mloda 0.4.3__py3-none-any.whl → 0.4.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {mloda-0.4.3.dist-info → mloda-0.4.4.dist-info}/METADATA +13 -2
- {mloda-0.4.3.dist-info → mloda-0.4.4.dist-info}/RECORD +11 -11
- {mloda-0.4.3.dist-info → mloda-0.4.4.dist-info}/WHEEL +1 -1
- mloda_plugins/feature_group/experimental/clustering/base.py +3 -2
- mloda_plugins/feature_group/experimental/dimensionality_reduction/base.py +15 -15
- mloda_plugins/feature_group/experimental/forecasting/base.py +2 -3
- mloda_plugins/feature_group/experimental/time_window/base.py +3 -2
- {mloda-0.4.3.dist-info → mloda-0.4.4.dist-info}/entry_points.txt +0 -0
- {mloda-0.4.3.dist-info → mloda-0.4.4.dist-info}/licenses/LICENSE.TXT +0 -0
- {mloda-0.4.3.dist-info → mloda-0.4.4.dist-info}/licenses/NOTICE.md +0 -0
- {mloda-0.4.3.dist-info → mloda-0.4.4.dist-info}/top_level.txt +0 -0
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: mloda
|
|
3
|
-
Version: 0.4.
|
|
4
|
-
Summary: mloda:
|
|
3
|
+
Version: 0.4.4
|
|
4
|
+
Summary: mloda.ai: Open Data Access for ML and AI
|
|
5
5
|
Author-email: Tom Kaltofen <info@mloda.ai>
|
|
6
6
|
License: Apache-2.0
|
|
7
7
|
Project-URL: Bug Tracker, https://github.com/mloda-ai/mloda/issues
|
|
@@ -306,6 +306,17 @@ Built-in and custom extenders give you full lineage - trace any result back to i
|
|
|
306
306
|
|
|
307
307
|
---
|
|
308
308
|
|
|
309
|
+
## Ecosystem
|
|
310
|
+
|
|
311
|
+
Most plugins currently live in `mloda_plugins/` within this repository. The goal is to gradually migrate them to standalone packages in the registry.
|
|
312
|
+
|
|
313
|
+
| Repository | Description |
|
|
314
|
+
|------------|-------------|
|
|
315
|
+
| [mloda-registry](https://github.com/mloda-ai/mloda-registry) | Official plugin packages and 40+ development guides |
|
|
316
|
+
| [mloda-plugin-template](https://github.com/mloda-ai/mloda-plugin-template) | Cookiecutter template for creating standalone plugins |
|
|
317
|
+
|
|
318
|
+
---
|
|
319
|
+
|
|
309
320
|
## Contributing
|
|
310
321
|
|
|
311
322
|
We welcome contributions! Build plugins, improve docs, or add features.
|
|
@@ -106,8 +106,8 @@ mloda/steward/__init__.py,sha256=PPXY3o4OM_daV6wD3DJNuPPCEEQg5NeETlG6cAmkzRE,696
|
|
|
106
106
|
mloda/steward/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
107
107
|
mloda/user/__init__.py,sha256=TG00kApwQzj8FCRIsTy-PomisoULbSTh5CgqlUT6Wvc,1879
|
|
108
108
|
mloda/user/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
109
|
-
mloda-0.4.
|
|
110
|
-
mloda-0.4.
|
|
109
|
+
mloda-0.4.4.dist-info/licenses/LICENSE.TXT,sha256=gmhQwSkHxjiShsqQ1FpJ-20YFtaa4vRCE7aCx55-6nk,11366
|
|
110
|
+
mloda-0.4.4.dist-info/licenses/NOTICE.md,sha256=Hu10B2sPnGLIHxZ4QhACSLLxukJpeJzjvkzCu48q5fY,520
|
|
111
111
|
mloda_plugins/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
112
112
|
mloda_plugins/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
113
113
|
mloda_plugins/compute_framework/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -154,7 +154,7 @@ mloda_plugins/feature_group/experimental/aggregated_feature_group/pandas.py,sha2
|
|
|
154
154
|
mloda_plugins/feature_group/experimental/aggregated_feature_group/polars_lazy.py,sha256=NM59vF9A1m-i3zSvz8DwaSJ4a284iMGsf17CCIdridY,6224
|
|
155
155
|
mloda_plugins/feature_group/experimental/aggregated_feature_group/pyarrow.py,sha256=9VcD7wLWt57z9z9uRwwl22qVgwMBYFoeZ3iGsBvBBns,5656
|
|
156
156
|
mloda_plugins/feature_group/experimental/clustering/__init__.py,sha256=769NSapfi48V7BBh8zoo-ale2We6K4OV6ocNlzAhfEw,59
|
|
157
|
-
mloda_plugins/feature_group/experimental/clustering/base.py,sha256=
|
|
157
|
+
mloda_plugins/feature_group/experimental/clustering/base.py,sha256=CCIi5ohOTkY4os3Ah0V09Ht4hPMXZc1NXMiN7ME42wc,16411
|
|
158
158
|
mloda_plugins/feature_group/experimental/clustering/pandas.py,sha256=qZhlnC5L96wPo4PfkwJJzG0_dZ8CCFEq38eyG5nIYJ0,19239
|
|
159
159
|
mloda_plugins/feature_group/experimental/data_quality/__init__.py,sha256=ga8jdKaLl4bxkxMqNtRbrkHFnRWZIp8f3bR7DVG5d-I,45
|
|
160
160
|
mloda_plugins/feature_group/experimental/data_quality/missing_value/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -162,12 +162,12 @@ mloda_plugins/feature_group/experimental/data_quality/missing_value/base.py,sha2
|
|
|
162
162
|
mloda_plugins/feature_group/experimental/data_quality/missing_value/pandas.py,sha256=QGdIHohILRmHrjk6WrNobn5jSz7H_aLK83_bxzCN9RE,8510
|
|
163
163
|
mloda_plugins/feature_group/experimental/data_quality/missing_value/pyarrow.py,sha256=H8yMtnCf3Z4BZde676YwIPSpsjUGfi1pU2HXNoSRArw,14204
|
|
164
164
|
mloda_plugins/feature_group/experimental/data_quality/missing_value/python_dict.py,sha256=Dnh0WcT1xjNETkDa7Wd5u-zCu_g20-fa_QEuh_-eK-Y,13856
|
|
165
|
-
mloda_plugins/feature_group/experimental/dimensionality_reduction/base.py,sha256=
|
|
165
|
+
mloda_plugins/feature_group/experimental/dimensionality_reduction/base.py,sha256=Dul6GdYLgRe_DAcoMWM6KYrjYE9iwBNCuX90VNFvHhQ,15899
|
|
166
166
|
mloda_plugins/feature_group/experimental/dimensionality_reduction/pandas.py,sha256=Bl3xVPyQTuDAtxBVuS09tAWE4RVbh5i15z0h3l6UYLI,13690
|
|
167
167
|
mloda_plugins/feature_group/experimental/dynamic_feature_group_factory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
168
168
|
mloda_plugins/feature_group/experimental/dynamic_feature_group_factory/dynamic_feature_group_factory.py,sha256=Gn6dvrWQ2ldNWRMsuEhlT3jp_tqC1FVlr0pGpJnkrVs,12982
|
|
169
169
|
mloda_plugins/feature_group/experimental/forecasting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
170
|
-
mloda_plugins/feature_group/experimental/forecasting/base.py,sha256=
|
|
170
|
+
mloda_plugins/feature_group/experimental/forecasting/base.py,sha256=or_y_sryVjN_D2v3W2Fx1EQRi-bQSUBcEye1X7xX2Ws,23085
|
|
171
171
|
mloda_plugins/feature_group/experimental/forecasting/forecasting_artifact.py,sha256=9i9Eg5PEFEl6Nq12RTPxCeVlZZ9u-Xmju-lJRARqOVI,4215
|
|
172
172
|
mloda_plugins/feature_group/experimental/forecasting/pandas.py,sha256=sJaZmBCISr68kB5yGuTXzN9gpa60VF4DPQDIkJBgugM,28719
|
|
173
173
|
mloda_plugins/feature_group/experimental/geo_distance/__init__.py,sha256=wqp7I3j87AmrVBi2rlqcz4Sj-R1QMe3EasmNFb_Zxg4,85
|
|
@@ -220,7 +220,7 @@ mloda_plugins/feature_group/experimental/text_cleaning/base.py,sha256=fJyMZfg_qe
|
|
|
220
220
|
mloda_plugins/feature_group/experimental/text_cleaning/pandas.py,sha256=VUlFcyeMENBUJu_Mm-dHn5Xwj0SlUhTiyIjhXri4-jE,7307
|
|
221
221
|
mloda_plugins/feature_group/experimental/text_cleaning/python_dict.py,sha256=doE7juFYH809_YV_p-yKj1ZTqJWFGLu55OXMJ0kk7B4,7797
|
|
222
222
|
mloda_plugins/feature_group/experimental/time_window/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
223
|
-
mloda_plugins/feature_group/experimental/time_window/base.py,sha256=
|
|
223
|
+
mloda_plugins/feature_group/experimental/time_window/base.py,sha256=Y2XaU3mmxmaBFwAAdMB0-KAxfwmvfoAVHQiqCtsIwm8,17719
|
|
224
224
|
mloda_plugins/feature_group/experimental/time_window/pandas.py,sha256=4Ydj5R-Cb4_W6RmxSUUYkmcPSbu2ePOtCLt53VTd_8g,7801
|
|
225
225
|
mloda_plugins/feature_group/experimental/time_window/pyarrow.py,sha256=DxryfWGjJl6InR_6Bisr9HAZQxreWL25TgnOmquJhss,10718
|
|
226
226
|
mloda_plugins/feature_group/input_data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -244,8 +244,8 @@ mloda_plugins/function_extender/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm
|
|
|
244
244
|
mloda_plugins/function_extender/base_implementations/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
245
245
|
mloda_plugins/function_extender/base_implementations/otel/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
246
246
|
mloda_plugins/function_extender/base_implementations/otel/otel_extender.py,sha256=cKFWuVHOzk78Jm4zFfHxdTYcNVAzaM-ORSV0QCkScQM,660
|
|
247
|
-
mloda-0.4.
|
|
248
|
-
mloda-0.4.
|
|
249
|
-
mloda-0.4.
|
|
250
|
-
mloda-0.4.
|
|
251
|
-
mloda-0.4.
|
|
247
|
+
mloda-0.4.4.dist-info/METADATA,sha256=b5c9VSB_4IgwuUtbIFE3KT-EaZQHIn5VCMGRi5zqmQ8,12199
|
|
248
|
+
mloda-0.4.4.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
|
|
249
|
+
mloda-0.4.4.dist-info/entry_points.txt,sha256=f7hp7s4laABj9eN5YwEjQAyInF-fa687MXdz-hKYMIA,80
|
|
250
|
+
mloda-0.4.4.dist-info/top_level.txt,sha256=zImHD-7ilfeB7QZ6Bd9Htwwx5O-Z84D0T2pUgKrGDdc,20
|
|
251
|
+
mloda-0.4.4.dist-info/RECORD,,
|
|
@@ -121,8 +121,9 @@ class ClusteringFeatureGroup(FeatureChainParserMixin, FeatureGroup):
|
|
|
121
121
|
"explanation": "Number of clusters or 'auto' for automatic determination",
|
|
122
122
|
DefaultOptionKeys.context: True, # Mark as context parameter
|
|
123
123
|
DefaultOptionKeys.strict_validation: True, # Enable strict validation
|
|
124
|
-
DefaultOptionKeys.validation_function: lambda value:
|
|
125
|
-
|
|
124
|
+
DefaultOptionKeys.validation_function: lambda value: (
|
|
125
|
+
value == "auto" or (isinstance(value, (int, str)) and str(value).isdigit() and int(value) > 0)
|
|
126
|
+
),
|
|
126
127
|
},
|
|
127
128
|
DefaultOptionKeys.in_features: {
|
|
128
129
|
"explanation": "Source features to use for clustering",
|
|
@@ -130,9 +130,9 @@ class DimensionalityReductionFeatureGroup(FeatureChainParserMixin, FeatureGroup)
|
|
|
130
130
|
"explanation": "Target dimension for the reduction (positive integer)",
|
|
131
131
|
DefaultOptionKeys.context: True,
|
|
132
132
|
DefaultOptionKeys.strict_validation: True,
|
|
133
|
-
DefaultOptionKeys.validation_function: lambda value:
|
|
134
|
-
|
|
135
|
-
|
|
133
|
+
DefaultOptionKeys.validation_function: lambda value: (
|
|
134
|
+
isinstance(value, (int, str)) and str(value).isdigit() and int(value) > 0
|
|
135
|
+
),
|
|
136
136
|
},
|
|
137
137
|
DefaultOptionKeys.in_features: {
|
|
138
138
|
"explanation": "Source features to use for dimensionality reduction",
|
|
@@ -145,18 +145,18 @@ class DimensionalityReductionFeatureGroup(FeatureChainParserMixin, FeatureGroup)
|
|
|
145
145
|
DefaultOptionKeys.context: True,
|
|
146
146
|
DefaultOptionKeys.strict_validation: False,
|
|
147
147
|
"default": 250,
|
|
148
|
-
DefaultOptionKeys.validation_function: lambda value:
|
|
149
|
-
|
|
150
|
-
|
|
148
|
+
DefaultOptionKeys.validation_function: lambda value: (
|
|
149
|
+
isinstance(value, (int, str)) and str(value).isdigit() and int(value) > 0
|
|
150
|
+
),
|
|
151
151
|
},
|
|
152
152
|
TSNE_N_ITER_WITHOUT_PROGRESS: {
|
|
153
153
|
"explanation": "Maximum iterations without progress before early stopping (t-SNE)",
|
|
154
154
|
DefaultOptionKeys.context: True,
|
|
155
155
|
DefaultOptionKeys.strict_validation: False,
|
|
156
156
|
"default": 50,
|
|
157
|
-
DefaultOptionKeys.validation_function: lambda value:
|
|
158
|
-
|
|
159
|
-
|
|
157
|
+
DefaultOptionKeys.validation_function: lambda value: (
|
|
158
|
+
isinstance(value, (int, str)) and str(value).isdigit() and int(value) > 0
|
|
159
|
+
),
|
|
160
160
|
},
|
|
161
161
|
TSNE_METHOD: {
|
|
162
162
|
"barnes_hut": "Barnes-Hut approximation (faster, O(n log n))",
|
|
@@ -183,9 +183,9 @@ class DimensionalityReductionFeatureGroup(FeatureChainParserMixin, FeatureGroup)
|
|
|
183
183
|
DefaultOptionKeys.context: True,
|
|
184
184
|
DefaultOptionKeys.strict_validation: False,
|
|
185
185
|
"default": 200,
|
|
186
|
-
DefaultOptionKeys.validation_function: lambda value:
|
|
187
|
-
|
|
188
|
-
|
|
186
|
+
DefaultOptionKeys.validation_function: lambda value: (
|
|
187
|
+
isinstance(value, (int, str)) and str(value).isdigit() and int(value) > 0
|
|
188
|
+
),
|
|
189
189
|
},
|
|
190
190
|
# Isomap specific parameters
|
|
191
191
|
ISOMAP_N_NEIGHBORS: {
|
|
@@ -193,9 +193,9 @@ class DimensionalityReductionFeatureGroup(FeatureChainParserMixin, FeatureGroup)
|
|
|
193
193
|
DefaultOptionKeys.context: True,
|
|
194
194
|
DefaultOptionKeys.strict_validation: False,
|
|
195
195
|
"default": 5,
|
|
196
|
-
DefaultOptionKeys.validation_function: lambda value:
|
|
197
|
-
|
|
198
|
-
|
|
196
|
+
DefaultOptionKeys.validation_function: lambda value: (
|
|
197
|
+
isinstance(value, (int, str)) and str(value).isdigit() and int(value) > 0
|
|
198
|
+
),
|
|
199
199
|
},
|
|
200
200
|
}
|
|
201
201
|
|
|
@@ -145,9 +145,8 @@ class ForecastingFeatureGroup(FeatureChainParserMixin, FeatureGroup):
|
|
|
145
145
|
DefaultOptionKeys.context: True,
|
|
146
146
|
DefaultOptionKeys.strict_validation: True,
|
|
147
147
|
DefaultOptionKeys.validation_function: lambda x: (
|
|
148
|
-
isinstance(x, int) or (isinstance(x, str) and x.isdigit())
|
|
149
|
-
)
|
|
150
|
-
and int(x) > 0,
|
|
148
|
+
(isinstance(x, int) or (isinstance(x, str) and x.isdigit())) and int(x) > 0
|
|
149
|
+
),
|
|
151
150
|
},
|
|
152
151
|
TIME_UNIT: {
|
|
153
152
|
**TIME_UNITS,
|
|
@@ -134,8 +134,9 @@ class TimeWindowFeatureGroup(FeatureChainParserMixin, FeatureGroup):
|
|
|
134
134
|
"explanation": "Size of the time window (must be positive integer)",
|
|
135
135
|
DefaultOptionKeys.context: True, # Mark as context parameter
|
|
136
136
|
DefaultOptionKeys.strict_validation: True, # Enable strict validation
|
|
137
|
-
DefaultOptionKeys.validation_function: lambda x: (
|
|
138
|
-
|
|
137
|
+
DefaultOptionKeys.validation_function: lambda x: (
|
|
138
|
+
(isinstance(x, int) and x > 0) or (isinstance(x, str) and x.isdigit() and int(x) > 0)
|
|
139
|
+
),
|
|
139
140
|
},
|
|
140
141
|
# Time unit parameter (context parameter)
|
|
141
142
|
TIME_UNIT: {
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|