mlpack 4.6.1__cp38-cp38-win_amd64.whl → 4.6.2__cp38-cp38-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- mlpack/__init__.py +3 -3
- mlpack/adaboost_classify.cp38-win_amd64.pyd +0 -0
- mlpack/adaboost_probabilities.cp38-win_amd64.pyd +0 -0
- mlpack/adaboost_train.cp38-win_amd64.pyd +0 -0
- mlpack/approx_kfn.cp38-win_amd64.pyd +0 -0
- mlpack/arma_numpy.cp38-win_amd64.pyd +0 -0
- mlpack/bayesian_linear_regression.cp38-win_amd64.pyd +0 -0
- mlpack/cf.cp38-win_amd64.pyd +0 -0
- mlpack/dbscan.cp38-win_amd64.pyd +0 -0
- mlpack/decision_tree.cp38-win_amd64.pyd +0 -0
- mlpack/det.cp38-win_amd64.pyd +0 -0
- mlpack/emst.cp38-win_amd64.pyd +0 -0
- mlpack/fastmks.cp38-win_amd64.pyd +0 -0
- mlpack/gmm_generate.cp38-win_amd64.pyd +0 -0
- mlpack/gmm_probability.cp38-win_amd64.pyd +0 -0
- mlpack/gmm_train.cp38-win_amd64.pyd +0 -0
- mlpack/hmm_generate.cp38-win_amd64.pyd +0 -0
- mlpack/hmm_loglik.cp38-win_amd64.pyd +0 -0
- mlpack/hmm_train.cp38-win_amd64.pyd +0 -0
- mlpack/hmm_viterbi.cp38-win_amd64.pyd +0 -0
- mlpack/hoeffding_tree.cp38-win_amd64.pyd +0 -0
- mlpack/image_converter.cp38-win_amd64.pyd +0 -0
- mlpack/include/mlpack/core/cv/k_fold_cv.hpp +21 -12
- mlpack/include/mlpack/core/cv/k_fold_cv_impl.hpp +49 -39
- mlpack/include/mlpack/core/data/detect_file_type_impl.hpp +9 -46
- mlpack/include/mlpack/core/data/save_impl.hpp +315 -315
- mlpack/include/mlpack/core/data/utilities.hpp +158 -158
- mlpack/include/mlpack/core/math/ccov.hpp +1 -0
- mlpack/include/mlpack/core/math/ccov_impl.hpp +4 -5
- mlpack/include/mlpack/core/math/make_alias.hpp +98 -3
- mlpack/include/mlpack/core/util/arma_traits.hpp +19 -2
- mlpack/include/mlpack/core/util/gitversion.hpp +1 -1
- mlpack/include/mlpack/core/util/sfinae_utility.hpp +24 -2
- mlpack/include/mlpack/core/util/version.hpp +1 -1
- mlpack/include/mlpack/methods/ann/dists/bernoulli_distribution_impl.hpp +1 -2
- mlpack/include/mlpack/methods/ann/init_rules/network_init.hpp +5 -5
- mlpack/include/mlpack/methods/ann/layer/batch_norm.hpp +3 -2
- mlpack/include/mlpack/methods/ann/layer/batch_norm_impl.hpp +19 -20
- mlpack/include/mlpack/methods/ann/layer/concat.hpp +1 -0
- mlpack/include/mlpack/methods/ann/layer/concat_impl.hpp +6 -7
- mlpack/include/mlpack/methods/ann/layer/convolution_impl.hpp +3 -3
- mlpack/include/mlpack/methods/ann/layer/grouped_convolution_impl.hpp +3 -3
- mlpack/include/mlpack/methods/ann/layer/linear3d.hpp +1 -0
- mlpack/include/mlpack/methods/ann/layer/linear3d_impl.hpp +11 -14
- mlpack/include/mlpack/methods/ann/layer/max_pooling.hpp +5 -4
- mlpack/include/mlpack/methods/ann/layer/max_pooling_impl.hpp +15 -14
- mlpack/include/mlpack/methods/ann/layer/mean_pooling.hpp +3 -2
- mlpack/include/mlpack/methods/ann/layer/mean_pooling_impl.hpp +14 -15
- mlpack/include/mlpack/methods/ann/layer/multihead_attention.hpp +6 -5
- mlpack/include/mlpack/methods/ann/layer/multihead_attention_impl.hpp +24 -25
- mlpack/include/mlpack/methods/ann/layer/nearest_interpolation.hpp +1 -0
- mlpack/include/mlpack/methods/ann/layer/nearest_interpolation_impl.hpp +4 -4
- mlpack/include/mlpack/methods/ann/layer/padding.hpp +1 -0
- mlpack/include/mlpack/methods/ann/layer/padding_impl.hpp +12 -13
- mlpack/include/mlpack/methods/ann/layer/recurrent_layer.hpp +3 -2
- mlpack/include/mlpack/methods/ann/loss_functions/cosine_embedding_loss_impl.hpp +5 -4
- mlpack/include/mlpack/methods/ann/rnn.hpp +19 -18
- mlpack/include/mlpack/methods/ann/rnn_impl.hpp +15 -15
- mlpack/include/mlpack/methods/bayesian_linear_regression/bayesian_linear_regression_impl.hpp +3 -8
- mlpack/include/mlpack/methods/decision_tree/fitness_functions/gini_gain.hpp +5 -8
- mlpack/include/mlpack/methods/decision_tree/fitness_functions/information_gain.hpp +5 -8
- mlpack/include/mlpack/methods/gmm/diagonal_gmm_impl.hpp +2 -1
- mlpack/include/mlpack/methods/gmm/eigenvalue_ratio_constraint.hpp +3 -3
- mlpack/include/mlpack/methods/gmm/gmm_impl.hpp +2 -1
- mlpack/include/mlpack/methods/hmm/hmm_impl.hpp +10 -5
- mlpack/include/mlpack/methods/random_forest/random_forest.hpp +57 -37
- mlpack/include/mlpack/methods/random_forest/random_forest_impl.hpp +69 -59
- mlpack/kde.cp38-win_amd64.pyd +0 -0
- mlpack/kernel_pca.cp38-win_amd64.pyd +0 -0
- mlpack/kfn.cp38-win_amd64.pyd +0 -0
- mlpack/kmeans.cp38-win_amd64.pyd +0 -0
- mlpack/knn.cp38-win_amd64.pyd +0 -0
- mlpack/krann.cp38-win_amd64.pyd +0 -0
- mlpack/lars.cp38-win_amd64.pyd +0 -0
- mlpack/linear_regression_predict.cp38-win_amd64.pyd +0 -0
- mlpack/linear_regression_train.cp38-win_amd64.pyd +0 -0
- mlpack/linear_svm.cp38-win_amd64.pyd +0 -0
- mlpack/lmnn.cp38-win_amd64.pyd +0 -0
- mlpack/local_coordinate_coding.cp38-win_amd64.pyd +0 -0
- mlpack/logistic_regression.cp38-win_amd64.pyd +0 -0
- mlpack/lsh.cp38-win_amd64.pyd +0 -0
- mlpack/mean_shift.cp38-win_amd64.pyd +0 -0
- mlpack/nbc.cp38-win_amd64.pyd +0 -0
- mlpack/nca.cp38-win_amd64.pyd +0 -0
- mlpack/nmf.cp38-win_amd64.pyd +0 -0
- mlpack/pca.cp38-win_amd64.pyd +0 -0
- mlpack/perceptron.cp38-win_amd64.pyd +0 -0
- mlpack/preprocess_binarize.cp38-win_amd64.pyd +0 -0
- mlpack/preprocess_describe.cp38-win_amd64.pyd +0 -0
- mlpack/preprocess_one_hot_encoding.cp38-win_amd64.pyd +0 -0
- mlpack/preprocess_scale.cp38-win_amd64.pyd +0 -0
- mlpack/preprocess_split.cp38-win_amd64.pyd +0 -0
- mlpack/radical.cp38-win_amd64.pyd +0 -0
- mlpack/random_forest.cp38-win_amd64.pyd +0 -0
- mlpack/softmax_regression.cp38-win_amd64.pyd +0 -0
- mlpack/sparse_coding.cp38-win_amd64.pyd +0 -0
- mlpack-4.6.2.dist-info/DELVEWHEEL +2 -0
- {mlpack-4.6.1.dist-info → mlpack-4.6.2.dist-info}/METADATA +2 -2
- {mlpack-4.6.1.dist-info → mlpack-4.6.2.dist-info}/RECORD +102 -102
- mlpack-4.6.1.dist-info/DELVEWHEEL +0 -2
- {mlpack-4.6.1.dist-info → mlpack-4.6.2.dist-info}/WHEEL +0 -0
- {mlpack-4.6.1.dist-info → mlpack-4.6.2.dist-info}/top_level.txt +0 -0
- mlpack.libs/{.load-order-mlpack-4.6.1 → .load-order-mlpack-4.6.2} +1 -1
|
@@ -46,7 +46,7 @@ template<
|
|
|
46
46
|
bool UseBootstrap,
|
|
47
47
|
typename BootstrapType
|
|
48
48
|
>
|
|
49
|
-
template<typename MatType>
|
|
49
|
+
template<typename MatType, typename LabelsType>
|
|
50
50
|
RandomForest<
|
|
51
51
|
FitnessFunction,
|
|
52
52
|
DimensionSelectionType,
|
|
@@ -55,7 +55,7 @@ RandomForest<
|
|
|
55
55
|
UseBootstrap,
|
|
56
56
|
BootstrapType
|
|
57
57
|
>::RandomForest(const MatType& dataset,
|
|
58
|
-
const
|
|
58
|
+
const LabelsType& labels,
|
|
59
59
|
const size_t numClasses,
|
|
60
60
|
const size_t numTrees,
|
|
61
61
|
const size_t minimumLeafSize,
|
|
@@ -68,8 +68,8 @@ RandomForest<
|
|
|
68
68
|
// Pass off work to the Train() method.
|
|
69
69
|
data::DatasetInfo info; // Ignored.
|
|
70
70
|
arma::rowvec weights; // Fake weights, not used.
|
|
71
|
-
|
|
72
|
-
minimumLeafSize, minimumGainSplit, maximumDepth, false,
|
|
71
|
+
TrainInternal<false, false>(dataset, info, labels, numClasses, weights,
|
|
72
|
+
numTrees, minimumLeafSize, minimumGainSplit, maximumDepth, false,
|
|
73
73
|
dimensionSelector, bootstrap);
|
|
74
74
|
}
|
|
75
75
|
|
|
@@ -81,7 +81,7 @@ template<
|
|
|
81
81
|
bool UseBootstrap,
|
|
82
82
|
typename BootstrapType
|
|
83
83
|
>
|
|
84
|
-
template<typename MatType>
|
|
84
|
+
template<typename MatType, typename LabelsType>
|
|
85
85
|
RandomForest<
|
|
86
86
|
FitnessFunction,
|
|
87
87
|
DimensionSelectionType,
|
|
@@ -91,7 +91,7 @@ RandomForest<
|
|
|
91
91
|
BootstrapType
|
|
92
92
|
>::RandomForest(const MatType& dataset,
|
|
93
93
|
const data::DatasetInfo& datasetInfo,
|
|
94
|
-
const
|
|
94
|
+
const LabelsType& labels,
|
|
95
95
|
const size_t numClasses,
|
|
96
96
|
const size_t numTrees,
|
|
97
97
|
const size_t minimumLeafSize,
|
|
@@ -103,7 +103,7 @@ RandomForest<
|
|
|
103
103
|
{
|
|
104
104
|
// Pass off work to the Train() method.
|
|
105
105
|
arma::rowvec weights; // Fake weights, not used.
|
|
106
|
-
|
|
106
|
+
TrainInternal<false, true>(dataset, datasetInfo, labels, numClasses, weights,
|
|
107
107
|
numTrees, minimumLeafSize, minimumGainSplit, maximumDepth, false,
|
|
108
108
|
dimensionSelector, bootstrap);
|
|
109
109
|
}
|
|
@@ -116,7 +116,7 @@ template<
|
|
|
116
116
|
bool UseBootstrap,
|
|
117
117
|
typename BootstrapType
|
|
118
118
|
>
|
|
119
|
-
template<typename MatType>
|
|
119
|
+
template<typename MatType, typename LabelsType, typename WeightsType>
|
|
120
120
|
RandomForest<
|
|
121
121
|
FitnessFunction,
|
|
122
122
|
DimensionSelectionType,
|
|
@@ -125,21 +125,23 @@ RandomForest<
|
|
|
125
125
|
UseBootstrap,
|
|
126
126
|
BootstrapType
|
|
127
127
|
>::RandomForest(const MatType& dataset,
|
|
128
|
-
const
|
|
128
|
+
const LabelsType& labels,
|
|
129
129
|
const size_t numClasses,
|
|
130
|
-
const
|
|
130
|
+
const WeightsType& weights,
|
|
131
131
|
const size_t numTrees,
|
|
132
132
|
const size_t minimumLeafSize,
|
|
133
133
|
const double minimumGainSplit,
|
|
134
134
|
const size_t maximumDepth,
|
|
135
135
|
DimensionSelectionType dimensionSelector,
|
|
136
|
-
BootstrapType bootstrap
|
|
136
|
+
BootstrapType bootstrap,
|
|
137
|
+
const std::enable_if_t<arma::is_arma_type<
|
|
138
|
+
std::remove_reference_t<WeightsType>>::value>*) :
|
|
137
139
|
avgGain(0.0)
|
|
138
140
|
{
|
|
139
141
|
// Pass off work to the Train() method.
|
|
140
142
|
data::DatasetInfo info; // Ignored by Train().
|
|
141
|
-
|
|
142
|
-
minimumLeafSize, minimumGainSplit, maximumDepth, false,
|
|
143
|
+
TrainInternal<true, false>(dataset, info, labels, numClasses, weights,
|
|
144
|
+
numTrees, minimumLeafSize, minimumGainSplit, maximumDepth, false,
|
|
143
145
|
dimensionSelector, bootstrap);
|
|
144
146
|
}
|
|
145
147
|
|
|
@@ -151,7 +153,7 @@ template<
|
|
|
151
153
|
bool UseBootstrap,
|
|
152
154
|
typename BootstrapType
|
|
153
155
|
>
|
|
154
|
-
template<typename MatType>
|
|
156
|
+
template<typename MatType, typename LabelsType, typename WeightsType>
|
|
155
157
|
RandomForest<
|
|
156
158
|
FitnessFunction,
|
|
157
159
|
DimensionSelectionType,
|
|
@@ -161,19 +163,21 @@ RandomForest<
|
|
|
161
163
|
BootstrapType
|
|
162
164
|
>::RandomForest(const MatType& dataset,
|
|
163
165
|
const data::DatasetInfo& datasetInfo,
|
|
164
|
-
const
|
|
166
|
+
const LabelsType& labels,
|
|
165
167
|
const size_t numClasses,
|
|
166
|
-
const
|
|
168
|
+
const WeightsType& weights,
|
|
167
169
|
const size_t numTrees,
|
|
168
170
|
const size_t minimumLeafSize,
|
|
169
171
|
const double minimumGainSplit,
|
|
170
172
|
const size_t maximumDepth,
|
|
171
173
|
DimensionSelectionType dimensionSelector,
|
|
172
|
-
BootstrapType bootstrap
|
|
174
|
+
BootstrapType bootstrap,
|
|
175
|
+
const std::enable_if_t<arma::is_arma_type<
|
|
176
|
+
std::remove_reference_t<WeightsType>>::value>*) :
|
|
173
177
|
avgGain(0.0)
|
|
174
178
|
{
|
|
175
179
|
// Pass off work to the Train() method.
|
|
176
|
-
|
|
180
|
+
TrainInternal<true, true>(dataset, datasetInfo, labels, numClasses, weights,
|
|
177
181
|
numTrees, minimumLeafSize, minimumGainSplit, maximumDepth, false,
|
|
178
182
|
dimensionSelector, bootstrap);
|
|
179
183
|
}
|
|
@@ -186,7 +190,7 @@ template<
|
|
|
186
190
|
bool UseBootstrap,
|
|
187
191
|
typename BootstrapType
|
|
188
192
|
>
|
|
189
|
-
template<typename MatType>
|
|
193
|
+
template<typename MatType, typename LabelsType>
|
|
190
194
|
double RandomForest<
|
|
191
195
|
FitnessFunction,
|
|
192
196
|
DimensionSelectionType,
|
|
@@ -195,7 +199,7 @@ double RandomForest<
|
|
|
195
199
|
UseBootstrap,
|
|
196
200
|
BootstrapType
|
|
197
201
|
>::Train(const MatType& dataset,
|
|
198
|
-
const
|
|
202
|
+
const LabelsType& labels,
|
|
199
203
|
const size_t numClasses,
|
|
200
204
|
const size_t numTrees,
|
|
201
205
|
const size_t minimumLeafSize,
|
|
@@ -208,10 +212,9 @@ double RandomForest<
|
|
|
208
212
|
// Pass off to Train().
|
|
209
213
|
data::DatasetInfo datasetInfo; // Ignored by Train().
|
|
210
214
|
arma::rowvec weights; // Ignored by Train().
|
|
211
|
-
return
|
|
212
|
-
|
|
213
|
-
|
|
214
|
-
dimensionSelector, bootstrap);
|
|
215
|
+
return TrainInternal<false, false>(dataset, datasetInfo, labels, numClasses,
|
|
216
|
+
weights, numTrees, minimumLeafSize, minimumGainSplit, maximumDepth,
|
|
217
|
+
warmStart, dimensionSelector, bootstrap);
|
|
215
218
|
}
|
|
216
219
|
|
|
217
220
|
template<
|
|
@@ -222,7 +225,7 @@ template<
|
|
|
222
225
|
bool UseBootstrap,
|
|
223
226
|
typename BootstrapType
|
|
224
227
|
>
|
|
225
|
-
template<typename MatType>
|
|
228
|
+
template<typename MatType, typename LabelsType>
|
|
226
229
|
double RandomForest<
|
|
227
230
|
FitnessFunction,
|
|
228
231
|
DimensionSelectionType,
|
|
@@ -232,7 +235,7 @@ double RandomForest<
|
|
|
232
235
|
BootstrapType
|
|
233
236
|
>::Train(const MatType& dataset,
|
|
234
237
|
const data::DatasetInfo& datasetInfo,
|
|
235
|
-
const
|
|
238
|
+
const LabelsType& labels,
|
|
236
239
|
const size_t numClasses,
|
|
237
240
|
const size_t numTrees,
|
|
238
241
|
const size_t minimumLeafSize,
|
|
@@ -244,10 +247,9 @@ double RandomForest<
|
|
|
244
247
|
{
|
|
245
248
|
// Pass off to Train().
|
|
246
249
|
arma::rowvec weights; // Ignored by Train().
|
|
247
|
-
return
|
|
248
|
-
|
|
249
|
-
|
|
250
|
-
dimensionSelector, bootstrap);
|
|
250
|
+
return TrainInternal<false, true>(dataset, datasetInfo, labels, numClasses,
|
|
251
|
+
weights, numTrees, minimumLeafSize, minimumGainSplit, maximumDepth,
|
|
252
|
+
warmStart, dimensionSelector, bootstrap);
|
|
251
253
|
}
|
|
252
254
|
|
|
253
255
|
template<
|
|
@@ -258,7 +260,7 @@ template<
|
|
|
258
260
|
bool UseBootstrap,
|
|
259
261
|
typename BootstrapType
|
|
260
262
|
>
|
|
261
|
-
template<typename MatType>
|
|
263
|
+
template<typename MatType, typename LabelsType, typename WeightsType>
|
|
262
264
|
double RandomForest<
|
|
263
265
|
FitnessFunction,
|
|
264
266
|
DimensionSelectionType,
|
|
@@ -267,23 +269,24 @@ double RandomForest<
|
|
|
267
269
|
UseBootstrap,
|
|
268
270
|
BootstrapType
|
|
269
271
|
>::Train(const MatType& dataset,
|
|
270
|
-
const
|
|
272
|
+
const LabelsType& labels,
|
|
271
273
|
const size_t numClasses,
|
|
272
|
-
const
|
|
274
|
+
const WeightsType& weights,
|
|
273
275
|
const size_t numTrees,
|
|
274
276
|
const size_t minimumLeafSize,
|
|
275
277
|
const double minimumGainSplit,
|
|
276
278
|
const size_t maximumDepth,
|
|
277
279
|
const bool warmStart,
|
|
278
280
|
DimensionSelectionType dimensionSelector,
|
|
279
|
-
BootstrapType bootstrap
|
|
281
|
+
BootstrapType bootstrap,
|
|
282
|
+
const std::enable_if_t<arma::is_arma_type<
|
|
283
|
+
std::remove_reference_t<WeightsType>>::value>*)
|
|
280
284
|
{
|
|
281
285
|
// Pass off to Train().
|
|
282
286
|
data::DatasetInfo datasetInfo; // Ignored by Train().
|
|
283
|
-
return
|
|
284
|
-
|
|
285
|
-
|
|
286
|
-
dimensionSelector, bootstrap);
|
|
287
|
+
return TrainInternal<true, false>(dataset, datasetInfo, labels, numClasses,
|
|
288
|
+
weights, numTrees, minimumLeafSize, minimumGainSplit, maximumDepth,
|
|
289
|
+
warmStart, dimensionSelector, bootstrap);
|
|
287
290
|
}
|
|
288
291
|
|
|
289
292
|
template<
|
|
@@ -294,7 +297,7 @@ template<
|
|
|
294
297
|
bool UseBootstrap,
|
|
295
298
|
typename BootstrapType
|
|
296
299
|
>
|
|
297
|
-
template<typename MatType>
|
|
300
|
+
template<typename MatType, typename LabelsType, typename WeightsType>
|
|
298
301
|
double RandomForest<
|
|
299
302
|
FitnessFunction,
|
|
300
303
|
DimensionSelectionType,
|
|
@@ -304,22 +307,23 @@ double RandomForest<
|
|
|
304
307
|
BootstrapType
|
|
305
308
|
>::Train(const MatType& dataset,
|
|
306
309
|
const data::DatasetInfo& datasetInfo,
|
|
307
|
-
const
|
|
310
|
+
const LabelsType& labels,
|
|
308
311
|
const size_t numClasses,
|
|
309
|
-
const
|
|
312
|
+
const WeightsType& weights,
|
|
310
313
|
const size_t numTrees,
|
|
311
314
|
const size_t minimumLeafSize,
|
|
312
315
|
const double minimumGainSplit,
|
|
313
316
|
const size_t maximumDepth,
|
|
314
317
|
const bool warmStart,
|
|
315
318
|
DimensionSelectionType dimensionSelector,
|
|
316
|
-
BootstrapType bootstrap
|
|
319
|
+
BootstrapType bootstrap,
|
|
320
|
+
const std::enable_if_t<arma::is_arma_type<
|
|
321
|
+
std::remove_reference_t<WeightsType>>::value>*)
|
|
317
322
|
{
|
|
318
323
|
// Pass off to Train().
|
|
319
|
-
return
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
dimensionSelector, bootstrap);
|
|
324
|
+
return TrainInternal<true, true>(dataset, datasetInfo, labels, numClasses,
|
|
325
|
+
weights, numTrees, minimumLeafSize, minimumGainSplit, maximumDepth,
|
|
326
|
+
warmStart, dimensionSelector, bootstrap);
|
|
323
327
|
}
|
|
324
328
|
|
|
325
329
|
template<
|
|
@@ -515,7 +519,13 @@ template<
|
|
|
515
519
|
bool UseBootstrap,
|
|
516
520
|
typename BootstrapType
|
|
517
521
|
>
|
|
518
|
-
template<
|
|
522
|
+
template<
|
|
523
|
+
bool UseWeights,
|
|
524
|
+
bool UseDatasetInfo,
|
|
525
|
+
typename MatType,
|
|
526
|
+
typename LabelsType,
|
|
527
|
+
typename WeightsType
|
|
528
|
+
>
|
|
519
529
|
double RandomForest<
|
|
520
530
|
FitnessFunction,
|
|
521
531
|
DimensionSelectionType,
|
|
@@ -523,18 +533,18 @@ double RandomForest<
|
|
|
523
533
|
CategoricalSplitType,
|
|
524
534
|
UseBootstrap,
|
|
525
535
|
BootstrapType
|
|
526
|
-
>::
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
|
|
530
|
-
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
|
|
537
|
-
|
|
536
|
+
>::TrainInternal(const MatType& dataset,
|
|
537
|
+
const data::DatasetInfo& datasetInfo,
|
|
538
|
+
const LabelsType& labels,
|
|
539
|
+
const size_t numClasses,
|
|
540
|
+
const WeightsType& weights,
|
|
541
|
+
const size_t numTrees,
|
|
542
|
+
const size_t minimumLeafSize,
|
|
543
|
+
const double minimumGainSplit,
|
|
544
|
+
const size_t maximumDepth,
|
|
545
|
+
const bool warmStart,
|
|
546
|
+
DimensionSelectionType& dimensionSelector,
|
|
547
|
+
BootstrapType& bootstrap)
|
|
538
548
|
{
|
|
539
549
|
// Reset the forest if we are not doing a warm-start.
|
|
540
550
|
if (!warmStart)
|
mlpack/kde.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
|
Binary file
|
mlpack/kfn.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
mlpack/kmeans.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
mlpack/knn.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
mlpack/krann.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
mlpack/lars.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
mlpack/lmnn.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
|
Binary file
|
|
Binary file
|
mlpack/lsh.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
|
Binary file
|
mlpack/nbc.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
mlpack/nca.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
mlpack/nmf.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
mlpack/pca.cp38-win_amd64.pyd
CHANGED
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
Binary file
|
|
@@ -0,0 +1,2 @@
|
|
|
1
|
+
Version: 1.10.0
|
|
2
|
+
Arguments: ['C:\\Users\\VssAdministrator\\AppData\\Local\\Temp\\cibw-run-85089mfr\\cp38-win_amd64\\build\\venv\\Scripts\\delvewheel', 'repair', '--add-path', 'D:\\a\\1\\s/OpenBLAS-0.3.21/bin/', '-w', 'C:\\Users\\VssAdministrator\\AppData\\Local\\Temp\\cibw-run-85089mfr\\cp38-win_amd64\\repaired_wheel', 'C:\\Users\\VssAdministrator\\AppData\\Local\\Temp\\cibw-run-85089mfr\\cp38-win_amd64\\built_wheel\\mlpack-4.6.2-cp38-cp38-win_amd64.whl']
|
|
@@ -1,12 +1,12 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: mlpack
|
|
3
|
-
Version: 4.6.
|
|
3
|
+
Version: 4.6.2
|
|
4
4
|
Summary: a flexible, fast machine learning library
|
|
5
5
|
Home-page: http://www.mlpack.org/
|
|
6
6
|
Author: mlpack developers
|
|
7
7
|
Author-email: mlpack@lists.mlpack.org
|
|
8
8
|
License: BSD
|
|
9
|
-
Project-URL: Documentation, http://www.mlpack.org/doc/mlpack-4.6.
|
|
9
|
+
Project-URL: Documentation, http://www.mlpack.org/doc/mlpack-4.6.2/python.html
|
|
10
10
|
Project-URL: Source, https://github.com/mlpack/mlpack/
|
|
11
11
|
Project-URL: Tracker, https://github.com/mlpack/mlpack/issues
|
|
12
12
|
Keywords: machine learning,data mining,deep learning,optimization
|