME(JSONInputArchive& ar,
36
+ NameValuePair<arma::fp16&>& t)
37
+ {
38
+ ar.setNextName(t.name);
39
+ std::string encoded;
40
+ ar.loadValue(encoded);
41
+ t.value = arma::fp16(std::stof(encoded));
42
+ }
43
+
44
+ #endif
45
+
46
+ } // namespace cereal
47
+
48
+ #endif
@@ -57,12 +57,12 @@ class CVBase
57
57
 
58
58
  /**
59
59
  * Assert that MLAlgorithm takes the numClasses parameter and a
60
- * data::DatasetInfo parameter and store them.
60
+ * DatasetInfo parameter and store them.
61
61
  *
62
62
  * @param datasetInfo Type information for each dimension of the dataset.
63
63
  * @param numClasses Number of classes in the dataset.
64
64
  */
65
- CVBase(const data::DatasetInfo& datasetInfo,
65
+ CVBase(const DatasetInfo& datasetInfo,
66
66
  const size_t numClasses);
67
67
 
68
68
  /**
@@ -101,9 +101,9 @@ class CVBase
101
101
  static_assert(MIE::IsSupported,
102
102
  "The given MLAlgorithm is not supported by MetaInfoExtractor");
103
103
 
104
- //! A variable for storing a data::DatasetInfo parameter if it is passed.
105
- const data::DatasetInfo datasetInfo;
106
- //! An indicator whether a data::DatasetInfo parameter has been passed.
104
+ //! A variable for storing a DatasetInfo parameter if it is passed.
105
+ const DatasetInfo datasetInfo;
106
+ //! An indicator whether a DatasetInfo parameter has been passed.
107
107
  const bool isDatasetInfoPassed;
108
108
  //! A variable for storing the numClasses parameter if it is passed.
109
109
  size_t numClasses;
@@ -145,7 +145,7 @@ class CVBase
145
145
 
146
146
  /**
147
147
  * Construct a trained MLAlgorithm model if MLAlgorithm takes the
148
- * numClasses parameter and a data::DatasetInfo parameter.
148
+ * numClasses parameter and a DatasetInfo parameter.
149
149
  */
150
150
  template<typename... MLAlgorithmArgs,
151
151
  bool Enabled = MIE::TakesNumClasses & MIE::TakesDatasetInfo,
@@ -183,7 +183,7 @@ class CVBase
183
183
 
184
184
  /**
185
185
  * Construct a trained MLAlgorithm model if MLAlgorithm takes the
186
- * numClasses parameter and a data::DatasetInfo parameter.
186
+ * numClasses parameter and a DatasetInfo parameter.
187
187
  */
188
188
  template<typename... MLAlgorithmArgs,
189
189
  bool Enabled = MIE::TakesNumClasses & MIE::TakesDatasetInfo,
@@ -196,13 +196,13 @@ class CVBase
196
196
  const MLAlgorithmArgs&... args);
197
197
 
198
198
  /**
199
- * When MLAlgorithm supports a data::DatasetInfo parameter, training should be
199
+ * When MLAlgorithm supports a DatasetInfo parameter, training should be
200
200
  * treated separately - there are models that can be constructed with and
201
201
  * without a data:DatasetInfo parameter and models that can be constructed
202
- * only with a data::DatasetInfo parameter.
202
+ * only with a DatasetInfo parameter.
203
203
  *
204
204
  * Construct a trained MLAlgorithm model when it can be constructed without a
205
- * data::DatasetInfo parameter.
205
+ * DatasetInfo parameter.
206
206
  */
207
207
  template<bool ConstructableWithoutDatasetInfo,
208
208
  typename... MLAlgorithmArgs,
@@ -213,7 +213,7 @@ class CVBase
213
213
 
214
214
  /**
215
215
  * Construct a trained MLAlgorithm model when it can't be constructed without
216
- * a data::DatasetInfo parameter.
216
+ * a DatasetInfo parameter.
217
217
  */
218
218
  template<bool ConstructableWithoutDatasetInfo,
219
219
  typename... MLAlgorithmArgs,
@@ -54,7 +54,7 @@ template<typename MLAlgorithm,
54
54
  CVBase<MLAlgorithm,
55
55
  MatType,
56
56
  PredictionsType,
57
- WeightsType>::CVBase(const data::DatasetInfo& datasetInfo,
57
+ WeightsType>::CVBase(const DatasetInfo& datasetInfo,
58
58
  const size_t numClasses) :
59
59
  datasetInfo(datasetInfo),
60
60
  isDatasetInfoPassed(true),
@@ -63,7 +63,7 @@ CVBase<MLAlgorithm,
63
63
  static_assert(MIE::TakesNumClasses,
64
64
  "The given MLAlgorithm does not take the numClasses parameter");
65
65
  static_assert(MIE::TakesDatasetInfo,
66
- "The given MLAlgorithm does not accept a data::DatasetInfo parameter");
66
+ "The given MLAlgorithm does not accept a DatasetInfo parameter");
67
67
  }
68
68
 
69
69
  template<typename MLAlgorithm,
@@ -184,9 +184,9 @@ MLAlgorithm CVBase<MLAlgorithm,
184
184
  {
185
185
  static_assert(
186
186
  std::is_constructible_v<MLAlgorithm, const MatType&,
187
- const data::DatasetInfo, const PredictionsType&, const size_t,
187
+ const DatasetInfo, const PredictionsType&, const size_t,
188
188
  MLAlgorithmArgs...>,
189
- "The given MLAlgorithm is not constructible with a data::DatasetInfo "
189
+ "The given MLAlgorithm is not constructible with a DatasetInfo "
190
190
  "parameter and the passed arguments");
191
191
 
192
192
  static const bool constructableWithoutDatasetInfo =
@@ -256,9 +256,9 @@ MLAlgorithm CVBase<MLAlgorithm,
256
256
  {
257
257
  static_assert(
258
258
  std::is_constructible_v<MLAlgorithm, const MatType&,
259
- const data::DatasetInfo, const PredictionsType&, const size_t,
259
+ const DatasetInfo, const PredictionsType&, const size_t,
260
260
  const WeightsType&, MLAlgorithmArgs...>,
261
- "The given MLAlgorithm is not constructible with a data::DatasetInfo "
261
+ "The given MLAlgorithm is not constructible with a DatasetInfo "
262
262
  "parameter and the passed arguments");
263
263
 
264
264
  static const bool constructableWithoutDatasetInfo =
@@ -302,7 +302,7 @@ MLAlgorithm CVBase<MLAlgorithm,
302
302
  {
303
303
  if (!isDatasetInfoPassed)
304
304
  throw std::invalid_argument(
305
- "The given MLAlgorithm requires a data::DatasetInfo parameter");
305
+ "The given MLAlgorithm requires a DatasetInfo parameter");
306
306
 
307
307
  return MLAlgorithm(xs, datasetInfo, ys, numClasses, args...);
308
308
  }
@@ -97,7 +97,7 @@ class KFoldCV
97
97
 
98
98
  /**
99
99
  * This constructor can be used for multiclass classification algorithms that
100
- * can take a data::DatasetInfo parameter.
100
+ * can take a DatasetInfo parameter.
101
101
  *
102
102
  * @param k Number of folds (should be at least 2).
103
103
  * @param xs Data points to cross-validate on.
@@ -108,7 +108,7 @@ class KFoldCV
108
108
  */
109
109
  KFoldCV(const size_t k,
110
110
  const MatType& xs,
111
- const data::DatasetInfo& datasetInfo,
111
+ const DatasetInfo& datasetInfo,
112
112
  const PredictionsType& ys,
113
113
  const size_t numClasses,
114
114
  const bool shuffle = true);
@@ -150,7 +150,7 @@ class KFoldCV
150
150
 
151
151
  /**
152
152
  * This constructor can be used for multiclass classification algorithms that
153
- * can take a data::DatasetInfo parameter and support weighted learning.
153
+ * can take a DatasetInfo parameter and support weighted learning.
154
154
  *
155
155
  * @param k Number of folds (should be at least 2).
156
156
  * @param xs Data points to cross-validate on.
@@ -162,7 +162,7 @@ class KFoldCV
162
162
  */
163
163
  KFoldCV(const size_t k,
164
164
  const MatType& xs,
165
- const data::DatasetInfo& datasetInfo,
165
+ const DatasetInfo& datasetInfo,
166
166
  const PredictionsType& ys,
167
167
  const size_t numClasses,
168
168
  const WeightsType& weights,
@@ -58,7 +58,7 @@ KFoldCV<MLAlgorithm,
58
58
  PredictionsType,
59
59
  WeightsType>::KFoldCV(const size_t k,
60
60
  const MatType& xs,
61
- const data::DatasetInfo& datasetInfo,
61
+ const DatasetInfo& datasetInfo,
62
62
  const PredictionsType& ys,
63
63
  const size_t numClasses,
64
64
  const bool shuffle) :
@@ -111,7 +111,7 @@ KFoldCV<MLAlgorithm,
111
111
  PredictionsType,
112
112
  WeightsType>::KFoldCV(const size_t k,
113
113
  const MatType& xs,
114
- const data::DatasetInfo& datasetInfo,
114
+ const DatasetInfo& datasetInfo,
115
115
  const PredictionsType& ys,
116
116
  const size_t numClasses,
117
117
  const WeightsType& weights,
@@ -270,7 +270,7 @@ double KFoldCV<MLAlgorithm,
270
270
  return 0.0;
271
271
  }
272
272
 
273
- return arma::mean(evaluations.elem(arma::find_finite(evaluations)));
273
+ return mean(evaluations.elem(find_finite(evaluations)));
274
274
  }
275
275
 
276
276
  template<typename MLAlgorithm,
@@ -300,7 +300,7 @@ double KFoldCV<MLAlgorithm,
300
300
  modelPtr.reset(new MLAlgorithm(std::move(model)));
301
301
  }
302
302
 
303
- return arma::mean(evaluations);
303
+ return mean(evaluations);
304
304
  }
305
305
 
306
306
  template<typename MLAlgorithm,
@@ -25,7 +25,7 @@ namespace mlpack {
25
25
  * @tparam MatType The type of data.
26
26
  * @tparam PredictionsType The type of predictions.
27
27
  * @tparam WeightsType The type of weights.
28
- * @tparam DatasetInfo An indicator whether a data::DatasetInfo parameter should
28
+ * @tparam DatasetInfo An indicator whether a DatasetInfo parameter should
29
29
  * be present.
30
30
  * @tparam NumClasses An indicator whether the numClasses parameter should be
31
31
  * present.
@@ -101,7 +101,7 @@ struct TrainForm<MT, PT, void, false, false> : public TrainFormBase4<PT, void,
101
101
 
102
102
  template<typename MT, typename PT>
103
103
  struct TrainForm<MT, PT, void, true, false> : public TrainFormBase5<PT, void,
104
- const MT&, const data::DatasetInfo&, const PT&> {};
104
+ const MT&, const DatasetInfo&, const PT&> {};
105
105
 
106
106
  template<typename MT, typename PT, typename WT>
107
107
  struct TrainForm<MT, PT, WT, false, false> : public TrainFormBase5<PT, WT,
@@ -109,7 +109,7 @@ struct TrainForm<MT, PT, WT, false, false> : public TrainFormBase5<PT, WT,
109
109
 
110
110
  template<typename MT, typename PT, typename WT>
111
111
  struct TrainForm<MT, PT, WT, true, false> : public TrainFormBase6<PT, WT,
112
- const MT&, const data::DatasetInfo&, const PT&, const WT&> {};
112
+ const MT&, const DatasetInfo&, const PT&, const WT&> {};
113
113
 
114
114
  template<typename MT, typename PT>
115
115
  struct TrainForm<MT, PT, void, false, true> : public TrainFormBase5<PT, void,
@@ -117,7 +117,7 @@ struct TrainForm<MT, PT, void, false, true> : public TrainFormBase5<PT, void,
117
117
 
118
118
  template<typename MT, typename PT>
119
119
  struct TrainForm<MT, PT, void, true, true> : public TrainFormBase6<PT, void,
120
- const MT&, const data::DatasetInfo&, const PT&, const size_t> {};
120
+ const MT&, const DatasetInfo&, const PT&, const size_t> {};
121
121
 
122
122
  template<typename MT, typename PT, typename WT>
123
123
  struct TrainForm<MT, PT, WT, false, true> : public TrainFormBase6<PT, WT,
@@ -125,7 +125,7 @@ struct TrainForm<MT, PT, WT, false, true> : public TrainFormBase6<PT, WT,
125
125
 
126
126
  template<typename MT, typename PT, typename WT>
127
127
  struct TrainForm<MT, PT, WT, true, true> : public TrainFormBase7<PT, WT,
128
- const MT&, const data::DatasetInfo&, const PT&,
128
+ const MT&, const DatasetInfo&, const PT&,
129
129
  const size_t, const WT&> {};
130
130
  #else
131
131
  template<typename PT, typename WT, typename... SignatureParams>
@@ -147,7 +147,7 @@ struct TrainForm<MT, PT, void, false, false> : public TrainFormBase<PT, void,
147
147
 
148
148
  template<typename MT, typename PT>
149
149
  struct TrainForm<MT, PT, void, true, false> : public TrainFormBase<PT, void,
150
- const MT&, const data::DatasetInfo&, const PT&> {};
150
+ const MT&, const DatasetInfo&, const PT&> {};
151
151
 
152
152
  template<typename MT, typename PT, typename WT>
153
153
  struct TrainForm<MT, PT, WT, false, false> : public TrainFormBase<PT, WT,
@@ -155,7 +155,7 @@ struct TrainForm<MT, PT, WT, false, false> : public TrainFormBase<PT, WT,
155
155
 
156
156
  template<typename MT, typename PT, typename WT>
157
157
  struct TrainForm<MT, PT, WT, true, false> : public TrainFormBase<PT, WT,
158
- const MT&, const data::DatasetInfo&, const PT&, const WT&> {};
158
+ const MT&, const DatasetInfo&, const PT&, const WT&> {};
159
159
 
160
160
  template<typename MT, typename PT>
161
161
  struct TrainForm<MT, PT, void, false, true> : public TrainFormBase<PT, void,
@@ -163,7 +163,7 @@ struct TrainForm<MT, PT, void, false, true> : public TrainFormBase<PT, void,
163
163
 
164
164
  template<typename MT, typename PT>
165
165
  struct TrainForm<MT, PT, void, true, true> : public TrainFormBase<PT, void,
166
- const MT&, const data::DatasetInfo&, const PT&, const size_t> {};
166
+ const MT&, const DatasetInfo&, const PT&, const size_t> {};
167
167
 
168
168
  template<typename MT, typename PT, typename WT>
169
169
  struct TrainForm<MT, PT, WT, false, true> : public TrainFormBase<PT, WT,
@@ -171,7 +171,7 @@ struct TrainForm<MT, PT, WT, false, true> : public TrainFormBase<PT, WT,
171
171
 
172
172
  template<typename MT, typename PT, typename WT>
173
173
  struct TrainForm<MT, PT, WT, true, true> : public TrainFormBase<PT, WT,
174
- const MT&, const data::DatasetInfo&, const PT&,
174
+ const MT&, const DatasetInfo&, const PT&,
175
175
  const size_t, const WT&> {};
176
176
  #endif
177
177
 
@@ -336,7 +336,7 @@ class MetaInfoExtractor
336
336
  static const bool SupportsWeights = !std::is_same_v<WeightsType, void*>;
337
337
 
338
338
  /**
339
- * An indication whether MLAlgorithm takes a data::DatasetInfo parameter.
339
+ * An indication whether MLAlgorithm takes a DatasetInfo parameter.
340
340
  */
341
341
  static const bool TakesDatasetInfo = Selects<TF5>::value;
342
342
 
@@ -88,7 +88,7 @@ double F1<AS, PC>::Evaluate(MLAlgorithm& model,
88
88
  2.0 * precision * recall / (precision + recall);
89
89
  }
90
90
 
91
- return arma::mean(f1s);
91
+ return mean(f1s);
92
92
  }
93
93
 
94
94
  } // namespace mlpack
@@ -28,7 +28,8 @@ template<typename DataType, typename DistanceType>
28
28
  DataType PairwiseDistances(const DataType& data,
29
29
  const DistanceType& distance)
30
30
  {
31
- DataType distances = DataType(data.n_cols, data.n_cols, arma::fill::none);
31
+ DataType distances = DataType(data.n_cols, data.n_cols,
32
+ GetFillType<DataType>::none);
32
33
  for (size_t i = 0; i < data.n_cols; i++)
33
34
  {
34
35
  for (size_t j = 0; j < i; j++)
@@ -77,7 +77,7 @@ double Precision<AS, PC>::Evaluate(MLAlgorithm& model,
77
77
  precisions(c) = double(tp) / numberOfPositivePredictions;
78
78
  }
79
79
 
80
- return arma::mean(precisions);
80
+ return mean(precisions);
81
81
  }
82
82
 
83
83
  } // namespace mlpack
@@ -27,7 +27,7 @@ double R2Score<AdjustedR2>::Evaluate(MLAlgorithm& model,
27
27
  // Taking Predicted Output from the model.
28
28
  model.Predict(data, predictedResponses);
29
29
  // Mean value of response.
30
- double meanResponses = arma::mean(responses);
30
+ double meanResponses = mean(responses);
31
31
 
32
32
  // Calculate the numerator i.e. residual sum of squares.
33
33
  double residualSumSquared = accu(arma::square(responses -
@@ -22,7 +22,7 @@ double SilhouetteScore::Overall(const DataType& X,
22
22
  const Metric& metric)
23
23
  {
24
24
  util::CheckSameSizes(X, labels, "SilhouetteScore::Overall()");
25
- return arma::mean(SamplesScore(X, labels, metric));
25
+ return mean(SamplesScore(X, labels, metric));
26
26
  }
27
27
 
28
28
  template<typename DataType>
@@ -105,7 +105,7 @@ class SimpleCV
105
105
 
106
106
  /**
107
107
  * This constructor can be used for multiclass classification algorithms that
108
- * can take a data::DatasetInfo parameter.
108
+ * can take a DatasetInfo parameter.
109
109
  *
110
110
  * @param validationSize A proportion (between 0 and 1) of data used as a
111
111
  * validation set.
@@ -120,7 +120,7 @@ class SimpleCV
120
120
  template<typename MatInType, typename PredictionsInType>
121
121
  SimpleCV(const double validationSize,
122
122
  MatInType&& xs,
123
- const data::DatasetInfo& datasetInfo,
123
+ const DatasetInfo& datasetInfo,
124
124
  PredictionsInType&& ys,
125
125
  const size_t numClasses);
126
126
 
@@ -173,7 +173,7 @@ class SimpleCV
173
173
 
174
174
  /**
175
175
  * This constructor can be used for multiclass classification algorithms that
176
- * can take a data::DatasetInfo parameter and support weighted learning.
176
+ * can take a DatasetInfo parameter and support weighted learning.
177
177
  *
178
178
  * @param validationSize A proportion (between 0 and 1) of data used as a
179
179
  * validation set.
@@ -192,7 +192,7 @@ class SimpleCV
192
192
  typename WeightsInType>
193
193
  SimpleCV(const double validationSize,
194
194
  MatInType&& xs,
195
- const data::DatasetInfo& datasetInfo,
195
+ const DatasetInfo& datasetInfo,
196
196
  PredictionsInType&& ys,
197
197
  const size_t numClasses,
198
198
  WeightsInType&& weights);
@@ -61,7 +61,7 @@ SimpleCV<MLAlgorithm,
61
61
  PredictionsType,
62
62
  WeightsType>::SimpleCV(const double validationSize,
63
63
  MIT&& xs,
64
- const data::DatasetInfo& datasetInfo,
64
+ const DatasetInfo& datasetInfo,
65
65
  PIT&& ys,
66
66
  const size_t numClasses) :
67
67
  SimpleCV(Base(datasetInfo, numClasses), validationSize,
@@ -117,7 +117,7 @@ SimpleCV<MLAlgorithm,
117
117
  PredictionsType,
118
118
  WeightsType>::SimpleCV(const double validationSize,
119
119
  MIT&& xs,
120
- const data::DatasetInfo& datasetInfo,
120
+ const DatasetInfo& datasetInfo,
121
121
  PIT&& ys,
122
122
  const size_t numClasses,
123
123
  WIT&& weights) :
@@ -16,7 +16,6 @@
16
16
  #include <mlpack/prereqs.hpp>
17
17
 
18
18
  namespace mlpack {
19
- namespace data {
20
19
 
21
20
  /**
22
21
  * Given an input dataset and threshold, set values greater than threshold to
@@ -86,7 +85,6 @@ void Binarize(const arma::Mat<T>& input,
86
85
  output(dimension, i) = input(dimension, i) > threshold;
87
86
  }
88
87
 
89
- } // namespace data
90
88
  } // namespace mlpack
91
89
 
92
90
  #endif
@@ -17,7 +17,6 @@
17
17
  #include <mlpack/core/util/params.hpp>
18
18
 
19
19
  namespace mlpack {
20
- namespace data {
21
20
 
22
21
  inline void CheckCategoricalParam(util::Params& params,
23
22
  const std::string& paramName)
@@ -35,7 +34,6 @@ inline void CheckCategoricalParam(util::Params& params,
35
34
  Log::Fatal << errMsg2 << std::endl;
36
35
  }
37
36
 
38
- } // namespace data
39
37
  } // namespace mlpack
40
38
 
41
39
  #endif